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Abstract: Many cancer management approaches including immunotherapies can not achieve desirable therapeutic 
efficacies if targeting tumors alone or could not effectively reach tumor cells. The concept of tumor microenviron-
ment and its induced gene reprogramming have largely extended our current understandings on the determinants 
of tumor initiation/progression and fostered our hope in establishing first-line therapies targeting cancer microen-
vironment or adjuvant therapies enhancing the efficacies of existing oncotherapeutic modalities such as immu-
notherapies for efficient cancer management. This review identifies key indexes of tumor microenvironment, i.e., 
hypoxia, acidosis, hypo-nutrition and inflammation, which collectively determine the feature and the fate of adjacent 
tumor cells, and proposes cold atmospheric plasma, the fourth state of matter that is largely composed of various 
reactive oxygen and nitrogen species, as a promising tool for tumor microenvironment editing. We propose that cold 
atmospheric plasma represents an emerging onco-therapeutic strategy alone or complementing existing treatment 
approaches given its multi-modal nature through tumor microenvironment modulation.

Keywords: Tumor microenvironment, cold atmospheric plasma, reactive oxygen and nitrogen species, microenvi-
ronment editing

Introduction 

Tumor microenvironment (TME) refers to the 
environment where a tumor originates. It dy- 
namically alters during carcinogenesis and con-
stantly interchanges signals and biomasses 
with tumors. Tumors can edit TME by, e.g., pro-
moting tumor angiogenesis, creating metabolic 
symbiosis with stromal cells, and inducing pe- 
ripheral immune tolerance, while immune cells 
in the microenvironment can affect the prolif-
eration and evolution of cancerous cells [1]. 
The critical roles of TME and its interplay with 
tumors during cancer initiation and progression 
such as vascularization and immunosuppres-
sion [2, 3] have been increasingly recognized. 
Understanding the unique features of TME not 
only helps us create desired efficacies from 
conventional anticancer therapies (e.g., immu-
notherapies [4]), but also leads us to the identi-
fication of novel onco-therapeutic targets and 
treatment possibilities. We are thus motivated 
to comprehensively review key indexes for TME 

measurement, based on which we propose cold 
atmospheric plasma (CAP), incompletely ion-
ized plasma and the fourth state of matter 
besides solid, liquid and gas, as an emerging 
first line or adjuvant approach for cancer con-
trol given its efficacies in TME editing.

Factors influencing tumor microenvironment

Hypoxia

Hypoxia, being one of the most characterized 
properties of TME, arises in tumors through 
excess tumor mass resulting from uncontrolled 
tumor cell proliferation and insufficient oxygen 
supply. Hypoxia, in turn, up-regulates the pro-
duction of angiogenic factors and triggers the 
vascularization of the tumor mass, resulting in 
tumor angiogenesis [5]. Unlike normal vascular-
ization, vessels formed from tumor angiogene-
sis have chaotic architecture that often lead to 
vascular leakiness and non-laminar blood flow 
[6]. Therefore, the functionalities of these ab- 
normally generated vessels are not guaranteed, 
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and typically subjected to alterations in the 
direction and velocity of the flow that likely to 
lead to blood clotting and local tissue oedema 
[7, 8]. Adaptation to hypoxia is primarily medi-
ated through transcription factor hypoxia-
induced factors (HIFs). There are two forms of 
HIFs, HIF1α and HIF2α, each being composed 
of a β subunit and an oxygen-labile α subunits 
that distinguishes the two HIFs. The α subunit 
is rapidly degraded through PHD-mediated hy- 
droxylation following pVHL-dependent ubiquity-
lation under normoxic conditions [9-11]. HIFs 
regulate the expression of target genes playing 
critical roles in, e.g., tumor angiogenesis and 
metabolic adaptations through recognizing hy- 

poxia-responsive elements located in either 
proximal or distal to their promoters [12-16].

