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SUMMARY

Essential biological functions, such as mitosis, require tight coordination of hundreds of proteins 

in space and time. Localization, timing of interactions and changes in cellular structure are all 

crucial to ensure correct assembly, function and regulation of protein complexes1–4. Live cell 

imaging can reveal protein distributions and dynamics but experimental and theoretical challenges 

prevented its use to produce quantitative data and a model of mitosis that comprehensively 

integrates information and enables analysis of the dynamic interactions between the molecular 

parts of the mitotic machinery within changing cellular boundaries.

To address this, we generated a 4D image data-driven, canonical model of the morphological 

changes during mitotic progression of human cells. We used this model to integrate dynamic 3D 

concentration data of many fluorescently knocked-in mitotic proteins, imaged by fluorescence 

correlation spectroscopy-calibrated microscopy5. The approach taken here in the context of the 

MitoSys consortium to generate a dynamic protein atlas of human cell division is generic. It can 

be applied to systematically map and mine dynamic protein localization networks that drive cell 

division in different cell types and can be conceptually transferred to other cellular functions.
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RESULTS

To generate standardized, quantitative data on the dynamic 3D localization of mitotic 

proteins, we imaged HeLa cell lines, in which such proteins were fluorescently labeled by 

editing the corresponding genomic locus6. For each protein, the cell and chromosome 

volumes were recorded in separate channels as spatio-temporal landmarks. We recorded 

mitosis in high throughput by detecting the beginning of cell division (prophase) in low 

resolution images of the chromosomes, imaging the protein of interest by high resolution 3D 

confocal microscopy until division was completed (Fig. 1a) and then calibrating the signal 

by fluorescence correlation spectroscopy (FCS)7 in six nuclear/cytoplasmic positions (Fig. 

1a). Calibration allowed us to convert 3D protein fluorescence movies to time-resolved 

protein concentration distribution maps (see Methods; Fig. 1b,c). Using this automated 

experimental pipeline, we acquired a pilot dataset for 28 proteins, most of which were 

homozygously tagged with EGFP by zinc finger nucleases8 or CRISPR-Cas9 nickase9 

mediated genome editing, while for some genes stable integration of cDNAs or bacterial 

artificial chromosomes10 had to be used (see Methods; Supplemental Data Table 1). The 

time-resolved 3D distribution was recorded for 18 dividing cells per protein on average (Fig. 

2a), giving us a sufficiently large dataset to develop and test our computational framework.

Although cell division is a continuous process, traditionally, mitosis is divided into five 

stages: pro-, prometa-, meta-, ana- and telophase11. Except for nuclear envelope breakdown 

and chromosome segregation that mark the onset of prometaphase and anaphase 

respectively, the other stages are not separated by sharp kinetic boundaries. To align the 

varying kinetic data from different cells (Fig. 2a), we first defined a “mitotic standard time” 

based on changes in chromosome structure. Chromosome boundaries of all imaged mitoses 

were automatically segmented in 3D using the landmark channel (see Methods; Fig. 2b, 

Extended Data Fig. 1a,b). Three geometric features were extracted from the segmented data: 

the distance between the two segregated chromosome masses, the total chromosome volume 

and the third eigenvalue of the chromosome mass (Fig. 2c). Each mitosis movie could thus 

be represented as a six-dimensional vector sequence of these parameters and their first 

derivative indicating kinetic transitions. We used a modified Barton-Sternberg algorithm 

with multidimensional dynamic time warping to align the vector sequences and construct a 

mitotic standard time reference (see Methods; Fig 2d, Extended Data Fig. 1c,d). To 

discretize major transitions in chromosome structure during mitosis, we detected local 

maxima in the second derivative of the average feature sequences (Extended Data Fig. 2a–c). 

This automatically distinguished 20 mitotic stages, which we used to annotate the 

experimentally sampled time points of individual HeLa cells throughout the study (Extended 

Data Fig. 2d). The same approach could align a different human cell type, U2OS, using the 

same landmarks, and conserved the nature of the mitotic transitions (Extended Data Fig. 3) 

validating the generality of the approach.

This alignment allowed to objectively map all cell images to a standard time reference for 

averaging. To enable visualization, interactive navigation and analysis of all imaged protein 

distributions, we next computed the canonical geometry from late prometaphase (stage 7) to 

cytokinesis (stage 20), where little deviation from rotational symmetry around the division 

axis occurs. The canonical geometry model was reconstructed from the average geometry of 
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several hundred cells spatially registered for each mitotic standard stage (see Methods; 

Extended Data Fig. 4). Evolution of this mitotic standard geometry over the mitotic standard 

time defines the 4D canonical mitotic cell model, enabling us to register all recorded cell 

divisions in space and time based on their landmark channels. For each protein, we mapped 

each 3D stack to the corresponding mitotic standard stage (Fig. 3a) and computed 4D 

concentration maps representing the average behavior of each mitotic protein. Maps of many 

proteins can then be freely combined (Fig. 3b), to compare their localization patterns, 

dynamics and abundance and provide intuitive navigation of the integrated data set as 

illustrated in our web-based interactive mitotic cell atlas (www.mitocheck.org/

mitotic_cell_atlas).

To illustrate the power of integrated data exploration for multiple proteins in the canonical 

model, we analyzed eight mitotic chromosome structure proteins (Extended Data Fig. 5a,b). 

Plotting the total number of proteins found on mitotic chromosomes and in the daughter 

nuclei against the mitotic standard time allowed a quantitative comparison of protein 

dynamics (see Methods; Fig. 3c,d) which revealed that the amount of most chromosomal 

proteins bound to chromatin in metaphase is within the same order of magnitude (3,000 – 

26,000 per nucleus), except for TOP2A which shows a 25 times higher abundance, 

potentially suggesting a structural rather than a purely enzymatic role. We found cohesins to 

slowly and progressively dissociate from chromatin in early mitosis (RAD21, STAG1, and 

STAG2), with a final more rapid release of approximately 3,000 remaining cohesin 

complexes before anaphase onset, indicating that no more than 100 cohesins are sufficient to 

connect the sister chromatids on an average human chromosome, mostly at the centromere 

(see Methods and12). Interestingly, the cohesins bound to mitotic chromosomes consisted of 

equal amounts of two isoforms containing the HEAT repeat subunits STAG1 or STAG2 (Fig. 

