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Abstract

The filovirus family includes some of the deadliest viruses known, including Ebola virus and 

Marburg virus. These viruses cause periodic outbreaks of severe disease that can be spread from 

person to person, making the filoviruses important public health threats. There remains a need for 

approved drugs that target all or most members of this virus family. Small molecule inhibitors that 

target conserved functions hold promise as pan-filovirus therapeutics. To date, compounds that 

effectively target virus entry, genome replication, gene expression and virus egress have been 

described. The most advanced inhibitors are nucleoside analogs that target viral RNA synthesis 

reactions.

The filovirus family.

Filoviruses, zoonotic pathogens associated with severe disease in humans, are filamentous, 

enveloped viruses with non-segmented, negative-sense RNA genomes [1]. Included in 

filovirus family is the genus Ebolavirus, which has six species. Among these, Zaire 

ebolavirus (EBOV), Sudan virus (SUDV) and Bundibugyo virus (BDBV) have caused 

substantial outbreak with significant morbidity and mortality in humans. Marburgvirus is 

another genus with members that have caused that includes Marburg virus (MARV) and 

Ravn virus (RAVV). Cuevavirus, which contains Lloviu virus (LLOV) and proposed genus 

Dianlovirus, which contains a single member, Měnglà virus (MLAV), have not to date been 

associated with human disease [2–4]. LLOV and MLAV, both identified in bats, have not 

been isolated or cultured and their significance with regard to human health is unknown.

The largest filovirus outbreak on record was caused by EBOV in West Africa between 2013–

2016. This resulted in more than 28,000 infections, more than 11,000 deaths and the export 

of infected cases to the United States and Europe [5]. In pregnant women the fatality rate is 

estimated to be 70%, and survivors are known to exhibit persistent infection with virus 

residing in immune privileged sites, including the eye and testes [6–10]. The only treatments 

available were supportive care and experimental therapies, hampering patient treatment and 
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leaving healthcare workers at severe risk. The West Africa epidemic reinforced the threat 

posed by the filovirus family and demonstrated that in addition to being a bio-terrorism 

threat, emergences from natural sources can have a profound public health impact.

Because of their extreme virulence, fully-replication competent filoviruses are studied in 

Biosafety Level 4 (BSL4) containment. This limits the number of investigators who have 

direct access to virus and makes screening of antiviral against live virus challenging, even 

for those investigators with BSL4 access. Therefore, much effort has been devoted to 

targeting specific steps in the virus replication cycle, such as viral entry, viral RNA synthesis 

and virus assembly and release, that can be reconstituted in transfection-based studies that 

do not require live virus. This approach can facilitate the discovery of small molecules that 

target specific viral functions that must then be tested for efficacy against live virus in cell 

culture and animal models.

Summary of relevant filovirus biology.

The filovirus genome is approximately 19 kilobases in length and encodes up to nine 

translation products from seven separate transcriptional units [1,11]. These genes encode the 

viral nucleoprotein (NP), viral protein of 35 kDa (VP35), VP40, a type I transmembrane 

glycoprotein (GP), VP30, VP24, and the large protein (L), which is the viral polymerase. 

Members of the Ebolavirus genus, and also likely LLOV, produce secreted forms of the GP 

protein [1,12,13] (Fig 1A).

Viral entry is mediated by GP which acts as an attachment factor and mediates fusion of 

viral and host cell membranes within an endosomal compartment [14] (Fig 1B). The viral 

genome is released into the cytoplasm as a ribonucleoprotein complex. This serves as the 

template for the RNA synthesis reactions that replicate the viral genomic RNA and 

transcribe the mRNAs that lead to viral gene expression. Replication requires NP, which 

associates with the viral genomic and antigenomic RNAs throughout the course of infection; 

VP35, a non-enzymatic cofactor for the viral RNA-dependent RNA polymerase that also 

serves as a potent suppressor of innate antiviral signaling pathways and L, which possesses 

all the enzymatic activities required for viral transcription and genome replication, including 

RNA-dependent RNA polymerase (RdRp) activity, guanyltransferase and methyltransferase 

activities [15,16]. Viral transcription (mRNA synthesis) involves the production of distinct 

5’-capped, 3’polyadenylated mRNAs from each of the viral genes and requires, in addition 

to NP, VP35 and L, the VP30 protein [16] (Fig 1B). Co-transfection of these four viral 

proteins with a model viral genomic RNA can recapitulate the filovirus RNA synthesis 

machinery in cell-based “minigenome” assays in biosafety level 2 (BSL2), enabling the 

study of filovirus RNA synthesis [17–20]. In addition to the required viral proteins, host 

factors modulate viral RNA synthesis through interaction with viral factors, however, a 

complete understanding as to how host factors contribute to viral RNA synthesis remains 

elusive [21–23].