Hypoxia can rewire the glucose metabolic fate 
of cancer cells (Figure 1A). Under hypoxic con-
ditions, glycolytic rate is enhanced by up-regu-
lating and/or activating a series of enzymes 
boosting glycolysis including, e.g., lactate dehy-
drogenase A (LDH-A), pyruvate kinase M2 (PK- 
M2), hexokinase II (HK2), and phosphofructoki-
nase (PFK) [17, 18]; several transporters ex- 
truding acids and/or lactates such as monocar-
boxylate transporter isoform 4 (MCT4) and the 
Na+/H+ exchanger NHE1 are up-regulated by 
HIF-1α [19, 20], leading to the secretion of vari-

Figure 1. Hypoxia is a characterized feature of tumor microenvironment. Hypoxia can (A) rewire the glucose meta-
bolic fate of cancer cells, and (B) alter glutamine flux. In (A), under hypoxic conditions, glycolytic rate is enhanced 
by up-regulating and/or activating a series of glycolysis-stimulating enzymes such as PFK, HK2, PKM2 and LDH-A, 
several acid and/or lactate-extruding transporters such as MCT4 and NHE1 are up-regulated by hypoxia through 
HIF-1α signaling, leading to the secretion of lots of lactates and other acid equivalents by tumor cells. Metabolic 
coupling occurs between cancer cells in hypoxic and well-oxygenated tumor regions, and between cancer and stro-
mal cells, i.e., lactates produced by hypoxic tumor cells are taken up via MCT1 in normoxic cancer cells, followed by 
conversion to pyruvate, sparing the limited supply of glucose for the hypoxic tumor regions. In (B), despite decreased 
mitochondrial respiration and increased activity of reductive carboxylation, hypoxic cells can maintain and in some 
cases even up-regulate oxidative glutamine metabolism, accounting for the majority of ATP synthesis through oxida-
tive phosphorylation under hypoxic conditions.
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neutralizing intracellular H+ for sustainable lac-
tate shuttle, where carbonic anhydrase helps 
solving this problem by neutralizing H+ ions and 
hydrating CO2 (Figure 2A). Using lactates se- 
creted from cancer cells to support the TCA 
cycle and fatty acid synthesis of other cancer 
cells is one important survival strategy for can-
cer cells under low glucose availability. First, 
local acidification plays promotive roles on 
tumor invasion [50], partly through increasing 
extracellular levels of VEGF-A [51, 52] and pro-
teases [53, 54]. Second, lactates can be used 
as energy substrate by adjacent stromal cells 
to support growth or produce pyruvates that 
are extruded to TME and taken up by cancer 
cells [55, 56]. 

Lipid metabolism is also metabolically repro-
grammed under acidosis (Figure 2B). Acidosis 
can rewire the fates of citrates and/or acetates 
toward acetyl-CoA production and ultimately 
fatty acid synthesis, accompanied with fatty 
acid oxidation [41, 42]. It is worth noting that 
though these two fatty acids synthesis support-
ing pathways are also stimulated in response to 
hypoxic stress [25, 26, 43, 44], fatty acid oxida-
tion is only concomitantly activated under aci-
dosis. In many cancers such as colon, oropha-
ryngeal and cervical tumors, fatty acid synthe-
sis and oxidation are simultaneously promoted 
under acidosis by down-regulating ACC2 [45]. 
Fatty acid oxidation derived acetyl-CoA can fuel 
the TCA cycle and lead to a sharp increase in 
the non-enzymatic acetylation of many pro-
teins, including electron transport chain (ETC) 
complex members [45]. However, restraining 
the activity of acetylated ETC complex I could 
limit the production of reactive oxygen species 
(ROS) that enhances the fitness of cancer cells, 
and reduced activities of acetylated ETC com-
plex I has been measured in various types of 
cancer cells adapted to acidosis [45]. 