3d) contrasting with the situation in interphase nuclei where STAG2-containing complexes 

dominated13. Furthermore, we observed that a significant amount of STAG2 (p < 0.025, 

paired Wilcoxon signed rank-test), but not of the kleisin subunit RAD21, rebound 

chromosomes in anaphase, suggesting a potential non-cohesive function of STAG2 during 

mitotic exit (Fig. 3c,d, Extended Data Fig. 5b). In contrast to the complete dissociation of 

most cohesins, about 17,000 molecules of the chromatin organizer CTCF remained 

associated with the genome throughout mitosis14, consistent with a “bookkeeping” 

mechanism of interphase chromatin architecture. Once chromosome segregation was 

initiated, KIF4A, TOP2A and CTCF further accumulated on chromatin in anaphase, 

suggesting a role in maximal arm shortening in anaphase15. During nuclear reformation, the 

cytoplasmic pool of mitotic chromosome proteins showed an ordered entry as well as 

decreasing rates of import. CTCF was reimported first with the highest rate (391 proteins/

sec), followed by simultaneous import of the cohesin subunits STAG1 and RAD21 (352 and 

239 proteins/sec, respectively), while STAG2 and WAPL enter the nucleus later and at a 

lower rate (69 and 89 proteins/sec, respectively). This shows that mitotic decondensation 

proceeds in the presence of CTCF and subsequently STAG1-containing cohesin complexes, 

but before WAPL and STAG2 are present. In addition to the chromosomal proteins, we also 

explored assembly of the nuclear pore complex (NPC) during late anaphase (Extended Data 

Fig. 5c). Consistent with previous observations16,17, we found that cytoplasmic ring 

components (NUP107, NUP214) assembled early, but surprisingly found that nuclear basket 
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as well as cytoplasmic filament proteins (TPR and RANBP2) assembled only much later, at 

a time when import of CTCF was already completed. This suggests that nuclear and 

cytoplasmic filaments of the NPC are not required for the rapid import of nuclear proteins 

needed for re-establishing the interphase genome architecture (Extended Data Fig. 5d).

To comprehensively investigate which proteins work together where and when inside the 

cell, we transformed their spatial distribution into numerical features. To this end, we used a 

segmentation-free approach based on a speeded-up robust features (SURF) detector18 to 

extract so-called interest point clusters (see Methods; Fig. 4a, Extended Data Fig. 6a,b) 

transforming each 3D movie into a sequence of 100-dimensional feature vectors. By 

averaging the feature vectors of all images of the same protein and mitotic standard stage, 

the dynamic distribution of all proteins in our dataset could then be represented as a third 

order tensor of size 28 × 100 × 20 (proteins × features × stages). Soft clustering with non-

negative tensor factorization (NTF) detected seven clusters of dynamic protein localization 

patterns (see Methods, Fig. 4a, Extended Data Fig. 6c). The identity of the proteins in each 

pattern revealed a striking correspondence between these statistically defined clusters and 

major mitotic organelles and structures (e.g. CENPA identifies centromeres/kinetochores, 

RACGAP1 identifies the midplane in late mitotic stages, Extended Data Fig. 7), validating 

our unsupervised approach. Since our clustering assigns the fraction of a mitotic protein to 

each pattern over time, it reliably deals with promiscuous proteins present in multiple sub-

cellular structures. Linking proteins with similar patterns at each time point allowed us to 

derive a dynamic multigraph, which showed the dynamic protein co-localization network 

highlighting the activities of different compartments over time and allowing us to predict 

where and when proteins most likely interact (Fig. 4b). Results from the above clustering 

can be used to generate hypotheses that can be visualized in the canonical cell model. For 

instance, the temporal evolution of the mitotic kinase AURKB and its regulator CDCA8 (aka 

Borealin), predicts that the two proteins relocate to the midplane (Fig. 4a, purple in right 

panel) in different proportions and with different kinetics. Since the two proteins are known 

to be present in a 1:1 ratio in the chromosome passenger complex19, this observation 

suggested that a fraction of AURKB in the midplane is not part of the complex. Exploring 

the 4D localization of CDCA8 and AURKB in the mitotic cell atlas (Extended Data Fig. 

8a,b) indeed revealed that while these two proteins partially colocalize at the midbody, 

AURKB shows an additional localization in an equatorial cortical ring that contracts as 

mitosis progresses. This novel localization of the mitotic kinase AURKB suggests that it is 

an integral part of the contractile cytokinetic ring. While unexpected, this observation is 

consistent with AURKB’s function in cytokinesis20–22. This raises the very interesting 

possibility that the midplane and cytokinetic ring pools of AURKB have different functions 

for central spindle architecture and cytokinesis respectively during mitotic exit.

Since our clustering of dynamic localization patterns does not a priori yield pure sub-cellular 

compartments as defined ultrastructurally or by fractionation, we developed a supervised 

machine learning approach to define subcellular structures based on known resident proteins 

of six compartments/organelles relevant for mitosis: chromosomes, nuclear envelope, 

kinetochores, spindle, centrosomes and midbody (see Methods). Using the interest point 

cluster features as input, we trained a multivariate linear regression model that could assign 

the amounts of a protein of interest present in each of the six reference compartments 
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(Extended Data Fig. 8c,d). This allowed us to quantitatively compare the subcellular fluxes 

between these compartments for all proteins (Extended Data Fig. 9).

Mining this data is powerful to dissect dynamic multimolecular events inside living cells 

such as the assembly or disassembly of organelles. As an example, we calculated the number 

of all imaged proteins localized to kinetochores, to investigate the disassembly of this large 

supramolecular complex essential for cell division. The data allowed us to determine that 

kinetochore disassembly starts in early metaphase with dissociation of BUB1B and PLK1 

followed in late metaphase by BUB1, AURKB, MIS12 and CDCA8 (Extended Data Fig. 

8d). In addition, this analysis showed that the stoichiometry of these proteins prior to 

disassembly differs up to six-fold and that their maximal dissociation rates span over an 

order of magnitude ranging from 17 to 173 molecules per second. The predicted number of 

~420 CENPA molecules per kinetochore was consistent with data from biochemical 

methods23,24 and the predicted disassembly order was consistent with reports of late 

dissociation of MIS1225 (Extended Data Fig. 8e).

Our automatic assignment of protein amounts to cellular organelles, thus allowed us for the 

first time to determine the exact timing, stoichiometry and dissociation rates for multiple 

mitotic proteins that reside dynamically on kinetochores.

DISCUSSION

With this study we provide an integrated experimental and computational framework to 

build a comprehensive and quantitative 4D model of the mitotic protein localization network 

in a dividing human cell. Our model provides a standardized yet dynamic spatio-temporal 

reference system for the mitotic cell that can be used to integrate quantitative information on 

any number of protein distributions sampled in thousands of different single cell 

experiments. Using a pilot data set, we illustrate the power of this model by mining the data 

to automatically define dynamic localization patterns to subcellular structures as well as 

predicting the order, stoichiometry and rates of assembly and disassembly of sub-cellular 

organelles. This quantitative information on protein localization in living cells provides 

greater insights into protein dynamics and interactions at relevant temporal resolutions and 

supports building simulations of mitotic processes. Our computational model underpins an 

interactive 4D atlas of the human mitotic cell, which allows the visualization of multiple 

protein dynamics with a spatial and temporal resolution and continuity that are currently 

very difficult or impossible to reach with multi-color live-cell imaging over the duration of 

mitosis. We illustrate with mitotic chromosome formation, kinetochore disassembly, NPC 

assembly and cytokinesis how the knowledge gained through the exploration and mining of 

the atlas data can be used to formulate new mechanistic hypotheses about the function of 

proteins inside the cell. The concept of standardizing the spatio-temporal cellular context for 

analyzing dynamic protein distributions in order to understand cellular processes as 

presented here is generic and we envision its adaptation to other essential biological 

functions such as cell migration or cell differentiation.
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METHODS

Cell culture.

