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Abstract

Rabies virus (RABV) constitutes a major social and economic burden associated with 60,000 

deaths annually worldwide. Although pre- and post-exposure treatment options are available, they 

are efficacious only when initiated prior to the onset of clinical symptoms. Aggravating the 

problem, the current RABV vaccine does not cross-protect against the emerging zoonotic 

phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the 

immunoglobulin component of rabies prophylaxis generate an unmet need for the development of 

RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address 

the problem and inhibitor candidates identified, and examine how the rapidly expanding structural 

insight into RABV protein organization has illuminated novel druggable target candidates and 

paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-

dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum 

RABV inhibitors.

Introduction

The devastating signs and symptoms of rabies disease have been documented as far back as 

2,000 B.C. in the Eshnunna tablets of Mesopotamia [1]. Even now, in the second millennia 

A.D, rabies disease continues to be a social and economic hardship with approximately 

60,000 deaths worldwide, nearly $8.6 billion in economic burden, and $1.5 billion spent on 

post-exposure prophylaxis treatment (PEP) alone [2]. The causative agents, lyssaviruses, 

within the Rhabdoviridae family, are characterized as zoonotic, neurotropic negative-sense 

non-segmented RNA viruses. Transmission of rabies virus (RABV) occurs typically through 

the transfer of infectious saliva from the percutaneous bite of a mammal, usually a dog [2]. 

Through axoplasmic transport, RABV enters the central nervous system (CNS) where it 

begins to replicate, causing severe neuronal dysfunction [3-5]. Rabies is vaccine-preventable 

as well as treatable early after infection. After the onset of clinical symptoms, however, 
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almost all patients succumb to the infection, progressing toward coma and ultimately death 

[6]. RABV's ability to effectively subvert the host immune system through evasion of TLR 

signaling, downregulation of IFN signaling, and prevention of adaptive responses by 

maintaining lowered blood-brain barrier (BBB) permeability, and induction of T-cell 

apoptosis exemplifies why early intervention is critical [7-9]. As depicted in figure 1, 

treatment of rabies consists of rabies immune-globin (RIG) and four doses of the vaccine 

over a 4-week period. PEP is recommended for previously vaccinated individuals as well, 

and consists of vaccine doses on days 0 and 3. A single PEP regimen costs at least $3,000 in 

the United States [2]. This expense of rabies PEP is predominantly due to the high cost of 

producing human rabies immune-globin HRIG, a human plasma-based product, with a 

relatively short shelf life and need for extensive quality assurance [10]. A second contributor 

to the high treatment cost is the requirement of four doses of rabies vaccine, which typically 

costs $260 per dose in the USA and Europe. In Africa and Asia, where 95% of rabies-related 

deaths occur, PEP averages $40 and $49, respectively. This expense is often out of reach in 

areas with a daily family income of approximately $1-2. The number of people worldwide 

that receive rabies PEP as well as the crippling debt associated with it is estimated to reach a 

staggering 15 million annually [2]. Furthermore, the current vaccine is likely ineffective 

against emerging zoonotic lyssaviruses of phylogroup II such as Mokola (MOKV) and 

Lagos bat viruses [11-15]. The high cost of HRIG and the current vaccine, along with cold-

chain requirements for both, present an urgent and unmet clinical need for the development 

of safe, cost-effective, efficacious, shelf-stable, and cross-protective antivirals against 

lyssavirus phylogroups associated with human rabies disease. Antiviral compounds could be 

used to replace the HRIG or other RIG component in current rabies PEP.

Lyssavirus Virion Organization

Lyssaviruses contain RNA genomes of approximately 12 kb. The virion of lyssaviruses, as 

with the other family members of Rhabdoviridae, is characterized by a bullet-shape with a 

length of 180 nm, and average diameter of 70 nm. Lyssaviruses are enveloped by a lipid 

protein coat studded with the viral receptor glycoprotein (G). G is the predominant target for 

the host humoral immune response. The RABV G is a trimeric type-1 membrane protein, 

capable of major conformational rearrangements upon receptor binding and subsequent 

endocytotic internalization and acidification of the endosome [6]. Nicotinic acetylcholine 

receptor (nAChR), the neuronal cell adhesion molecule (NCAM), and the p75 neurotrophin 

receptor (p75NTR) have all been implicated in serving as host receptors for RABV, and 

several other membrane components have been proposed to aid in viral entry as well [16]. 