Hypoxia is advantageous for tumor cells to sur-
vive under acidosis exposure [47]. Alteration in 
the key pHi regulating proteins under hypoxia 
provides tumor cells with survival advantages 
over normal cells [48]. The hypoxia-induced 
transcription factor HIF2α plays critical roles in 
the regulation of metabolic adaptation to acido-
sis [41, 46, 57, 58], and the activity of the bona 
fide HIF1α is generally down-regulated under 
such conditions [41, 59, 60]. Acidosis leads to 
increased activities of NAD-dependent protein 

ous acid equivalents including lactates by 
tumor cells; these lactates produced by hypoxic 
tumor cells are taken up by normoxic cancer 
cells via MCT1 and spared for tumor energy and 
biomass supply [21], resulting in metabolic cou-
pling between cancer cells located in differen-
tially oxygenated regions, and between cancer 
and normal cells. 

Hypoxia can alter glutamine flux (Figure 1B). 
Being essential to the anabolism of most cells 
[22], glutamine is oxidized through both the tri-
carboxylic acid cycle (TCA) and anabolic build-
ing blocks to support cell proliferation under 
normoxic conditions. Once exposed to hypoxia, 
glutamine flux is decreased due to reduced 
pyruvate oxidation and mitochondrial respira-
tion, glutamine oxidation dropped which can be 
mimicked in cells with dysfunctional mitochon-
dria [23-26], reductive carboxylation of gluta-
mine-derived alpha-ketoglutarate (αKG) occurs 
in response to increases in the αKG/citrate 
ratio to produce sufficient citrate for lipid syn-
thesis [27-31]. It is worth mentioning that 
hypoxic cells can maintain or even up-regulate 
glutamine oxidation in some cases to make 
cells generate ATP mostly via oxidative phos-
phorylation under hypoxic conditions, regard-
less of reduced mitochondrial respiration and 
enhanced reductive carboxylation [32-34]. 

Acidosis

Tumor acidosis has been gaining increased rec-
ognition as another major TME index. Tumor 
acidosis mainly results from lactic acid excre-
tion and CO2 hydration. H+ ions may alter the 
functionalities of various proteins by influenc-
ing the ionization of some of their amino acid 
residues [35], underlying a delicate balance 
between the intracellular pH (pHi) and the 
extracellular pH (pHe) that represents the meta-
bolic features of a given cohort of cancer cells. 

Acidosis alters the glucose metabolism of can-
cer cells. A lactate gradient is generated to 
adapt to TME acidosis, where the most hypoxic 
tumor areas has the lowest pH. While lactates 
are released through MCT4 from cancer cells 
as the end-products of glycolysis, other cancer 
cells can capture lactates via MCT1 and con-
vert them into pyruvates [21, 36-40], resulting 
in metabolic symbiosis [23, 41-49]. The fact 
that H+ ions need to be co-transported with lac-
tates for inward flux boosts the requirement on 
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deacetylase sirtuin-1 (SIRT1) and -6 (SIRT6) 
which differentially affect the activities of both 
HIFs [52, 61, 62]. While deacetylation of lysine 
residues in the amino-terminal transactivation 
domain of HIF2α is associated with its incr- 
eased regulatory activities [62], similar deacet-
ylation in HIF1α represses its transcriptional 
functionalities [63]. In cancer cells of the cer-
vix, colon and pharynx, Up-regulated HIF2α and 
down-regulated HIF1α could drive the switch 
from glucose to glutamine metabolism on aci-
dosis exposure via elevating the expression of 
the glutamine transporters ASCT2 and GLS1 
(regulated by HIF2α) [41] and reducing the 
expression of the glucose transporters GLUT1 
and MCT4 (modulated by HIF1α).

Various types of pH sensors function in sensing 
extracellular acidosis and transducing it into 
intracellular reprogramming [64]. G protein-

coupled receptors (GPCRs) such as GPR4, 
GPR65 and GPR68 could be activated if the 
histidine residues of their extracellular domains 
were protonated [65], and transduce signals 
via activating various pathways such as phos-
pholipase C and adenylyl cyclase through the 
use of different G proteins [66] (Figure 2B). 
Non-GPCRs such as transient receptor poten-
tial cation channel subfamily V member 1 
(TRPV1) and acid-sensing ion channel 1 (ASIC1) 
can also sense extracellular acidosis [66]. 
Calcium influx, under acidosis exposure, direct-
ly or indirectly opens these channels that acti-
vates NF-κB signaling in, e.g., breast [67] and 
prostate [68] cancers. Alterations in pH can 
also be detected through the protonation of 
various signalling proteins [35, 69]. For ins- 
tance, the R337H substitution in the tetramer-
ization domain of TP53, a famous tumor sup-
pressor, under increased pHi can result in DNA 