HeLa Kyoto cells (RRID: CVCL_1922) were a kind gift from Pr Narumiya, Kyoto 

University. These cells were authenticated by whole genome sequencing. HeLa Kyoto cells 

were cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM; Life 

Technologies) supplemented with 10% (v/v) fetal bovine serum (FBS), 100 units/ml 

penicillin, 0.1 mg/ml streptomycin, 2 mM Glutamine and 1 mM (v/v) Sodium pyruvate at 

37 °C and 5% CO2. Depending on the genetic modification, one or more of the following 

antibiotics were supplied to the culture at the stated final concentration: Geneticin (Life 

Technologies) 500 μg/ml, Hygromycin B (Invitrogen) 200 μg/ml or Puromycin (Invitrogen 

or Calbiochem) 0.5 μg/ml. Once the cells reached 80–90% confluence, they were passaged 

and only a fraction of the cells were cultured in a fresh dish. U2OS cells were obtained from 

the ATCC (HTB-96) and were not further authenticated. The U2OS cells were cultured in 

McCoy’s 5A medium (Sigma-Aldrich) supplemented with 10% (v/v) FBS, 100 units/ml 

penicillin, 0.1 mg/ml streptomycin, 2 mM Glutamine, 1 mM (v/v) Sodium pyruvate, and 1% 

(v/v) MEM non-essential amino acids (Gibco). All cells tested negative for mycoplasma 

contamination.

Cell modification.

HeLa Kyoto cells were used for genetic modifications and imaging. HeLa Kyoto cells are 

hypotriploid with on average 64 chromosomes, thus during mitosis the cells have on average 

64*2 = 128 kinetochores12. The cell lines have been generated for this project or 

previously16,26–32 are listed in Supplementary Table 1 with their providers indicated. Several 

cell lines were generated within this project as follows: The cell lines expressing PLK1-

mEGFP, CEP192-mEGFP and mEGFP-NUP107 were generated using the Zinc finger 

nuclease (ZFN) pipeline as in29. Zinc finger nucleases were purchased from Sigma-Aldrich 

with DNA-binding sequences listed in Supplementary Table 2. The other genome-edited cell 

lines were generated using the CRISPR/Cas9 system9 based on the paired Cas9 nickase 

approach. For these cell lines, both gRNAs (Supplementary Table 2) and the donor plasmid 

were designed based on ENSEMBL release 75 and transfected together into HeLa Kyoto 

cells with jetPrime (Polyplus) according to the manufacturer’s instruction. A single clone 

was selected using our previously developed validation pipeline6,29. For 4 out of 20 genome-

edited cell lines (BUB1B-EGFP, TPR-mEGFP, mEGFP-NUP107 and CEP192-mEGFP) we 

detected in the Western blots (anti-GFP, Roche cat#11814460001) a band of the size of free 

GFP. Therefore, for these cell lines, the total free amount may be overestimated. In order to 

label the chromosomal volume, an H2B-mCherry33 cDNA was transfected into some 

genome-edited cell lines with Fugene6 (Promega) according to the manufacturer’s 

instructions. The pmEGFP2-N1-NES construct was generated by sub-cloning two tandem 

repeats of mEGFP (mEGFP2)34 and the NES of MAPKK (NLVDLQKKLEELELDEQQ) 

into the pEGFP-N1 vector (Clontech Laboratories). The pmEGFP2-N1-NES construct was 

transfected into HeLa Kyoto cells and cells with stable expression were selected by culturing 

with the appropriate antibiotics. Single cells or a cell population with the desired expression 

level were harvested for imaging by fluorescence activated cell sorting (FACS, performed by 

the EMBL Heidelberg facility).
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Calibrated fluorescence confocal microscopy.

Confocal microscopy was performed on Zeiss LSM780, Confocor 3, laser scanning 

microscopes using 40x, NA 1.2 water DIC Plan-Apochromat objectives and the GaAsP 

detectors equipped with an incubation chamber (EMBL workshop). Cells were imaged at 

37 °C in a CO2-independent medium (Life Technologies) fluorescently colored with 500 

kDa Dextran (Life Technologies) -DY481XL (Dyomics) produced in house. Time-lapse 

imaging was performed using the ZEN 2012 software as well as in-house software 

applications (see5 for a software description). The acquisition was supported by an in-house 

developed objective cap and a water pump, such that water drops were regularly supplied to 

the objective-sample interface. Before starting imaging, a number of positions were selected 

manually. During live cell imaging, the microscope determined the focus automatically by 

performing line-scan imaging of the reflection signal of the 633 nm laser. The vertical 

position of the glass bottom was determined as the position with the maximum reflection 

intensity, and used as reference for acquiring a volume of the specimen at a particular depth.

The imaging workflow was set-up using the VBA Zeiss Macro MyPiC (https://git.embl.de/

grp-ellenberg/mypic). HeLa Kyoto cell lines with H2B-mCherry were imaged live using an 

excitation laser at 561 nm every 5 min for about 16 hours on the Zeiss 780 microscopy 

system. Three confocal planes were acquired at a resolution of 0.32 μm in x and y and 2.5 

μm in z. Images were projected in z by taking the maximum intensity value. Images of the 

H2B signal were analyzed on the fly by the Micronaut software (Gerlich lab, IMBA, 

Vienna) using a support vector machine classifier that was trained beforehand (with the 

software CellCognition, http://www.cellcognition.org/) to distinguish between cells in 

interphase, prophase, mitosis (prometaphase till telophase) and artefacts (apoptosis, on the 

border of the imaging field, out of focus, too low expression). The classification score for the 

prophase, interpreted as the probability of a cell being in the class of interest, was output, 

and a pre-defined threshold was used to make a decision on whether imaging setups for 

mitotic cell acquisition should be activated. According to how different the sample’s H2B-

mCherry expression levels were from the training set, the threshold on class probability was 

set between 0.85 and 0.96. Once a prophase cell was found, it was then imaged using a 

different imaging setup. For our purpose, mitotic cells were imaged live every 90 seconds 

for 31 z-planes with a spatial resolution of 0.25 μm in x-y and 0.75 μm in z with a 488 nm 

laser (high expression of H2B-mCherry allowed it to be excited at 488 nm and produce 

adequate signal). For cells not expressing H2B-mCherry we used SiR-DNA to stain the 

chromatin (Spirochrome, final concentration 50 nM added 2 hours before imaging). Cells 

were imaged with the 633nm laser (3 confocal planes every 7.5 min at the same resolution 

as for H2B-mCherry) and processed as for H2B-mCherry. For U2OS cells, the chromatin 

was stained with 200 nM SiR-DNA. To increase the incorporation of SiR-DNA the imaging 

media of U2OS contained 1 μM Verapamil (Spirochrome).

The signal from the GaAsP detector was separated into three channels: GFP, varied from 

490 to 552 nm depending on the expression level to avoid detection saturation; mCherry, 587 

– 621 nm (Extended Data Fig. 1a, top row), and Dy-481XL, 622 – 695 nm (Extended Data 

Fig. 1a, second row). For SiR-DNA we used 622 – 695nm. Once the mitosis was recorded 

for 40 frames, a single-plane image was then acquired at 2.5 μm above the cover glass 
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surface. Using an adaptive feedback microscopy Fiji macro (https://git.embl.de/grp-

ellenberg/adaptive_feedback_mic_fiji), the image was thresholded using the method 

developed by35 and the object closest to the image center with a proper size was selected as 

one of the two daughter nuclei in the cell of interest. The segmented nuclear boundary was 

fitted with an ellipse. FCS measurements were performed with the 488 nm laser and the 

APD detector at 505 – 540 nm at two positions within, and four around, the nucleus with a 

distance of 2 μm to the ellipse boundary for 30 s each. A manual quality control was then 

performed. Videos of cells with no expression of the protein of interest, with wrongly 

selected FCS positions (e.g. outside of the cell) or without anaphase onset were excluded 

from further processing. A total of 499 cells were retained with an average of 18 cells per 

protein (ranging from 10 to 35 cells per protein).