Matrix protein (M) interacts with the cytoplasmic tails of G, lining the viral envelope [17, 

18]. Within the virion, the viral genome is encapsidated by nucleocapsid (N), resulting in a 

helical ribonucleoprotein complex (RNP). Encapsidation of the viral genome is a protective 

measure against RNAse digest and it reduces triggering of innate cellular immune response 

pathways. Recognition of N by the viral RNA-dependent RNA polymerase (vRdRp) is 

essential for viral replication [19]. N also plays a significant role in evading the innate 

immune response and enhancing viral pathogenicity through virion cell-to-cell spread [20]. 

The vRdRp is a hetero-oligomeric protein complex consisting of the large protein (L) and 

the phosphoprotein (P) [6]. Of these, P, as depicted in figure 2, is the noncatalytic cofactor of 
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the vRdRp that mediates the interaction with RNP to position L for RNA synthesis. P also 

guides nascently folded RNA-free N (N0) to newly synthesized genomic RNA during 

replication [19]. Up to five alternative start codons result in five N-terminally truncated P 

protein variants, which have been implicated as Type-1 IFN antagonists [21]. This is 

accomplished through direct interaction with STAT1 and STAT2 proteins as well as 

suppressing IRF-3 [22-24]. L is approximately 250 kDa in mass and provides all enzymatic 

activity required for viral genome synthesis. Sequence homology among other members of 

Mononegavirales have revealed 6 highly conserved regions (CRs) within L, as shown in 

figure 3a [25]. These CRs have been implicated in the different catalytic functions for 

productive replication. CRII and CRIII are required for phosphodiester bond formation, with 

III containing a GDN motif starting at residue 729 that is considered to form the catalytic 

center [26-28]. CRV is implicated in mediating viral mRNA capping through GDP 

polyribonucleotidyltransferase (PRNTase) activity [29-33]. CRVI contains a K-D-K-E motif 

that is characteristic for methyltransferase (MTase) activities [34-36]

Current Treatment of RABV Infection

The high cost and cold chain requirement of rabies biologics have revealed an urgent need 

for the development of alternative antiviral compounds. To date there have been 14 

documented survivors of symptomatic rabies disease, of whom all but one received vaccine 

and PEP. However, all of these survivors exhibit severe neurological sequelae [37]. The 

single documented survivor, who did not receive PEP nor vaccine, was treated with what is 

now termed “The Milwaukee Protocol”. This treatment method involves induction of a 

therapeutic coma accompanied by ketamine and amantadine infusions [38]. This survivor 

had anti-RABV antibodies, suggesting that she was infected with a untypical RABV strain 

and that her immune system was responsible for the clearance, though the strain was never 

identified [39]. Also, this original Milwaukee protocol patient developed neurological side 

effects that never fully resolved [38]. Subsequent application of the Milwaukee protocol has 

resulted in 31 deaths and only 1-2 additional survivors, who both developed severe neuronal 

sequelae, casting considerable doubt on the overall efficacy of the approach [39, 40].

Administered in conjunction with RIG and RABV vaccine, broad-spectrum antiviral 

therapeutics are used for the treatment of highly aggressive rabies cases. These include 

ribavirin, interferon-alpha (IFN-α), and ketamine/amantadine [41, 42]. Ribavirin is a broad-

spectrum guanosine nucleoside analog with unclear mechanism of action including 

inhibition of inosine monophosphate dehydrogenase (IMPDH) purine de novo synthesis, 

direct incorporation into nascent viral genomes causing lethal mutagenesis, and inhibition of 

mRNA capping [43-45]. Although efficacious in vivo, ribavirin has shown no activity 

against clinical rabies [41, 46]. This is supported by a 15 year-long study in which 16 RABV 

infected patients were treated with ribavirin, but no beneficial effect was observed [47]. 