Other viral functions include filovirus assembly and release [24]. The VP40 matrix protein 

drives the membrane budding events that lead to release of new virus particles. GP is 

incorporated into the membrane of viral particles and enhances budding. Viral 

ribonucleoproteins (RNPs) that contain genomic RNA, NP, VP35, VP30 and VP24 are 
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recruited into the budding particles. In addition to playing roles in replication and assembly, 

several filovirus proteins counteract host innate antiviral defenses [25]. The filovirus VP35 

proteins block interferon (IFN)-α/β production and the VP24 proteins of Ebolavirus and 

Cuevavirus genus members and the VP40 proteins of the Marburgvirus genus block IFN-

induced antiviral signaling [15,26–34]. Marburgvirus VP24 proteins also modulate host 

antioxidant response pathways through interaction with the host protein Keap1 [35–37]. 

While these viral functions can be studied independently by transfection based assays, 

inclusion of the viral genes for VP40, GP and VP24 into the model viral genomic RNA 

results in an advanced system that produces replication and transcription-competent virus-

like particles (trVLPs), allowing for BSL2 study of most viral lifecycle steps, including entry 

and budding, in addition to RNA synthesis [38].

Status of Promising Anti-Filovirus Approaches.

The typical progression of anti-filovirus therapeutics is demonstration of efficacy in cell 

culture, then in mice, followed by guinea pigs and then non-human primates (NHPs), the 

“gold standard” for efficacy in animals [39]. Historically, NHPs have proven much more 

difficult to protect than rodents. The focus of this review is small molecule inhibitors of 

EBOV and other filoviruses, which are summarized in Figure 1 and Table 1. It is nonetheless 

important to recognize that monoclonal antibodies and nucleic acid-based therapeutics have 

also successfully protected NHPs from lethal filovirus challenge. A notable achievement was 

the finding that the three monoclonal antibody cocktail ZMAPP could protect NHPs from 

lethal challenge even after the onset of clinical symptoms [40]. Antibody-based approaches 

are sufficiently promising that three such treatments are being investigated in a clinical trial 

in the 2018–2019 EBOV outbreak in the Democratic Republic of Congo. These are ZMAPP 

(Mapp Biopharmaceutical, Inc.), Mab 114 (National Institute of Allergy and Infectious 

Diseases) and the three monoclonal antibody cocktail REGN-EB3 (Regeneron).

Targeting filovirus RNA synthesis.

Targeting viral RNA synthesis reactions shows substantial promise, including the targeting 

of viral RNA polymerase function by nucleoside analogues and small molecules that affect 

viral protein expression, stability and post-translational modifications necessary for viral 

replication.

Nucleoside analogues BXC4430, an adenosine analogue, GS-5734 (Remdesivir, Gilead, 

USA), a monophosphoramidate prodrug of an adenosine analogue and favipiravir (T-705, 

Toyama Chemical, Japan), a synthetic guanidine nucleoside analogue, exhibit anti-filovirus 

activity, likely through inhibition of viral polymerase activity [41–43]. BXC4430 was the 

first small molecule demonstrated to protect non-human primates from lethal filovirus 

challenge, even when administered up to two days post-infection [43]. This compound has 

progressed to Phase I clinical trials (URL:ClinicalTrials.gov Identifier:NCT02319772 and 

NCT03800173).

GS-5734 exhibits antiviral activity against a number of RNA viruses and has been shown to 

inhibit respiratory syncytial virus (RSV) and hepatitis C virus (HCV) polymerases, with 

greater selectivity for the viral polymerase than the cellular [42,44,45]. GS-5734 
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demonstrated protection of rhesus macaques from EBOV challenge across several dosing 

regimens, including complete protection from lethal disease of animals that received 

GS-5734 beginning three days post infection [42]. Interestingly, in macaques, administration 

led to distribution in tissues such as testes, epididymis, eyes and brain where EBOV may 

reside after recovery from illness. GS-5734 was provided to some human patients infected 

during the West Africa epidemic, and has been used in the 2018–2019 outbreak in DRC 

under an emergency use protocol for experimental medical interventions [7,46] (WHO; 

URL:https://www.who.int/ebola/drc-2018/treatments-approved-for-compassionate-use/en/). 