Segmentation of the landmarks.

A fully automated computational pipeline was implemented in MATLAB (MATLAB 

R2017a, The MathWorks, Inc., Natick, Massachusetts, United States) to segment and track 

cells of interest and reconstruct chromosomal and cellular surfaces (https://git.embl.de/grp-

ellenberg/mitotic_cell_atlas). The pipeline was composed of three major steps: segmentation 

of chromosomal volume, segmentation of cell volume and extraction of parameters out of 

the landmarks geometry. Chromosomal regions were segmented from the mCherry channel 

which had high H2B–mCherry signal and very low Dextran-Dy481XL intensity (Extended 

Data Fig. 1a, top row) or from the SiR-DNA channel which had no crosstalk from other 

channels. In order to perform isotropic 3D image processing, adjacent x-y planes were 

linearly interpolated along the z direction. A 3D Gaussian filter was applied to reduce the 

effects of noise. To detect chromosomal regions, the filtered image stack was binarized first 

using a multi-level thresholding method as described in36. In this approach, a global Otsu 

threshold37 was determined for the entire stack and the threshold was then adapted for each 

2D slice, validated by the connectivity of binary components in 3D. Tiny connected 

components were removed from the binary image leaving only chromosomal components 

from all cells in the imaging field. All components were used as seeds for the detection of 

the cell boundary in a later stage. The connected chromosomal volume in the x-y center of 

the first frame identified the cell of interest due to the centering step in the imaging pipeline. 

The cell of interest was tracked sequentially through the entire image sequence using a 

nearest neighbor approach. At each time point, an event of chromosome segregation was 

also probed by analyzing the chromosomal volume around the tracked location. Once 

segregation was detected, both daughter nuclei were tracked in the subsequent frames 

(Extended Data Fig. 1a, third row).

The cell region was segmented from the Dy481XL channel showing the cell-free regions in 

high intensities and histone signal with low intensities (Extended Data Fig. 1a, second row). 

Upon interpolation and filtering as for the chromosomal segmentation, a ratio image was 

created by dividing the filtered image stack of the mCherry channel by that of the Dy481XL 

channel in order to diminish bleed-through signal from the H2B-mCherry channel. The ratio 

image stack was then binarized as described above. When using SiR-DNA there was no 

bleed-through in the Dy481XL channel when excited at 488 nm. In this case the Dy481XL 

was directly binarized. To separate individual cell regions, the previously detected nuclear 
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seeds were used, considering the fact that each cell region can have only one or two 

chromosomal volumes. This was implemented by applying a marker-controlled watershed 

algorithm38. To obtain a better separation between touching cells, the algorithm was applied 

on the distance transformed image that made use of the geometric properties of the cell 

surface. The cell region of interest was defined by taking the connected region(s) containing 

the detected chromosomal volume(s) of interest (Extended Data Fig. 1a, bottom row).

The chromosomal mass at each time point was represented by its three orthogonal 

eigenvectors and associated eigenvalues where the eigenvector with the largest eigenvalue 

represented the longest elongated axis of the chromosomal volume. Metaphase frames were 

automatically detected based on the low value of the smallest eigenvalue of the 

chromosomal volume. Division axis for metaphase cells was then predicted by taking the 

eigenvector having the minimum eigenvalue. By definition, this vector is always orthogonal 

to the metaphase plate. Using the predicted axis in the first and last metaphase frame, axes 

for the remaining frames were propagated backwards and forwards for stages before and 

after metaphase, respectively, where the eigenvector with the smallest discrepancy in angle 

to the axis predicted for the adjacent frame was used (Extended Data Fig. 1b). For further 

analysis, the plane orthogonal to the division axis going through the centroid of both 

daughter nuclei was predicted as the midplane. Segmented landmarks were 3D reconstructed 

and visualized for quality control. Cells having few time points over or under segmented 

were reprocessed with different parameters or using the results of correctly segmented 

adjacent time points as constraint.

Image processing and calibration.

Image processing and calibration were performed according to5. Before each calibrated live 

cell confocal microscopy experiment, the focal volume was calibrated using a 10–50 nM 

solution of Alexa488 (Life Technologies), and single mEGFP brightness was calibrated by 

performing FCS measurements on HeLa Kyoto cells expressing mEGFP29. All FCS 

measurements were processed using Fluctuation Analyzer39. Autocorrelation functions of 

dye solutions were fitted using a one-component diffusion model with triplet-like blinking, 

and measurements of fluorophore-fused proteins were fitted using a two-component 

anomalous diffusion model with fluorescent protein-like blinking. The effective confocal 

volume was calculated from

Ve f f = (4 ⋅ π ⋅ D ⋅ τ)
3
2 ⋅ κ

where D was the diffusion coefficient of the Alexa488, which is 464 μm2/s at 37 °C, and κ 
the structural parameter. The averaged time passing through the confocal volume τ and the 

structural parameter (typically between 4–7) were fitted to the ACF of Alexa488. The 

number of fluorescent molecules within a confocal volume was calculated by multiplying 

the fitted number of molecules (N) with correction factors for background and 

photobleaching39. As proteins might exist in complexes with multiple molecules, a count per 

molecule (CPM) value was used to correct the number of molecules. As reference, the CPM 

value of mEGFP was used as measured in the HeLa Kyoto cells expressing mEGFP where 
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the mean value of all mEGFP measurements was taken. If the CPM of a measurement of a 

fusion protein of interest within a cell was larger than that of the mEGFP, the fitted number 

of molecules was corrected by multiplication with the ratio between the two. Finally, the 

local concentration of the measured protein was determined as the corrected number of 

molecules divided by the effective confocal volume. As quality control of the FCS 

measurements, we pre-defined thresholds and deleted data points with too low coefficient of 

variation R2 or APD counts or too high fitting χ2 or bleaching or outlier CPM values.

The calibration of the image acquired with the GaAsP detector was based on the assumption 

of linear correlation between the local protein concentration and the EGFP intensity which 

we could verify (Fig. 1b). The averaged intensity of the GFP channel in cell-free areas was 

considered as background. For all measurement points the coefficient ρ between local 

protein concentration and background-corrected imaging intensity, mean filtered with a 9 × 

9 pixels window to avoid noise, was calculated by performing a linear regression. The 3D 

protein concentration map was generated by multiplying the pixel intensities with the linear 

coefficient ρ. The protein number in each voxel was obtained by multiplying the 

concentration with the voxel volume. The absolute protein abundance could be calculated by 

summing up the map over the cell volume. After NEBD and before the nuclear envelope 

reforms, we estimated the number of proteins bound to chromatin by subtracting the 

cytoplasmic average concentration (representing the background concentration of proteins 

that freely diffuse between the cytoplasmic and chromosome volume) from the average 

protein concentration on the chromosome mask. Finally, to obtain the number of proteins, 

the concentration difference was multiplied by the number of voxels of the chromosome 

mask and the voxel volume.