Figure 2. Tumor acidosis is a major tumor microenvironment index. Acidosis alters (A) the glucose and (B) lipid 
metabolism of cancer cells. In (A), acidosis adaption occurs, i.e., generating a lactate gradient, with the highest 
concentration being in the most hypoxic tumor areas, following metabolic symbiosis, i.e., while lactates are released 
through MCT4 from cancer cells as the end-products of glycolysis, other cancer cells can capture lactates via MCT1 
and convert them into pyruvates. In (B), both fatty acid synthesis and fatty oxidation are enhanced under acidosis, 
where fatty acid synthesis is mediated via the production of acetyl-CoA from citrates and acetates. 
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binding inhibition [70]. Unveiling various types 
of pH sensors and altered signaling pathways 
in response to their activation can significantly 
advance our understandings towards tumor 
acidosis and avail in any oncotherapeutic de- 
sign targeting tumor acidosis and the associat-
ed metabolic reprogramming.

Hypo-nutrition

As nutrient supply cannot typically support the 
growth of tumor cells due to the rapid expan-
sion of tumors and relatively poor angiogene-
sis, cells residing in the inner part of tumors 
typically suffer from hypo-nutrition. Warburg 
effect, the observation that cancer cells favor 
anaerobic glycolysis rather than the more ener-
gy-efficient aerobic glycolysis suggests that 
tumor cells require enhanced nutrient supply to 
support their increased metabolism and bio-
synthesis than normal cells. To survive under 
hypo-nutrition, cancer cells show extreme met-
abolic flexibilities. It was recently reported both 
in vitro and in vivo that, glucose deprivation 
imposes a selective pressure for KRAS muta-
tions in colon cancer cells [71]. Similarly, can-
cer cells are capable of rewiring their metabo-
lism towards the use of alternative nutrients to 

compensate for the loss of, e.g., glucose [32, 
72-75].

Glutamine can complement the synthesis of 
acetyl-CoA as an alternative of glucose [76], 
which is crucial for cell survival on lack of glu-
cose (Figure 3). For instance, converting gluta-
mine to lactate can produce sufficient NADPH 
that is needed for the synthesis of fatty acids 
[39]. Lymphoma cells with Myc over-expression 
can reroute glutamine carbon to produce ace-
tyl-CoA once deprived of glucose [32], and such 
metabolic reprogramming can also be pro-
duced by silencing the mitochondrial pyruvate 
carrier (MPC) [77, 78]. Therefore, metabolic vul-
nerability as such is required and glutamine oxi-
dation is indispensable for tumor cells to sur-
vive if MPC was impaired [78]. 

Maintaining an asparagine pool provides sur-
vival advantages to tumor cells when deprived 
of glutamine. For example, citrate synthase 
maintains the functionalities of the TCA cycle by 
condensing glutamine-derived OAA with acetyl-
CoA under normal conditions [76], which was 
found to be lost once deprived of glutamine 
[79]; further, shunting OAA towards asparagine 
rather than citrate was shown to be favorable 