It is also currently in clinical trials, including a study to evaluate treatment of male survivors 

of Ebola virus disease (EVD) with persistent EBOV in their semen (URL:ClinicalTrials.gov 

Identifier:NCT02818582).

Favipiravir has broad spectrum activity against a number of RNA viruses and has been 

studied in Phase 3 clinical trials in Japan and the United States, with approval in Japan for 

treatment of influenza virus infection (URL:ClinicalTrials.gov Identifier:NCT02008344; 

Toyama Chemical Co Ltd.; URL:https://www.toyama-chemical.co.jp/eng/news/

news140324e.html). It likely acts as a “pseudo purine”, inhibiting influenza virus RdRp 

activity with selectivity towards viral over cellular polymerases [47]. Favipiravir 

demonstrated protection of type I interferon receptor (IFNAR) knockout mice and 

immunocompetent C57BL/6 mice from challenge with EBOV and mouse-adapted EBOV 

(MA-EBOV), respectively [41,48,49]. When tested in macaques, favipiravir administered 

orally once or twice daily resulted in only one survivor out of eighteen EBOV infected 

animals, although delayed time to death and reduced viral levels were documented [41]. In 

contrast, intravenous administration of favipiravir led to five of six MARV infected animals 

surviving, with reduced viral loads and symptoms of MARV disease in survivors and 

delayed time to death for the animal that succumbed. Two clinical trials examined favipiravir 

as a treatment for EVD during the West Africa epidemic [50,51]. Due to the design of the 

trials, definitive conclusions could not be made. However, favipiravir treatment correlated 

with decreased viremia in subjects with low initial viral load, improved survival rates and 

reduced symptoms. Together, these studies suggest that continued examination of favipiravir 

as an anti-EBOV therapy is warranted.

Nucleoside analogues also exhibit antiviral activity by mechanisms other than direct 

inhibition of viral polymerase activity. Carbocyclic nucleosides, such as 3-deazaneplanocin 

A, inhibit replication of a number of negative sense RNA viruses including filoviruses [52–

57]. The mechanism of action is thought to be inhibition of cellular S-adenosylhomocysteine 

(SAH) hydrolase (SAHase), which breaks down SAH produced from S-adenosylmethionine 

(SAM), a molecule required for macromolecular methylation reactions. Inhibition of 

SAHase raises intracellular SAH levels, blocking cellular methylation reactions via a 

feedback inhibition mechanism. This causes diminished methylation of viral mRNAs 5’ cap 

moieties and impairs viral protein synthesis [58]. 3-deazaneplanocin A has been 

demonstrated to exhibit anti-EBOV activity in vivo, as it can protect mice from EBOV 

challenge [52].

Several other nucleoside analogues with anti-EBOV activity have been identified through 

antiviral screens using EBOV or minigenome assays confirmed in cell culture with EBOV. 
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These include the cytidine analogues β-d-N4-hydroxycytidine (NHC) and azacytidine and 

the uridine analogue 6-azauridine [17,18,59,60]. Further study is required to demonstrate 

mechanism of action and efficacy in animal models for these compounds.

A number of non-nucleoside compounds have also been demonstrated to inhibit filovirus 

replication in cell culture. Benzoquinoline compounds were identified by minigenome assay 

as inhibitors of EBOV RNA synthesis, with activity shown against a variety of RNA virus 

families [61]. While their mechanism of action is unknown, the broad-spectrum activity 

suggests a host target. Hsp90 inhibitors demonstrate inhibition of EBOV in cell culture, 

likely through the destabilization of EBOV L [23,62]. It has also been demonstrated that 

inhibition of polyamine biosynthesis, such as by 2-difluoromethylornithine (DFMO), and 

hypusination, by N1-guanyl-1,7-diamineheptane (GC7) and ciclopirox, reduces EBOV 

replication [63,64].