Also, in two separate cases, one in Thailand, and one in the United States, ribavirin was 

administered, again demonstrating a lack of efficacy [46, 48]. It is hypothesized that this 

disappointing performance of ribavirin is due to its interference with the Th1/Th2 immune 

response, thus hindering production of effective antibodies that are essential for RABV 

clearance [49].
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Inducing an antiviral state through triggering of innate immune response pathways, anti-

RABV activity of IFN-α is ameliorated through counteraction by the lyssavirus 

phosphoprotein (P) [8, 46]. Currently up to five truncated isotypes of P (P1-5) have been 

identified that play distinct roles in antagonizing the type-1 IFN response. P1 and P2 encode 

for a nuclear export signal and directly bind to phosphorylated STAT1, thus sequestering it 

to the cytoplasm [50, 51]. P3 binds directly to microtubules to prevent STAT1 shuttling into 

the nucleus and it furthermore can interact directly with STAT1 to block DNA binding [52, 

53]. The inhibition of STAT1 also renders exogenous IFN-α ineffective for RABV therapy.

Ketamine and amantadine are core components of the Milwaukee protocol anti-RABV 

approach. Both drugs are non-competitive NMDA receptor antagonists and have been shown 

to prevent uncoating and release of RABV particles. Ketamine requires prohibitively high 

concentrations to effectively block viral replication, however, which are not achievable in 

human therapy [38, 40, 42, 54].

All current antiviral strategies to block RABV replication are thus compromised by 

substantial limitations, adding little to improve case fatality rates of symptomatic disease. 

This lack of an effective therapeutic option creates an urgent and currently unmet clinical 

need for the development of next-generation antivirals that can be used as an additional 

component of current combinatorial PEP and may improve management of established 

rabies cases.

Anti-RABV Drug Discovery

Most of the deaths attributed to RABV infection result from socio-economic barriers, 

reagent shortages, and inability to maintain an uninterrupted cold chain for the transport of 

biologics for PEP [11]. The discovery of novel antiviral compounds may offer a fresh 

avenue to address these concerns. Small-molecule antivirals in general have the advantages 

of cost-effective manufacture – addressing supply concerns – as well as high shelf-stability, 

enabling developing countries to stock-pile life-saving supplies [42]. Currently, there are no 

small-molecule inhibitors licensed for therapeutic use, despite several attempts at discovery 

[41, 54-62]. Based on previous antiviral activity of phenolic compounds against viruses such 

as HIV, herpes simplex virus and influenza virus, 24 representatives of this class were tested 

against RABV. Based on visually scoring of viral cytopathic effects (CPE) after infection 

with the Pasteur virus (PV) RABV strain, 50%-effective concentrations (EC50) were in all 

cases >50 μM [54]. Although a specific mechanism of activity was not evaluated in this 

study, it was suggested that the antiviral activities of phenolic compounds may be attributed 

to their interaction with host cell group-specific antigens (GAGs), blocking viral entry [63]. 

Another anti-RABV drug discovery campaign employed cell-free translation, using 

fluorescently tagged mRNA to screen the Prosetta compound library in search of hits that 

prevented nucleocapsid assembly. This exercise yielded a hit directed against the ABCE1 

transporter that showed considerable cytotoxicity with 50% cytotoxic concentrations (CC50) 

of 2.5-10 μM [55].

These early attempts for anti-RABV drug discovery did not yield viable hit candidates, but 

exposed some challenges to anti-RABV drug screening approach. A significant deterrent to 
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automated anti-RABV drug discovery, for instance, is the BSL2/3 containment requirements 

imposed by replication-competent RABVs and mandatory rabies vaccination as well 

restriction to the laboratory of not vaccinated people.. Based on the original reverse genetics 

system developed for the SAD-B19 RABV strain [64], however, minireplicon systems and 

single-cycle reporter RABV viruses were developed that allow study of the RABV 

polymerase activity and in-cell replication in a BSL2 setting [65-73]. Analogous to the 

precedent set by successful screens employing single-cycle HIV, hepatitis C virus, and 

influenza virus reporter strains [74-76], the single-cycle based approach in particular offers 

an exciting drug discovery perspective. Transient-transfection based minigenome drug 

screens have furthermore been attempted to identify, for instance, Ebola virus polymerase 

inhibitors [77-79]. Applied to the RABV problem, single-cycle reporter viruses and/or 

minireplicon systems may offer a viable solution to the biocontainment challenge to 

automated large-scale drug discovery.