Figure 3. Hypo-nutrition is characterized in tumor microenvironment. Tumors (A) use glutamine to fuel alternative 
forms of metabolism and (B) activate autophagic degradation of macromolecules under hypo-nutrition. In (A), glu-
cose deprivation in cancer cells stimulates a pathway whereby glutamine carbon is re-routed to acetyl-CoA. In (B), 
autophagy functions in degrading damaged organelles and their macromolecular components to provide recycled 
small molecule nutrients to feed intermediary metabolism under hypo-nutrition, and functions to eliminate defective 
mitochondria, thereby reducing ROS accumulation and improving cellular fitness.
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associated macrophages (TAMs) and mono-
cytes recruited from blood vessels, where TAMs 
have two phenotypes, i.e., M1 and M2 macro-
phages which are pro-inflammatory and anti-
inflammatory, respectively [94]. M2 macro-
phages are polarized by factors derived from 
tumors to sustain tumor proliferation and en- 
able immunosuppression [95-97]. Cancer-as- 
sociated fibroblasts (CAFs) are originated from 
normal fibroblasts with acquired characteris-
tics similar to myofibroblasts. Both TAMs and 
CAFs are abundant in a TME and play crucial 
roles in tumor initiation, progression, evasion, 
and chemotherapeutic resistance [98]. 

Tumor-associated inflammation is a chronic 
process that fosters tumor progression [99] 
(Figure 4). During tumorigenesis, cancer cells, 
TAMs, CAFs or other innate immune or activat-
ed resident cells produce a variety of chemo-
kines and cytokines such as interleukins and 
interferons in response to signals originated 
from tumor cells. Cytokines are major players in 
chronic inflammation, and are indispensible 
throughout the whole process of cancer initia-
tion and progression mediated by inflammation 
[100]. For example, cytokines can activate and 
constitute the so-called cytokine storm (a type 
of systemic inflammatory response which can 
be caused by infection or adverse effect of 
some immunotherapies) by recruiting massive 
amounts of additional bone marrow-derived 
innate immune cells [101]; and this prolonged 
reaction favors immunosuppression via accu-
mulating myeloid suppressive cells and inhibit-
ing effector immune cells, and promotes tumor 
cell proliferation as well as angiogenesis [102]. 
With our increased knowledge on signalings 
involved in tumor inflammation and its cross-
talk with TME, we will be able to create more 
effective immunotherapies with little side 
effects by concomitantly modulating TME [103, 
104].

Cold atmospheric plasma targets tumor micro-
environment indexes

CAP is a near room temperature ionized gas 
comprised of various reactive species, such as 
charged particles, neutral gas molecules, UV 
radiation, localized electric, reactive species 
and so on [105-107]. Dominant radical sources 
are reactive oxygen and nitrogen species 
(RONS) formed from oxygen and nitrogen mol-
ecules [105]. These complicated substances 

for cell survival [79]. On the other hand, aspara-
gine synthetase expression is positively associ-
ated with poor prognosis in cancers such as 
glioma and neuroblastoma [79], providing an in 
vivo evidence of our notion that an asparagine 
pool favors cancer cell survival. 

Macropinocytosis adds further metabolic flexi-
bilities to cancer cells under glutamine depriva-
tion. Macropinocytosis enables cells to scav-
enge fluid and macromolecules, where extra-
cellular proteins were important cargoes cap-
tured and internalized in macropinosomes, and 
these proteins provide starved cells with mate-
rials to generate pools of glutamine and other 
amino acids required for survival [80]. It was 
reported that glutamine deprivation could stim-
ulate macropinocytosis in cancer cells express-
ing Ras [80]. Therefore, macropinocytosis pro-
vides another mode of metabolic flexibility for 
cancer cells to overcome hypo-nutrition.

Cancer cells can recycle molecule nutrients by 
degrading macromolecules through autophagy 
under hypo-nutrition [81-84] (Figure 3). During 
autophagy, damaged organelles are degraded 
and recycled to feed intermediary metabolism 
[83, 85, 86]. Autophagy can also reduce cellu-
lar redox level by eliminating defective mito-
chondria, leading to improved cellular fitness. 
Autophagy was shown to be required in Kras-
driven pancreatic tumors [87] and BRafV600E 
lung tumors [88] for maximal growth, and both 
autophagy and normal mitochondrial function 
were needed in forming aggressive Kras-driven 
carcinomas [89]. Therefore, autophagy pro-
vides tumor survival advantages through extra-
cellular nutrient supply and intracellular nutri-
ent recycle.