To assess the accuracy of our quantitative measurements, we compared our data for 

nucleoporins (NUP107, NUP214, TPR and RANBP2) to expected numbers calculated from 

the known number of nuclear pores complexes (NPC) per cell and known protein 

stoichoimetry in each NPC. The HeLa Kyoto cell line used in this study has about 10,000 

NPCs in interphase before nuclear envelope breakdown (NEBD)16. Assuming a nucleoporin 

(NUP) stoichiometry as reported 40 (32 NUPs/NPC for NUP107, TPR and RANBP2; 16 

NUPs/NPC for NUP214), we can compute the number of NUPs present on the nuclear 

envelope (NE). Considering a free pool of nucleoporins in the cytoplasm that is included in 

our measurements, the ratio of our measurements over expected numbers on the NE should 

be greater than 1. We find that this ratio is on average 1.2 for all four NUPs, underlining the 

consistency of our measurements with established protein numbers by orthogonal methods.

Modeling of the mitotic standard time.

The mitotic standard time was modeled in a six-dimensional feature space using three 

morphological features of the chromosomal volume: the distance between the two daughter 

nuclei, the total volume and the third eigenvalue (Fig. 2c) and their first derivatives. The 

model was generated by aligning 132 mitotic image sequences using the Barton-Sternberg 

multiple sequence alignment algorithm (Extended Data Fig. 1d)41. The two sequences with 

the smallest distance to the average of all sequences were selected to initiate the alignment 

and each of the remaining sequences was then aligned to the average among all aligned 
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sequences. The alignment was implemented as a modified multidimensional dynamic time 

warping42 where the total Euclidean distance over time between the pair of sequences was 

used as the objective of the optimization. The timeline of the averaged sequences was 

calculated as the mean of the alignment matrix as shown in Extended Data Fig. 1c. The 

Barton-Sternberg algorithm was terminated after four rounds as the standard deviation over 

time remained stable after 2 rounds (Extended Data Fig. 1e). The mitotic standard time was 

defined at a temporal resolution of 15 seconds by subsampling the averaged timeline. In 

order to find transitions in the mitotic standard time, the second derivative of the model at 

each time point for each feature dimension was calculated from

xt″ = xt − − xt − xt − xt + ,

where xt − = ∑i = t − 18
t − 1 xi/18,  xt + = ∑i = t + 1

t + 18 xi/18 .

Peaks above a pre-defined threshold were selected across all dimensions as transitions 

(Extended Data Fig. 2a). In the later part of the model where the values of the second 

derivatives were generally low, small peaks were selected as additional transitions such that 

no stage between two transitions lasted longer than 12 minutes. Furthermore, transitions 

with lower values were deleted to ensure a minimum duration of 1.5 minutes for each stage 

(Extended Data Fig. 2b,c).

This approach provides an objective way to discretize the mitotic standard time, which 

depends on the sampling and the number of cells used. Varying the number of cells sampled 

from our data identified between 19 and 21 stages with a median set of 20 mitotic stages, 

which we therefore used throughout the study. To check that these mitotic standard stages 

were biologically relevant we automatically selected the 3D image stack closest to the 

average feature values of each stage. Although the images picked in this way are from 

different cells, their automatically assigned sequential order reconstitutes a virtual mitosis 

with an error-free chronology (Extended Data Fig. 2d), in which all classically known 

mitotic transitions such as nuclear envelope breakdown (between stage 2 and 3), and 

anaphase onset (between stage 11 and 12), were correctly identified. Moreover, the method 

could identify previously hard-to-define stages such as the first formation of the metaphase 

plate in late prometaphase (between stage 7 and 8), and could differentiate between the 

different anaphase and telophase stages (stage 12 to 17). In addition, the kinetics of 

chromosome condensation is consistent with previous reports in different cell types15,36 

suggesting that the method could be applied to standardize the mitotic time in other cell 

types. To test this, we acquired a 4D image data set consisting of 43 U2OS cell divisions 

using the same imaging and landmarks approach. The same computational pipeline could 

indeed generate a mitotic standard time and mitotic standard stages for this cell line 

(Extended Data Fig. 3).

Modeling of the canonical cell.

To support spatial averaging, all cells assigned to the same standard mitotic stage were 

registered into a common reference coordinate system to give them the same location and 

orientation. To this end, a virtual coordinate system was defined with its origin at the center 
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of a volume chosen large enough to accommodate all cells after registration. Landmarks (i.e. 

the cell boundary and chromosomal volumes) were then registered to the virtual coordinate 

system by applying a transformation function involving translation and rotation in 3D. This 

transformation function was estimated such that the predicted cell axis was aligned with the 

x axis in the virtual coordinate system. This transformation was applied to both landmarks to 

preserve their interrelationship in the registered image stacks as shown in Extended Data 

Fig. 4a,b. Bicubic interpolation was used when applying the transformation43.

Registered landmarks were subsequently represented using a cylindrical coordinate system 

that transforms 3D coordinates into radial distances providing greater flexibility in shape 

analysis. To this end, we converted landmarks in each plane along the z axis and along the 

predicted cell axis to polar coordinates in which object boundaries are represented by their 

radial distances from the object centroid (Extended Data Fig. 4c). As the centroids were 

aligned on the z axis, the cylindrical representation was formed by concatenating into a 

vector the polar representations for all planes (Extended Data Fig. 4d). After chromosome 

segregation, two separate cylindrical representations were used to encode each of the two 

daughter nuclei. In this case, the cylindrical axis of each chromosome passes through the 

centroid of that chromosomal volume.

The standard mitotic space represented by the averaged landmarks was computed in three 

steps. In the first step, the cylindrical coordinate vectors were averaged separately for each 

landmark across all cells within each standard mitotic stage (Extended Data Fig. 4e). The 

average vectors were then transformed back to a Cartesian coordinate system from which 

binary image stacks were generated. In a second step, to reconstruct the landmarks, the 

average volume of each landmark was obtained by combining two binary image stacks: one 

obtained using the z axis as the cylinder axis and the other using the cell axis as cylinder axis 

(Extended Data Fig. 4f). This combination involved first taking the intersection between the 

two binary images and then extending it until the average volume of all the cells belonging 

to the mitotic stage being processed was reached (Extended Data Fig. 4f). Because multiple 

frames of a cell could be assigned to the same mitotic standard stage, cells could have 

unequal contributions to each stage with some cells represented more than others at a given 

stage. To ensure uniform contribution from each cell towards the average mitotic space, in 

the third step, for each given mitotic stage and for each cell, the frame that was most similar 

to the average shape obtained in step 2 was selected. These selected cells were then used to 

re-compute the average shape of the corresponding mitotic stage as described above. This 

final average shape was also used to calculate the standard deviation of all cells in the same 

mitotic stage. Average mitotic space and standard deviation were generated for all the stages 

(7–20) for each of the landmarks (examples in Extended Data Fig. 4g,h).

Generation of the protein density map.