Host-Directed RABV Inhibitors

The analysis of the host-RABV interactome has revealed cellular proteins that are essential 

for completion of the RABV life-cycle and may provide exploitable antiviral target 

opportunities [80, 81]. Targeting of host factors involved in viral replication and 

pathogenesis offers several advantages over direct-acting antivirals. The frequency of viral 

escape is typically reduced when host factors are targeted [62, 82-84], due to the fact that the 

host genetic information is much more stable than that of error-prone RNA viruses and 

resistance mutations can never become fixed in circulating viral strains. Also, the potential 

for a broadened indication spectrum is heightened if the targeted host factor is highjacked by 

related viruses within the same family, preparing the path for targeting the emerging 

phylogroup II lyssaviruses [55].

However, host-directed antivirals are more prone to inducing severe adverse effects [85-87]. 

For example, erlotinib, dasatinib, and ezetimibe are all broad-spectrum entry inhibitors of 

hepatitis C virus that have no documented escape mutations [88, 89]. However, these drugs 

have revealed several adverse effects for lung, liver, and kidney functions, as well as cause 

rash and diarrhea in cancer patients, thus demonstrating the tightrope balance of targeting 

host proteins that are essential for cellular function [90-92]. Identifying pursuable host 

targets thus remains to be a challenging endeavor [93, 94]. RABV entry is mediated by 

clathrin-coated endocytosis which is dependent on actin cytoskeleton reorganization for 

internalization [95]. A closely related Rhabdovirus, vesicular stomatitis virus (VSV), 

employs a comparable entry strategy [96, 97]. Dynamin is a critical component of multiple 

endocytotic pathways and plays a role in actin reassembly and organization [95, 97]. 

Dynasore, a membrane-permeable inhibitor of dynamin GTPase activity, has been shown to 

inhibit the entry process for several viruses, including RABV and VSV [95, 98]. A similar 

dynamin inhibitor, AMBA, has also shown antiviral effects against HSV, but the selectivity 

index (SI = CC50/EC50) was at a low <21. When tested in vivo, there was only a 50% 

survival rate of mice given a lethal RABV challenge, greatly compromising therapeutic 

potential against the RABV indication [99]. Since AMBA was a direct hit compound from a 

high-throughput screen, synthetic optimization to improve efficacy was suggested. However, 

greater affinity for dynamic targets must be anticipated to coincide with increased 

DuPont et al. Page 5

Curr Opin Virol. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cytotoxicity, since dynamin is an essential cellular protein. Analysis of RABV entry into 

non-neuronal cells has revealed preference for cholesterol-rich microdomains [16, 100-106]. 

Depletion of membrane cholesterol, however, did not affect viral entry, suggesting RABV 

may have another route of entry into these cell types [107].

RABV encephalitic pathogenesis is Raf/MEK/ERK kinase pathway-dependent [108]. 

Sorafenib is a small-molecule tyrosine kinase inhibitor that curbs angiogenesis in cancer 

patients [109]. In an attempt of repurposing cancer drugs as antivirals, sorafenib has been 

highlighted as a broad-range antiviral against adenovirus, mumps virus, chikungunya virus, 

dengue virus, West Nile virus, Yellow fever virus, and enterovirus 71 [110-116]. When 

administered at non-cytotoxic levels, however, sorafenib given in combination with IFN-β 
reduced RABV load by less than one order of magnitude (74% inhibition) [22]. 

Furthermore, this compound was associated with GI complications and other severe adverse 

effects in cancer patients, making it an unlikely antiviral candidate [117-123].

The neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) is a 

highly conserved and universally expressed ubiquitin ligase that regulates steady state levels 

of many membrane proteins including ion channels and membrane receptors. The recently 

characterized WW domain of Nedd4 has been associated with a number of functions that 

facilitate protein-protein interactions [124]. This domain was shown to provide a binding site 

for M proteins of rhabdoviruses and filoviruses, promoting viral budding and egress [125]. A 

hit compound synthesized from an in silico screen based on the structural information of the 

WW domain showed some initial efficacy against RABV. Further synthetic optimization of 

the scaffold yielded two hit compounds that specifically targeted the Nedd4 WW domain, 

competitively inhibited viral M protein binding to the domain, and were only minimally 

cytotoxic [126]. Further in vivo evaluation is required, however, to determine whether the 

Nedd4 WW domain will persevere as a viable druggable target.

Direct-Acting Antivirals

Despite the anticipated strengths of host-directed antiviral approaches, unacceptable 

cytotoxicity often shifts focus towards direct-acting inhibitors that offer the potential for 

wider therapeutic windows [59]. A co-crystal structure of N with viral RNA was solved 

(figure 4) that may be exploitable for drug discovery through structure-guided design [127]. 

The conserved nature of N and its critical interactions with multiple viral and cellular 

proteins make it overall an attractive druggable candidate [128-130]. Proof-of-concept 

comes from liposomally delivered siRNAs that were designed to address highly conserved N 

sequences across different RABV strains. RABV replication was significantly inhibited in 
vitro through this approach, validating druggability of RABV N. In vivo, however, the 

siRNAs protected at best 60% of lethally RABV challenged mice [61], which was attributed 

to inefficient delivery and uptake by the animals [59, 61].

Conformational changes of N are likewise vital for its bioactivity. Phosphorylation at 

serine389, for instance, is considered to allow N to loosen its interaction with RNA, enabling 

access of the vRdRp to the encapsidated RNA template [131, 132]. These dynamic changes 

in nucleoprotein structure may be targeted by allosteric inhibitors that trap N in specific 
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conformations, preventing rearrangements required for polymerization [133]. In addition to 

targeting N directly, preventing the interaction of the viral P-L polymerase complex with N 

in the assembled RNP may be a viable antiviral strategy. Replication of the distantly related 

respiratory syncytial virus, for instance, is potently blocked by the small-molecule 

compound RSV604 that is considered to interfere with P-RNP binding [134]. Structural 

models of RNP and the C-terminal domain of P proteins of both RABV and MOKV 

revealed close structural homology and interaction mechanism similar to these employed by 

the related paramyxo-and pneumoviruses [99, 135-138]. Through yeast-2-hybrid screening, 

several peptides were identified that bind directly to both RABV and MOKV P in highly 

conserved regions, inhibiting viral replication in minigenome assays. Mechanistically, 

inhibition by these peptides was due to disruption of RNP-P complex formation [139]. 

Although therapeutic peptides are often highly specific and show low toxicity, they are 

frequently proteolytically unstable, display poor membrane permeability, and are often 

immunogenic when repeat administration is required [140]. Replacement of P binding 

peptides with a small-molecule inhibitor that directly interacts with P should therefore be 

considered in search of a broad range therapeutic that is efficacious against both 

phylogroups, cost-effective, and shows superior stability.

M is of critical importance for viral particle formation, based on self-assembly upon 

interaction with RNP and the cytoplasmic domain of G [141]. M also induces mitochondria-

mediated cellular apoptosis in neuronal cells to promote viral dissemination [142, 143], and 

alters host cell protein biosynthesis through two mechanisms [144]: suppression of mRNA 

translation by interaction with Rae1 and block of mRNA export from the nucleus [145]; and 

shut-off of host gene expression by binding to, and/or modulating of, the phosphorylation 

site of host cell transcription factors [145]. The structures of both VSV and LABV M 

proteins have been solved [146], fueling the mechanistic appreciation of M assembly and 

opening a door towards structure-guided drug design against specific M microdomains. 

Attractive antiviral targets include M domains involved in M homo-oligomerization, 

interaction with host proteins, or required for binding to the viral G protein [17, 18, 70, 125, 

126, 146-151].