Inflammation

Inflammation is a defensive response against 
foreign invasion or in response to physical and 
chemical hazards [90, 91]. A clear evidence 
between inflammation and tumorigenesis was 
established in the last decade [92], and tumor-
associated inflammation was implicated as a 
enabling cancer hallmark in 2011 [93].

Tumor-associated inflammation is character-
ized by the presence of a large amount of leuko-
cytes in tumor tissues and high expression of 
inflammatory mediators in TME (Figure 4). Ma- 
crophages in the TME are composed of tumor-
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lead to numerous interactions between CAP 
and cells or tissues [107, 108], and triggers 
complex chemical kinetics. RONS have been 
implicated in tumor microenvironment modula-
tion [109]. CAP has been proposed as a promis-
ing oncotherapeutic approach [106, 110, 111], 
which largely relies on its ability in tumor micro-
environment modulation apart from its other 
functionalities controlling cancer progression 
(Figure 5).

Cold atmospheric plasma reduces hypoxia

Hypoxia is a major cause of cancer cell resis-
tance to some treatment modalities such as 
radiotherapy. CAP can reduce hypoxia, where a 
rapid fourfold increase in tissue oxygen partial 
pressure (pO2) was observed in mouse skin 
upon plasma treatment [112].

As oxygen is the terminal electron acceptor, 
electrons leak out from the mitochondrial elec-
tron transport chain under hypoxia [9, 10], 
which creates a redox stress in tumor mito-
chondria, CAP can create temporal openings of 
the cell membrane, usually over a microsecond 
time scale, to allow for the transportation of 
RONS into cells [113, 114]. Once entering cells, 
RONS increases cellular redox level that leads 
to selective death of cancer cells as the base-
line redox level of malignant cells is higher than 
that of normal cells and cells undergo apopto-
sis when cellular redox level exceeds a certain 
threshold [115-118]. Redox change is quite 
often accompanied with signalings tilting apop-
tosis. CAP can induce ATM expression that 
phosphorylates p53 [119] and p73 [120], 
where phosphorylated p53 and p73 can induce 
mitochondria mediated apoptosis through acti-

Figure 4. Tumor associated inflammation is an essential mark of tumor microenvironment. Tumor-associated in-
flammation is characterized by a high number of leukocytes in tumor tissues, and high expression of inflammatory 
mediators in TME, where tumor-associated macrophages (TAMs) have two phenotypes, i.e., M1 macrophages (pro-
inflammatory) and M2 macrophages (anti-inflammatory). During tumor-associated inflammation, innate immune 
cells such as TAMs and activated resident cells such as CAFs produce a variety of chemokines and cytokines in 
response to the danger signals originated from tumor cells. 
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vating the expression of pro-apoptotic factors 
such as Bax, PUMA, and NOXA [120, 121].

Cold atmospheric plasma increases intracel-
lular acidosis

Reactive species generated by CAP at the gas-
water interface triggers intricate reactions with-
in the bio-system that often lead to acidifica-
tion of the culture medium and ultimately in- 
creased intracellular acidosis. For example, 
with the increased dose of CAP, the pH of the 
cell culture medium might drop from 8.5 to 5.5 
[122]. An alkaline pHi was shown necessary for 
mechanisms involved in driving or facilitating 
cellular transformation and proliferation [123-
125], as many intracellular metabolic enzymes, 
such as phosphofructokinase (the rate-limiting 
step of glycolysis), have alkaline pH optima 
[123]. As elevated pHi is associated with both 

cell transformation and cell proliferation [126], 
increased intracellular acidosis, though does 
not necessarily lead to cell apoptosis [122, 
127, 128], may arrest cell growth. 

Cold atmospheric plasma disrupts tumor cell 
metabolism

Cancer cells adopt aerobic glycolysis to support 
their excess needs on biomass supply required 
for rapid growth [129]. Through whole metabo-
lism profiling, CAP was found to suppress beta-
alanine metabolism in myeloma cells [130]. 
Beta-alanine is crucial for acetyl-CoA synthesis 
that plays critical roles in TCA cycle and bio-
mass production such as the synthesis of fatty 
acids, cholesterols and acetylcholines [112, 
131]. Therefore, CAP can disrupt cellular me- 
tabolism favorable for tumor cell growth thr- 
ough, e.g., suppressing biomass production. 