Standard mitotic spaces were used as reference to register and integrate protein distributions 

from many different cells to generate protein density maps (Fig. 3a). All calibrated protein 

concentration maps having the same protein in a given mitotic stage were registered first to 

the corresponding standard mitotic space using the predicted cell division axis. This 

transformed all individual protein image stacks to the same coordinate system. Bicubic 
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interpolation43 was used during the rotation. Registered image stacks were then accumulated 

in the standard mitotic space. Pixels outside the segmented cell region and mapped outside 

the standard mitotic space were discarded. A protein density map was then created by 

averaging the accumulated intensities in the standard mitotic space (Fig. 3a). Density maps 

of all proteins for mitotic stages 7–20 were estimated in the same way and can be explored 

on http://www.mitocheck.org/mitotic_cell_atlas.

Feature extraction of images.

The protein z-stack concentration map was processed using a Gaussian filter (Matlab 

smooth3 function with a kernel of size [3 3 1] and standard deviation 0.65) followed by a 

maximum projection along the z-axis and normalization to the theoretical saturation 

intensity. SURF interest points18 were then detected on the image resized to a 0.063 μm 

resolution using three octaves each including four Haar wavelet filters at different sizes from 

9-by-9 till 99-by-99 pixels ranging from about half a micrometer to more than six 

micrometers. Interest points were further selected such that most of the protein signals were 

counted in one of the interest points. Each of these interest points was then described by a 

numerical vector quantifying features in the following four categories: locations relative to 

the landmarks (four features), correlation to the H2B signal or the predicted midplane/

midbody volume according to the localization of the interest point (one feature), flattened 

soft spin image features44 describing the intensity distribution within an interest point (30 

features), and summarized uniform Local Binary Patterns (uLBP)45 describing the 

orientation of the signal (4 features).

5% of the cells were randomly selected and their interest points were used to construct a 

training set for identifying clusters of interest points with similar features (Extended Data 

Fig. 6a). All training interest points were first separated into 16 clusters by their localization 

feature and the ¼-level of their metric values. Interest points in clusters with a sufficient size 

were then further clustered based on the correlation features separated by pre-defined 

thresholds followed by a dbscan46 clustering for each sub-cluster in the reduced feature 

space covering 85% of the variance according to a principal component analysis47 on the 

uLBP and spin image features44. The final clustering step was performed only for the 

clusters with the highest contrast value in their location category based on the spin image 

features where the interest points were separated into homogeneous bright, structured bright 

and dim clusters by pre-defined threshold. The total number of clusters was not deterministic 

since the training set was randomly generated but eight rounds of clustering yielded between 

87 and 100 clusters and a run with 100 clusters was used for further analysis. Interest points 

in the same cluster share similar textures (Extended Data Fig. 6b). All interest points in the 

remaining images in the data set were then each assigned to one cluster. The total intensity 

within each interest point was then counted and the fraction of intensities recorded in each 

interest point cluster was calculated for each cell so that each image was represented by a 

100-dimensional feature vector with a sum of one.

Non-negative tensor factorization.

Each protein was represented at each mitotic stage by the average of all its vectors present at 

that stage. Due to binning of consecutive imaging time points, a cell can be represented by 
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several vectors at a given mitotic stage. These duplicates were replaced by their average 

resulting in each cell being represented by only one vector per mitotic stage. The resulting 

dataset is a three-dimensional tensor X of 28 proteins × 100 features × 20 mitotic stages. We 

view canonical subcellular localizations as latent features of the data, that is, we assume that, 

at any time point, the observed vector for a protein was generated by a combination of the 

different canonical subcellular localizations the protein occupied at this stage. A protein 

vector x can then be expressed as the product of a subcellular localization membership 

vector z and a matrix A of canonical subcellular localization features: x = zA. Therefore, we 

wish to model our data tensor X such that for each frontal (temporal) slice Xt,

Xt = ZtA + Et(t = 1, 2, …, 20)

where Zt is a matrix whose rows are localization membership vectors and Et is a matrix 

containing the errors.

Given that all feature values are non-negative, a possible solution for each time point can be 

found by non-negative matrix factorization (NMF) of individual matrices Xt
48. However, 

processing time points independently results in loss of information with the undesirable 

effect that different canonical localizations are learned for different time points. 

Simultaneous non-negative factorization of a set of matrices is a special form of non-

negative tensor factorization (NTF) which can be reduced to a standard NMF using column-

wise unfolding of the data tensor X49:

X = ZA + E

where X is formed by vertically stacking the Xt matrices and Z is formed by the 

correspondingly stacked Zt matrices and E contains the errors. Z and A are then found using 

multiplicative updates48 to minimize the objective function ‖X - ZA‖ where ‖.‖ indicates the 

Frobenius norm. As a final step, the rows of Z are normalized to sum one. Values in Z can 

be interpreted as fractions of the amount of protein (captured by the features) present at each 

canonical localization.

The method requires choosing the number k of canonical subcellular localizations we want 

to represent our data with. There is no good strategy for finding this number a priori because 

increasing k corresponds to a higher resolution of the localization description e.g. a low k 
results in lumping all chromatin proteins together while a higher k resolves kinetochore 

proteins from other chromatin proteins. Thus the optimal number of subcellular localizations 

is partly subjective, depending on the level of granularity desired. However, we can use 

heuristics to help guide the choice of k. If the number of selected canonical localizations is 

too low, many proteins will share the same temporal profile, i.e. their corresponding vectors 

in Zt will be highly similar for all time points. As more canonical localizations are added, 

we can expect more proteins to resolve into distinct profiles, i.e. the similarity between their 

corresponding vectors will decrease until eventually adding more canonical localizations 

will not improve resolution and similarity will stop decreasing. Similarity between vectors 

across time points can be measured using Tucker’s congruence coefficient (TCC)50. 
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Therefore, for each value of k from 2 to 25, we plot the fraction of TCC values above 0.6. 

The value of k for which the fraction of highly similar proteins reaches a low value plateau 

indicates that there are enough canonical localizations to describe each protein individually 

and therefore this value of k represents an upper bound on the number of canonical 

localizations. Following this procedure, k was set to seven for the current data. Because the 

NMF algorithm can converge to a local minimum of the objective function, ten runs with 

random initialization of the matrices were performed and the run with lowest value of the 

objective function was kept. A flattened representation of the resulting tensor can be 

obtained by assigning a different color to each cluster and plotting each protein distribution 

as a bar chart in which the height of each color band at each time point is proportional to the 

fraction of the protein amount in the corresponding cluster (Extended Data Fig. 7). A 

dynamic multigraph can be derived from the cluster memberships as follows: First an edge 

type is defined for each cluster. If two genes share a cluster at a given time point, then an 

edge of that type is added between them at that time point. The edge weight is set to the 

product of the linked genes fractions in the corresponding cluster and can be loosely 

interpreted as a probability of interaction. For visualization, only edges with a weight greater 

than an arbitrary threshold (here set to 0.3) were kept (Fig. 4b).

Analysis of protein localization kinetics using supervised annotation.