Monoclonal antibodies (mAbs) targeting RABV G have proven antiviral efficacy [15, 

152-154]. Broad panels of antibodies against rabies G revealed primary clusters for antibody 

recognition in distinct regions of the G ectodomain [18, 155-158]. As shown in figure 5, 

these antigenic sites (AS) include ASI (a.a. 226-231), ASII (a.a.34-42), ASIII (a.a.330-338), 

ASIV (a.a. 251), ASV (a.a. 261-264), and ASVI (a.a. 264). Considerable efforts have been 

made to assemble antibody cocktails that target different AS’ to prevent viral escape through 

antigenic drift and provide cross-protection based on across-strain conservation [14, 42, 

159-164]. Despite the initial promise of the approach, antibody therapy does not address the 

cold-chain problematic or provide cross-protection against the emerging phylogroup II 

lyssavirus threat. Lifting the cold-chain limitation at least, small molecule fusion inhibitors 

targeting G should be considered nevertheless to block RABV entry [165]. These can be 

effective against viral targets, since resistance often coincides with a viral fitness penalty 

[166-169].

DuPont et al. Page 7

Curr Opin Virol. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Harboring all catalytic centers of the viral polymerase complex, L has emerged as a leading 

drug target for many negative-sense RNA viruses because of its highly conserved nature and 

the density of candidate target sites including domains required for RNA synthesis, mRNA 

capping, or mRNA methylation [25, 128, 170-174].

Favipiravir (T-705) is a broad-spectrum RNA virus inhibitor that is currently licensed in 

Japan for stock-piling against pandemic influenza viruses resistant to oseltamivir. T-705 has 

been shown to be effective against Ebola virus, also within order Mononegavirales and 

therefore was considered for use against RABV also [175-181]. When tested in mouse 

neuroblastoma neural 2a cells, T-705 indeed lowered RABV titers by three to four order of 

magnitude (EC50 of 32.4 μM against a circulating RABV strain and 44.3 μM against the 

vaccine strain). However, the survival rate of mice infected with RABV and treated with 

T-705 was only approximately 50% (5 out of 9 animals examined), and the surviving mice 

developed limb paralysis, indicating viral circulation within the nervous system [60]. T-705 

was also the least effective in a panel of drug combinations with IFN-α, suggesting that it is 

not an optimal-antiviral agent against RABV [112].

Screening of several ribavirin analogs returned two compounds, EICAR and EICNR, that 

had superior antiviral potency in human neuroblastoma cells (EC50 0.9 μM, and 3.8 μM, 

respectively), compared to the ribavirin EC50 of 18.6 μM [57]. However, testing of these 

compounds was limited to the RABV vaccine strain, necessitating further examination in 
vivo against clinically-relevant pathogenic RABVs. If effective in vivo, these analogs may 

have the potential to replace ribavirin in current PEP.

Beyond ribavirin, ribonucleoside analogs present an exciting option for the discovery of 

broad-spectrum lyssavirus inhibitors. For instance, the ribonucleoside analogy N4-

hydroxycytidine reportedly blocks both seasonal and pathogenic influenza virus strains, 

respiratory syncytial virus, Ebola virus, chikungunya virus, and hepatitis B and C viruses 

[182-188] with excellent pharmacological properties [182]. If antiviral activity equally 

extends to RABV and related lyssaviruses, compounds like N4-hydroxycytidine may present 

an example for a viable next-generation therapeutic option to address the rabies challenge.

Summary

The high cost of PEP for RABV and the lack of cross-protection against the emerging 

zoonotic lyssaviruses of phylogroup II have underscored the unmet demand of an updated 

treatment regimen. Ideal alternatives break the cold-chain requirement, be BBB permeable, 

RABV specific, safe, and efficacious. Advances in molecular biology and a better 

understanding of RABV pathogenesis have led to new approaches to address the problem. 