Inhibitors of the host enzyme dihydroorotate dehydrogenase (DHODH), which has a role in 

de novo pyrimidine biosynthesis, have broad-spectrum antiviral activity that includes 

inhibition of EBOV in cell culture [65,66]. The anti-EBOV activity of DHODH inhibitors 

such as GSK983 and brequinar is related to depletion of pyrimidine pools [65]. Interestingly, 

a genetic screen also identified de novo pyrimidine biosynthesis as critical for EBOV 

replication [67]. Although DHODH inhibitors have been used clinically for other 

applications, in vivo studies have not demonstrated convincing antiviral activity, possibly 

because uracil is available systemically in vivo to feed the salvage pathway, overcoming the 

block to the de novo pyrimidine synthesis pathway [68–70].

Filovirus replication can also be targeted through the VP30 protein, which is required for 

EBOV and MARV growth and plays roles in viral mRNA synthesis. This function is 

regulated by VP30 phosphorylation, with dephosphorylated VP30 promoting viral mRNA 

synthesis and phosphorylated VP30 promoting viral genome RNA replication. Compounds 

that prevent VP30 dephosphorylation, such as Okadaic acid (OA) and 1E7–03, impair virus 

growth in cell culture [71–73].

Another strategy being pursued is the targeting of protein-protein interactions involved in 

filovirus RNA synthesis. This has been enabled by the increasing numbers of virus-virus and 

virus-host protein-protein interactions that have been identified and characterized by 

structural, biophysical and molecular biology methods [1,74,75]. In one example, a 

fluorescence polarization assay was developed around the interaction of NP and the NP 

binding peptide (NPBP) derived from VP35, an interaction critical for viral RNA synthesis 

[75]. Screening for inhibitors of the interaction identified Tolcapone, an FDA-approved drug 

that is used in the treatment of Parkinson’s disease [76,77]. Tolcapone was demonstrated to 

impair EBOV replication in cell culture. As the NP:NPBP interaction site is well-conserved 

among filoviruses, the NP:NPBP interaction has potential as a pan-filovirus target [77].

Entry Inhibitors.

There has been substantial effort devoted to developing small molecule inhibitors of EBOV 

entry. The entry process itself has been studied in depth and is relatively unique [78]. A 

number of cell surface molecules, including lectins and phosphatidyl serine (PS)-binding 
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proteins have been described to mediate virus attachment to the cell surface, via interactions 

with GP or PS on the virus surface [78]. Uptake is by macropinocytosis or a 

macropinocytosis-like process [79–82]. Within endosomes, GP undergoes cleavage by 

proteases cathepsin B and cathepsin L, although EBOV replication in both cell culture and 

mouse models may not absolutely require that both these proteases be active [83–89]. 

Cleaved GP then interacts with host protein Niemann–Pick C1 (NPC1) within the 

endosomal lumen [90–92]. This interaction is necessary for fusion of viral and endosomal 

membrane and release of virus particles. Each of these steps, as well as cellular functions 

associated with these steps, are potential targets for therapeutic intervention.

Compounds directly targeting GP or the viral membrane.

A benzodiazepine derivative called compound 7 was identified in a screen for entry 

inhibitors through the use of GP pseudotyped lentiviruses [93]. Compound 7 demonstrated 

selectivity towards inhibition of EBOV and MARV in cell culture over other RNA and DNA 

viruses and was shown to directly bind GP [93]. In contrast, LJ001, a rhodanine derivative 

identified in a screen for inhibitors of Nipah virus entry, was demonstrated to have broad-

spectrum activity against enveloped but not non-enveloped viruses. It was shown to bind to 

lipid membranes, acting as a type II photosensitizer modifying unsaturated phospholipids, 

negatively affecting enveloped virus entry without significant host cell cytotoxicity[94]. 

LJ001 was also shown to inhibit EBOV replication in cell culture and to protect 80 percent 

of mice challenged with MA-EBOV [95].

Arbidol is a small molecule used clinically in Russia and China to prevent and treat 

influenza virus infections [96]. It has broad-spectrum antiviral activity in cell culture, 

including anti-EBOV activity that is suggested to be through inhibition of EBOV entry [97]. 

This may be through the capacity of arbidol to bind lipid membranes, but as it has also been 

demonstrated to directly bind influenza A virus hemagglutinin protein preventing fusion, the 

possible interaction with filovirus GPs may warrant exploration [98,99].

Inhibitors of macropinocytosis.