A multivariate linear regression model with a multivariate Gaussian response was trained 

with an elastic net regularization and non-negativity constraints on the coefficients with the 

feature vectors described above as predictors and localization vectors as response. The 

response vectors were defined using cells with tagged proteins known to be specific markers 

of unique subcellular compartments (Extended Data Table 1) as follows: For each of the 

marker proteins, the fraction of total intensity in the foreground was determined by Otsu 

thresholding of the 3D image stack and the corresponding protein amount assigned to the 

compartment with the complement assigned to cytoplasm. Each cell is thus represented by a 

7-dimensional response vector containing the fraction of the tagged protein in the following 

compartments: chromatin, kinetochore, centrosome, spindle, midbody, nuclear envelope and 

cytoplasm. To deal with the compositional nature of this data, all features and response 

vectors are transformed using the additive log-ratio transformation51 with the inverse 

hyperbolic sine function as a generalized logarithm to handle occurrences of 0. The model 

with the best fit using 5-fold cross-validation was selected.

The predictions from the model were transformed back to proportions using the inverse of 

the log-ratio transformation then multiplied by the total number of proteins to predict the 

absolute number of molecules in each mitotic subcellular structure for each image. 

Predictions were then smoothed by local polynomial regression fitting.

To compute the anaphase dissociation kinetics for each kinetochore protein (Extended Data 

Fig. 8e), we fitted each curve between 30 min and 42 min mitotic standard time (late 

metaphase to telophase) with a 4 parameter sigmoidal decay function:

y = a − d

1 + bc( − time) + d
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whose first and second derivatives were analytically calculated. The time of disassembly was 

defined as the point at which the second derivative is equal to 0 (inflection point of the 

curve). The disassembly rate was computed as the minimum value of the first derivative in 

the time interval.

Statistics and reproducibility.

For each protein, the number of cells and number of experiments that were run to collect 

them is reported in Supplementary Table 1. Unless stated otherwise, all cells for a given 

protein were used in the reported analyses.

Data and code availability.

All images processed in this study including original images, concentration maps, 

segmentation mask for both cellular and chromosomal volume and concentration maps are 

available in the Image Data Resource (http://idr.openmicroscopy.org52) under DOI: 

10.17867/10000112. Further data and code are available as follows:

• All images are also available for download on the mitotic cell atlas web site 

http://www.mitocheck.org/mitotic_cell_atlas/downloads/v1.0.1/

mitotic_cell_atlas_v1.0.1_fulldata.zip (~0.5 TB).

• All source code is accessible on EMBL’s GitLab instance: https://git.embl.de/

grp-ellenberg/mitotic_cell_atlas and can be downloaded or cloned using the 

command git clone https://git.embl.de/grp-ellenberg/mitotic_cell_atlas.git or on 

the project web site at http://www.mitocheck.org/mitotic_cell_atlas/downloads/

v1.0.1/mitotic_cell_atlas_v1.0.1_src.zip. Instructions to run the code are 

provided as a README file together with the source code. An example data set 

to run and test the source code can be downloaded from http://

www.mitocheck.org/mitotic_cell_atlas/downloads/v1.0.1/

mitotic_cell_atlas_v1.0.1_exampledata.zip.

• The data supporting the spatiotemporal mitotic cell model and the analysis is 

available from the mitotic cell atlas website (http://www.mitocheck.org/

mitotic_cell_atlas/downloads/v1.0.1) and contains:

– Segmentation masks for the landmarks (i.e. cell boundary and 

chromosome mass(es)) as TIFF files (directory mitotic_cell_model/
binary_masks).

– Snapshots of the 3D rendering of each of the spatial models in VRML 

and TIFF formats (directory mitotic_cell_model/snapshots).

– Two movies (orthogonal and oblique views) created from 3D 

reconstructed average landmarks (cell boundary and chromosome 

mass(es), directory mitotic_cell_model/movies).

– Average concentrations of each protein at individual mitotic stages as 

mat files, TIFF stacks, and tab-delimited text files (directory 

protein_distributions).
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– Feature data used for the analysis (to produce Fig. 4, Extended Data 

Figs. 7, 8d,e and 9) in a tab-delimited text file (file cell_features.txt). 
This file can be used directly as input to the notebooks available in the 

code repository. This file also contains the mitotic standard time and 

stage assigned to each cell image.

– Canonical localization data (file canonical_mitotic_clusters.h5).

– Dynamic graph (file dynamic_graph_adjacency_matrices.h5).

Extended Data

Cai et al. Page 17

Nature. Author manuscript; available in PMC 2019 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 1 |. 
Segmentation and time alignment. (a-b) Segmentation and 3D reconstruction of landmarks. 

(a) Single x-y plane image in mCherry (587 – 621 nm, first row) and DY481XL (622 – 695 

nm, second row) detection channels. Third row: detected chromatin markers where 

boundaries of the chromosomal volume of interest are marked in red. Fourth row: output of 

watershed transform on ratio image where boundary of the detected cell of interest is marked 

in green. Scale bar: 10 μm. (b) Reconstruction of cell and chromosomal surfaces in 3D 

(grey) and the predicted division axis (red). (c-e) Generating the mitotic standard time 

model. (c) Dynamic time warping is used to align a pair of time-resolved sequences. (d) 

Modified Barton-Sternberg algorithm to align 132 sequences. (e) The cumulative standard 

deviation of a single feature after each iteration of the algorithm. It remains nearly constant 

after the 2nd round indicating that at termination (4th round) a stable time alignment was 
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achieved. This has been repeated 10 times and similar alignment results are obtained when 

the number of cells is more than 50.
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Extended Data Fig. 2 |. 
Detection of mitotic standard stages. (a) Detection of major mitotic transitions of the mitotic 

standard time. Peaks in the second derivatives (red circles) above a pre-defined threshold 

(grey lines) were detected in all feature dimensions as mitotic transitions. (b) Additional 

smaller peaks (blue circles) were detected to ensure a maximum duration of 12 minutes for 

each standard stage. (c) Transitions were deleted (grey circles) such that all stages had a 

minimal duration of 1.5 minutes. (d) The standard mitotic cell was represented by the cell 

closest to the average of each stage. Each mitotic stage was assigned duration (colored line), 

its duration standard deviation (grey line) and a biological annotation.
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Extended Data Fig. 3 |. 
Comparison between mitotic standard time for HeLa Kyoto and U2OS cells. (a) Features 

used for generating the mitotic standard time model after alignment for HeLa Kyoto cells 

(left column) and U2OS cells (right column). Grey line: normalized feature value over time 

of individual cells. Black line: average. (b) Mitotic standard time transitions for HeLa cells 

(left panel) and U2OS cells (right panel). (c) Standard mitotic U2OS cell represented by the 

cell closest to the average of each mitotic standard stage. Each mitotic stage was assigned 

duration (colored line), its duration standard deviation (grey line) and a biological 

annotation.
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Extended Data Fig. 4 |. 
Generation of spatial model for standard mitotic stages by combining two cylindrical 

representations. Examples of cells in mitotic stage no. 10 (a) were registered using the 

predicted cell division axis as shown in (b). (c) Transformation between Cartesian and 

cylindrical coordinate systems. (d) Example cellular and chromosomal surfaces (grey) were 

transformed into the cylindrical coordinate system using two cylindrical axes (z-axis or 

predicted division axis) marked in yellow. (e) Average cellular and chromosomal surfaces in 

cylindrical coordinate systems. (f) Union (U) and intersection (∩) of the averaged landmarks 

volumes represented in the Cartesian coordinate system that were then combined to generate 

final cellular and chromosomal surfaces shown in the first image in (g). By averaging a large 

number of cells, models were generated for all mitotic standard stages with symmetrical 
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geometries and example stages 10, 14, 16 and 19 are shown in (g). (h) The spatial variation 

of the mitotic standard spaces shown in (g).
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Extended Data Fig. 5 |. 
Chromatin remodelers and NUPs localization. (a-c) Maximal intensity projection from the 

mitotic standard model at selected stages. Scale bars: 10 μm. (a) Chromatin remodelers 