Figure 5. Cold atmospheric plasma composition and its effects on modulating key tumor microenvironment indexes. 
A. CAP is a cocktail therapy with multi-modality nature. It is composed of, e.g., free radicals, photons, ions and 
elective fields. B. CAP reduces hypoxia, increases intracellular acidosis, disrupts tumor metabolism and stimulates 
immune response.
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Cold atmospheric plasma stimulates immune 
response

Immunogenic cell death (ICD) can induce an 
effective antitumor immune response through 
activation of dendritic cells and consequent 
activation of specific T cell response [132]. ICD 
is accompanied by changes in the influx of 
many signal molecules on the surface of cell 
membrane, and the synthesis and release of 
immune-effector factors. These substances 
are called damage-associated molecular pat-
terns (DAMPs), including early cell death calre-
ticulin (CRT), release of heat-shock proteins, 
late cell death ATP and HMGB1 [133]. CRT is a 
main cause of ICD, which is capable of emitting 
‘eat me’ signaling to mediate the engulfment of 
tumor cells by macrophages and dendritic cells 
[134] and recruiting immune cells to the tumor 
immune site to promote inflammation. ATP and 
HMGB1 are important signaling molecules of 
DAMPs, where extracellular ATP promotes se- 
cretion of key pro-inflammatory cytokines, acti-
vates macrophages that play an important role 
in anti-tumor effects. CAP can significantly 
enhance the secretion of CRT, ATP and HMGB1 
in tumor tissues, inducing ICD [135, 136].

Macrophages are crucial mediators of cellular 
inflammation [135]. M1 macrophages are pro-
inflammatory, including secrete pro-inflamma-
tory cytokines and cytotoxic substances, and 
M2 macrophages are immunosuppressive and 
release anti-inflammatory cytokines [134]. Tu- 
mor cells can polarize macrophages into M2 to 
support tumor growth, and CAP can modulate 
this switch in reverse [136]. It was demonstrat-
ed that the expression of CD206 (marker of 
M2) decreased remarkably while iNOs (Marker 
of M1) significantly increased on CAP treatment 
[135, 136]. CAP has also been shown to upreg-
ulate the influx of INF-γ in cell culture superna-
tants derived from splenocytes [133], which 
play a key role in activating M1 macrophages. 
Altogether, M1 macrophages were enhanced to 
induce antitumor responses including secre-
tion of cytokines such as TNFα, IL-1 and IL-6, kill 
tumor cells, and provoke inflammation in the 
tumor microenvironment upon CAP treatment. 
Other immune cells including monocytes and 
neutrophils have also been detected increased 
in CAP activated medium that lead to enhanced 
immune response against tumor cells [129].

Endoplasmic reticulum (ER) stress is a protec-
tive stress response of eukaryotic cells that 

reduces abnormal aggregation of intracellular 
proteins by activating unfolded protein res- 
ponse (UPR) [137]. UPR is coupled with inflam-
matory signaling pathways through various 
mechanisms including RONS, NFkB, and re- 
lease of calcium ions in ER. ATF4 and STC2 are 
typical markers of ER stress, and CAP was 
shown capable of increasing ATF4 and STC2 
generation that triggers inflammatory signaling 
[111].

Conclusion

Given the multi-modality nature, CAP has dem-
onstrated its unique properties in TME modula-
tion including, e.g., reducing hypoxia, increas-
ing intracellular acidosis, disrupting tumor cell 
metabolism and stimulating immune response. 
Importantly, CAP can selectively target cancer 
cells [130, 138-140] with its safety being sys-
tematically validated by several studies [110, 
140-143]. Thus, CAP represents a promising 
onco-therapeutic approach, alone or in combi-
nation with existing treatment modalities to 
achieve improved efficacies with little side 
effects. 
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