Compounds that inhibit macropinocytosis, such as ethylisopropylamiloride (EIPA), an 

inhibitor of the Na+/H+ exchanger that specifically inhibits macropinocytosis, PKC inhibitor 

rottlerin, actin polymerization inhibitor latrunculin A, and PI3-kinase inhibitor wortmannin 

all inhibit EBOV entry [79,82]. Recent screening with MARV GP pseudotyped VSV and 

retrovirus particles identified 17 compounds able to inhibit MARV and EBOV in cell 

culture, two of which were novel macropinocytosis inhibitors [100].

Inhibitors of cathepsins.

The proteolysis of EBOV GP by cathepsins B and L, and the critical role of this activity in 

EBOV entry, was demonstrated in part through the use of pharmacological inhibitors of 

proteases. These inhibitors include the cysteine-serine protease inhibitor leupeptin, cysteine 

protease inhibitors E64, E64a, E64d, K11777 and K11777-derivatives, cathepsin B 

inhibitors CA074 and CA074Me and cathepsin L inhibitor III [83,84,101–105]. Several 

more studies have been undertaken to identify inhibitors of cathepsin B and L cleavage of 

GP and inhibition of filovirus entry [106–108]. These include the natural product aloperine 
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and its derivatives which target cathepsin B and the glycopeptide antibiotic teicoplanin that 

is suggested to inhibit cathepsin L. Finally, it should be noted that cathepsins B and L are 

activated by low pH and inhibitors of endosomal acidification also inhibit filovirus entry 

[109,110].

Inhibitors that target NPC1 interaction with GP or mimic the phenotype of NPC1 deficiency.

NPC1 was initially identified as an essential receptor for EBOV entry by both a genetic and 

a chemical screen [90,91]. NPC1 is an endosomal and lysosomal cholesterol transporter and 

mutations in NPC1 are associated with Niemann–Pick disease, a neurovisceral atypical 

lysosomal lipid storage disorder where cholesterol and sphingolipids accumulate in 

lysosomes [111]. A benzylpiperazine adamantane diamide compound, called 3.0, and an 

analogue, 3.47, identified in the chemical screen caused cholesterol accumulation in cells 

and were demonstrated to interact with NPC1, inhibiting binding of cleaved GP [91]. 

Although the cholesterol transport function of NPC1 is not required for EBOV entry, 

compounds that mimic NPC1 deficiency in cells, including imipramine and U18666A, the 

latter of which also binds NPC1, have been shown to block EBOV entry [90,112,113]. 

However, while imipramine and U18666A treatment of mice infected with MA-EBOV led to 

lower viral replication, no significant protection was demonstrated [114].

Compounds inhibiting late steps in the entry process.

Selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, 

were identified during screening of FDA-approved drugs as inhibitors of EBOV entry in cell 

culture [115–117]. When tested in mice, clomiphene protected 90% of animals and 

toremifene protected 50% of animals from death [115]. Mechanistically, the compounds 

function in cells lacking estrogen receptor, suggesting an off-target effect and were shown in 

one study to inhibit a late step in EBOV entry, such that fusion does not occur, although in 

another, toremifene was found to bind and destabilize GP [115,118].

Repurposing of FDA drugs is complicated by an inability to achieve in vivo levels sufficient 

for anti-EBOV activity, therefore combinations of inhibitors have been assessed for efficacy 

[119]. Two 3-drug combinations, toremifene-mefloquine-posaconazole and toremifene-

clarithromycinposaconazole, were identified as being active at clinically achievable 

concentrations. Mechanistic studies suggested all inhibit NAADP-AM stimulated lysosomal 

calcium release, while posaconazole inhibits NPC1 function and posaconazole, toremifene 

and mefloquine inhibit acid sphingomyelinase activity.

EBOV entry requires endosomal calcium channels known as two-pore channels (TPCs) 

[120]. Inhibition of TPCs by genetic or pharmacological approaches, including the FDA-

approved drugs verapamil, nimodipine and diltiazem, as well as the natural product 

tetrandrine, prevent EBOV escape from endosomes, thereby aborting infection [110,120–

122]. Tetrandrine, the most potent of these, was demonstrated to protect mice from lethal 

challenge with mouse-adapted EBOV [120].

Other genes potentially important for EBOV entry were described in the genetic screen that 

identified NPC1, including phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) [90]. 

Based on this, the small molecule apilimod, which inhibits PIKfyve, was examined and 
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demonstrated potent inhibition of EBOV and MARV entry in human macrophages [123]. 