RAD21, CTCF, NCAPH2, KIF4A and TOP2A present on chromatin during mitosis. (b) 

Chromatin remodelers with weak binding to chromatin during mitosis STAG1, STAG2, and 

WAPL. (c) Four NUPs at selected standard mitotic stages. (d) NUPs localization as function 

of mitotic standard time. The curves for STAG2 and WAPL are shown as a reference and are 

identical to the data from Fig. 3c.
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Extended Data Fig. 6 |. 
Interest point clusters and dynamic protein localization. (a) Pipeline for the definition of 

interest point clusters using a subset of the data. 936 images (corresponding to 5 % of the 

entire data set) were randomly selected from the dataset to construct a pool of interest 

points. Each interest point was numerically described with a 40 dimensional feature vector 

encoding the intensity distribution, localization and contrasts to the interest point 

neighborhood. Combining k-d-tree-like and thresholding-based clustering with density 

based clustering, the interest points were grouped into 100 clusters. (b) The remaining 

interest points of the data set were then assigned to the identified clusters. Thus each image 

was represented as the distribution of intensity in each of the 100 interest point clusters. (c) 

Non-negative factorization of the data tensor of proteins × features × mitotic stages (left 

panel) produced a non-negative tensor of reduced dimension (middle panel) whose entries 

can be interpreted as the fraction of protein belonging to each cluster over time (right panel, 
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each cluster is represented by a different color and the height of a colored bar at a given 

mitotic stage represents the fraction of the protein in the corresponding cluster at this stage).
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Extended Data Fig. 7 |. 
Quantitative evolution of protein subcellular localizations inferred from non-negative tensor 

factorization of the proteins × features × time tensor. Each subcellular localization cluster 

was assigned a different color and named using known information on proteins belonging to 

that cluster. The height of each color band at each time point is proportional to the fraction 

of the protein amount in the corresponding cluster at that time point. Genes were grouped by 

complete linkage clustering followed by optimal leaf ordering.
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Extended Data Fig. 8 |. 
Mitotic standard model and supervised classification to investigate the dynamic localization 

of kinetochore proteins. (a-b) Concentration maps of chromosome passenger complex 

proteins AURKB and CDCA8 in anaphase and early telophase. (a) AURKB concentrates in 

an outer ring and a central disk. Most of CDCA8 remains on chromatin and after AURKB 

has already relocalized, between late anaphase and early telophase, only a small CDCA8 

fraction colocalizes with AURKB in the central disk. (b) Color displaying CDCA8 was 

adapted to make its localization in the central disk visible. (c-e) Analyzing sub-cellular 

(dis)assembly kinetics using a supervised approach. (c) Example of maximally Z-projected 

images of marker proteins for the selected subcellular compartments used for the supervised 

approach. Scale bar: 10 μm. (d) Kinetics of kinetochore disassembly. The predicted number 

of molecules localized on kinetochore/centromeres are plotted for eight proteins in the 

mitotic standard time (left panel) and zoomed in for anaphase (right panel). (e) Order and 

rate of protein removal from the kinetochore during anaphase. The annotation and circle 

diameter indicate the number of molecules at the estimated average time of dissociation.
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Extended Data Fig. 9 |. 
Prediction of protein molecule numbers on major mitotic subcellular structures using the 

supervised approach. The color scheme is adjusted to the most similar cluster identified 

using NTF (Extended Data Fig. 7). Cytoplasm values are divided by 10.

Extended Data Table 1 |

Reference structures for supervised model

Localization Gene Mitotic standard stages

Nuclear envelope NUP107 15–20

Chromatin NCAPH2 1–20

Kinetochores CENPA 1–20

Centrosomes CEP192 1–20

Spindle TUBB4B 4–20
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Localization Gene Mitotic standard stages

Midbody RACGAP1 12–20

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. 
Quantitative imaging of mitotic proteins. (a) Automatic calibrated 3D live confocal imaging 

pipeline. Cells in prophase were identified by online classification, imaged through mitosis 

in the landmarks and protein of interest channels, and measured by FCS at selected 

positions. (b) The local protein concentrations determined by FCS fitting linearly correlate 

with the background subtracted image intensities at the corresponding positions (shown are 

data acquired on the same day). (c) Example cell showing concentration map resulting from 

FCS-based intensity calibration (mean z-projection). Scale bar: 10 μm. Data shown in (a)-(c) 

is for H2B-mCherry mNEDD1-LAP (EGFP) and is representative of n = 92 independent 

experiments performed with 28 different cell lines.
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Figure 2 |. 
Modeling of mitotic standard time. (a) Individual cells have different mitotic spatio-temporal 

dynamics. Scale bar: 10 μm. (b) Cellular and chromosomal volumes were segmented from 

the landmarks channel. (c) Three morphological features (in red) were extracted from the 

chromosomal volume. (d) Mitotic standard time was generated in the feature space by 

multiple sequence alignment visualized here in the feature dimension describing 

chromosomal volume. Shown is the alignment of n = 132 cells from 20 independent 

experiments.
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Figure 3 |. 
Visualization of 4D protein distribution maps. (a) Through averaging of a large number of 

cells, models were generated for all mitotic standard stages with symmetrical geometries. 

Example image sequences were registered to the standard space of the corresponding mitotic 

standard stage. A distribution map over time was then generated for each protein by 

averaging through multiple cells. Colored lines indicate mitotic stages. (b) Average 

distributions of four proteins are displayed in different mitotic stages. (c) Amount of 

chromatin-bound and nuclear molecules for eight chromatin remodelers. (d) Fraction of 

chromatin bound proteins relative to NCAPH2. Shown are the single cell values (dots) and 

the mean and standard deviation. The sum of STAG1 and STAG2 (STAG1+2) was calculated 

from the mean and standard deviation of STAG1 and STAG2 data. In (c) and (d), TOP2A 

has been scaled down by a factor 10 for visualization. Note: reported numbers represent 

monomers, dimers (e.g. TOP2A) would result in a 50% reduced abundance of complexes.
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Figure 4 |. 
Identification of dynamic protein clusters. (a) SURF interest points were detected and 

assigned to one of 100 clusters of similar interest points. Non-negative factorization of the 

data tensor of 28 proteins × features × mitotic stages produced a non-negative tensor of 

reduced dimension whose entries can be interpreted as the fraction of protein belonging to 

each cluster over time (right panel, each cluster is represented by a different colour and the 

height of a coloured bar at a given mitotic stage represents the fraction of the protein in the 

corresponding cluster at this stage). Scale bar: 10 μm. (b) Dynamic multi-graph of protein 

co-localization, shown for 5 stages. Each edge colour corresponds to a localization cluster as 

in (a) and the edge thickness corresponds to the product of the linked genes fractions in the 

corresponding cluster and can be loosely interpreted as a probability of interactions.
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