Skip to main content
. 2019 Jul 15;195:285–299. doi: 10.1016/j.neuroimage.2019.01.077

Table 5.

Architecture of the SphericalNet.

#Layer Type Parameters Activation
1 Conversion From SH to signal space (SH order 4; Laplace-Beltrami Regularization 0.006)
2 Spherical Surface Convolution (applied on gradient signals) Input: 1 Shell; Output: 16 Shells; kernel size: 5; Θ=π10 Sigmoid
3 Spherical Surface Convolution (applied on gradient signals) Input: 16 Shell; Output: 16 Shells; kernel size: 5; Θ=π10 Sigmoid
4 Spherical Surface Convolution applied on gradient signals) Input: 16 Shell; Output: 16 Shells; kernel size: 5; Θ=π10 Sigmoid
5 Conversion From signal to SH space (SH order 4; Laplace-Beltrami Regularization 0.006)
6 Batch Normalization
7 3D Spatial Convolution Kernel size: 3 × 3 × 3, padding: 1 PReLU
8 3D Spatial Convolution Kernel size: 3 × 3 × 3, padding: 1 PReLU
9 3D Spatial Convolution Kernel size: 3 × 3 × 3, padding: 0