Of all options, we consider the RABV polymerase complex to represent the most promising 

target for direct-acting antivirals due to the comparably low conservation of G across 

lyssaviruses [12, 17, 158, 174, 189-192]. The heterologous polymerase complex offers 

druggable protein-protein interfaces, essential enzymatic centers, and opportunity for 

allosteric and competitive substrate-analog inhibitors. Crystal structures have been 

determined for the RABV N-RNA complex and the P-RNP [127, 135, 137] complex, 

providing an exciting starting point for future structure-guided drug design.
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Figure 1: 
Schematic diagram representing the current post-exposure prophylaxis treatment (PEP) 

schedule as recommended by the WHO, A) for naïve individuals and B) previously 

vaccinated individuals. [2]
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Figure 2: 
Schematic representation of the modular organization of the RABV phosphoprotein (P). The 

N0 binding domain is teal, the dimerization domain is green, and the ribonucleoprotein 

binding domain (RNP) is periwinkle. The solved crystal structure for the N0 binding domain 

is depicted in teal (PDB 3OA1). The solved crystal structure for the dimerization domain is 

depicted in green and pink with both top and side views (PDB 3L32). The solved structure 

for the RNP is depicted in periwinkle (PDB 1VYI). [19, 127, 135, 137, 138]
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Figure 3: 
A) Schematic diagram depicting the domain organization of RABV large protein (L). The 

GDN polymerization motif is in red. The polyribonucleotidyltransferase (PRNTase) is in 

blue. The methyltransferase (MTase) is in cyan. The phosphoprotein (P) binding region is 

purple. Conserved regions (CR) of the non-segmented negative-sense RNA viruses are 

labelled CR I -VI. B) Surface representation of the RABV L generated by homology 

modelling based on the coordinates reported for the closely related VSV L structure with the 

same color scheme as described by 3A. Below is a zoomed in ribbon representation of the 

GDN motif responsible for polymerase activity. [25, 33, 36, 128]
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Figure 4: 
Structural representation of the ribonucleoprotein complex (PDB 2GTT) with both side 

(left) and top (center) views. Individual nucleoprotein (N) protomers are depicted as 

alternating blue and grey with RNA as a red coil. The far right represents a single N 

protomer with the n-terminal residues (NNT) in cyan and the c-terminal residues (NCT) in 

blue. [127, 137]
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Figure 5: 
Schematic representation of the RABV glycoprotein (G) antigenic sites (AS). A) Side view 

(left) and 90° turn (center) and top view (right) of homology model of RABV G based on 

VSV G (PDB 2J6J). Residues of AS are highlighted in red for each view. B) Linear 

schematic showing relative position and amino acid numbering for ASI-VI within the 

extracellular domain of G. [129, 157, 191, 195].
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Table 1.

Host-directed anti-RABV compounds

Compound Target EC50 (uM) CC50 (uM) SI (CC50/EC50) Ref.

Catechin Host Cell GAGs 36.50 ± 8.40 124.33 ± 33.53 3 [54, 63]

Quercetin Host Cell GAGs 191.68 ± 24.25 670.02 ± 180.18 3 [54, 63]

3,4,5-Trimethoxybenzoic acid Host Cell GAGs 2142.74 ± 266.37 >5042.41 2 [54, 63]

Trimethoxyacetophenone Host Cell GAGs 1023.98 ± 64.62 3738.98 ± 1099.17 3 [54, 63]

3,4,5-Trimethoxybenzoic acid ethyl ester Host Cell GAGs 822.23 ± 134.38 3204.20 ± 397.87 3 [54, 63]

Butyl gallate Host Cell GAGs 109.79 113.23 ± 52.35 1 [54, 63]

PAV-866 ABCE1 ~0.15–0.30 ~2.5–10 ~100 [55]

Sorafenib Tyrosine Kinases 1.463 >160 109 [22]

2-piperidin-3-yl-benzothiazole analog Nedd4 0.345 >1 >3 [126]

1-acetyl-3-(2,2,2-trifluoroethyl)-urea analog Nedd4 0.210 >1 >8 [126]
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Table 2.

Viral-Directed anti-RABV Compounds

Compound Target EC50 (uM) CC50 (uM) SI (CC50/EC50) Ref.

Ketamine vRNA Synthesis 922.93 ± 68.48 3010.69 ± 171.26 3.3 [54, 193]

Ribavirin de novo purine synthesis 18.55 >200 >10 [57]

EICAR de novo purine synthesis 0.90 >200 >200 [57]

EICNR de novo purine synthesis 3.80 >200 >50 [57]

Favipiravir vRdRp 32.4 >2500mM >1000 [60, 194]
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