The mechanism of inhibition appears to be impaired trafficking of incoming virus to sites 

where NPC1 resides and membrane fusion takes place [123]. Apilimod has been well-

tolerated in phase I and II clinical trials as an interleukin-12/23 inhibitor for the treatment of 

Crohn’s disease, psoriasis, and rheumatoid arthritis [124–127]. Given these activities, it will 

be of interest to determine whether the antiviral activity of apilimod outweighs its immune 

suppressing activities in the context of filovirus infection in vivo.

Other entry inhibitors.

A combination of the kinase inhibitors genistein and tyrphostin AG1478 was demonstrated 

to inhibit infection by EBOV and MARV GP-pseudotyped VSV and to inhibit EBOV 

growth, although the mechanism remains to be elucidated [128].

Inhibitors of EBOV egress.

The VP40 protein of filoviruses serves as the major matrix protein that is responsible for the 

budding of new virus particles from the cell surface. Budding is facilitated by the interaction 

of proline-rich “late domain” motifs on VP40 with components of the host cell vacuolar 

protein sorting (vps) pathway, such as Tsg101 and Nedd4 [129–131]. An in silico screen 

using the NMR structure of the PTAP peptide-binding pocket in human tsg101 identified a 

compound, 5539–0062, that was demonstrated to inhibit the interaction between tsg101 and 

EBOV VP40 and to prevent budding of VP40 from cells in transfection studies [132]. High 

concentrations of compound were needed; however, the inhibitory concentrations were not 

cytotoxic [132]. A second in silico screen using the structure of a WW domain of Nedd4 in 

complex with a PPxY motif identified compound 1 that inhibits MARV VP40 budding 

[133]. Structure/activity studies led to the generation of compounds with enhanced potency 

and inhibition of both MARV and EBOV VP40 interaction with Nedd4 and budding 

[133,134]. This inhibition extended to other viruses where matrix proteins rely on late 

domain-Nedd4 interactions for budding, including VSV and rabies virus [133].

Conclusions.

The development of therapeutic antibodies and small molecule inhibitors that protect non-

human primates from EBOV challenge is a major milestone as is advancement of 

therapeutics into clinical trials. Given that none is yet approved for human use and the facts 

that propensities of these approached to elicit resistance, continued efforts at drug 

development for filoviruses remains a necessity. Small molecule approaches targeting 

conserved viral functions would seem to offer the greatest possibility for pan-filovirus 

efficacy. Therefore, small molecule drug development should be a priority.
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Figure 1. Filovirus genome, replication cycle and small molecules inhibitors.
A. Schematic of filovirus genome. The negative-sense RNA genome has seven 

transcriptional units that encode for the nucleoprotein, NP; viral protein 35, VP35; VP40; 

glycoprotein/soluble glycoprotein, GP/sGP (sGP is not encoded by Marburg virus); VP30; 

VP24; Large protein, L (viral polymerase). Note that sGP and ssGP is produced by members 

of the Ebolavirus genus, and predicted to be produced by LLOV. Genome schematic is not to 

scale. B. Schematic of the steps in the filovirus lifecycle. GP mediates attachment of the 

filovirus to the surface of the cell. The virus is then taken up by macropinocytosis. Following 

acidification of the endosome, cathepsins B and L cleave GP, a requirement for its 

interaction with the host protein NPC1 that facilitates fusion of viral and endosomal 

membranes. Endosomal calcium channels, known as two-pore channels (TPCs), play a role 

in trafficking the virus particle to the site of membrane fusion. Following fusion, the 

ribonucleocapsid is released into the cytoplasm where 5’-capped, 3’polyadenylated mRNAs 

are transcribed for each viral gene and a copy of the full-length genomic RNA is produced, 

which acts as a template for synthesis of new negative-sense viral genomes. Transcription 

requires NP, VP35, VP30 and L, while replication does not need VP30. Viral proteins are 

translated from the viral mRNAs and new viral particles are formed at the cell surface. VP40 

drives viral budding and is assisted by GP. Viral ribonucleoproteins containing genomic 

RNA, NP, VP35, VP30 and VP24 are incorporated into the budding particles. The steps in 

the filovirus lifecycle are potential targets for therapeutic intervention; small molecules that 

target these processes are noted on the schematic. Greater detail on the filovirus lifecycle 

and these small molecules can be found in the review.
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