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Abstract

Increases in the severity and frequency of large fires necessitate improved understanding of the 

influence of smoke on air quality and public health. The objective of this study is to estimate the 

effect of smoke from fires across the continental U.S. on regional air quality over an extended 

period of time. We use 2006-2013 data on ozone (O3), fine particulate matter (PM2.5), and PM2.5 

constituents from environmental monitoring sites to characterize regional air quality and satellite 

imagery data to identify plumes. Unhealthy levels of O3 and PM2.5 were respectively 3.3 and 2.5 

times more likely to occur on plume days than on clear days. With a two-stage approach, we 

estimated the effect of plumes on pollutants, controlling for season, temperature and within-site 

and between-site variability. Plumes were associated with an average increase of 2.6 ppb (2.5, 2.7) 

in O3 and 2.9 μg/m3 (2.8, 3.0) in PM2.5 nationwide, but the magnitude of effects varied by 

location. The largest impacts were observed across the southeast. High impacts on O3 were also 

observed in densely populated urban areas at large distance from the fires throughout the 

southeast. Fire smoke substantially affects regional air quality and accounts for a disproportionate 

number of unhealthy days.
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INTRODUCTION

Exposure to particles and gasses found in wildfire smoke are linked to adverse health 

outcomes, ranging from worsening of health symptoms, to respiratory and cardiovascular 

hospitalizations and even mortality (1-6). Since the 1970’s, the number of large wildfires 

(1000+ acres, ~400+ he) in the U.S. has doubled, while the number of very large wildfires 
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(10,000+ acres, ~4,000+he) has increased fivefold (7). These trends are exacerbated by 

prolonged droughts, increasing spring and summer temperatures, earlier snowmelt, 

population growth, and land-use practices (8-10). Wildfire smoke plumes are transported 

long distances, degrading air quality as well as contributing to public health burdens. 

However, the impact of long-range transport of plumes on air quality is not characterized on 

the national scale and over an extended period of time. Trends in recent large wildfire 

activities necessitate improved understanding about the impact of smoke plumes on air 

quality to facilitate the development of health risk communication tools.

In this manuscript, we examine the utility of the National Oceanic and Atmospheric 

Administration (NOAA) Hazard Mapping System (HMS) to characterize the impact of 

wildfire smoke plumes on regional air quality over an eight-year period, 2006-2013. We use 

the HMS to determine geographical extent of smoke plumes, and concentrations of ozone 

(O3), fine particulate matter (PM2.5), and species of PM2.5 measured at monitoring sites 

across the continental U.S to characterize regional air quality. HMS smoke plumes are drawn 

daily using data from multiple environmental satellites and are one of the few available tools 

used to determine regions impacted by smoke in real time across the U.S. We summarize the 

frequency of smoke plumes in the U.S., assess plume impacts on the Air Quality Index 

(AQI), and quantify the average effect of HMS smoke plumes on regional air pollution.

We estimate absolute and relative change in air pollution concentrations with a two-stage 

approach that takes into account both the spatially-correlated nature of smoke plumes and 

monitoring data. In the first stage, we estimate a monitor-specific plume day effect, 

quantifying the change in pollutant concentrations on days impacted by smoke plumes while 

accounting for confounding effects of season and temperature. In the second stage, we 

combine monitor-specific plume day effects with a spatial hierarchical model and estimate a 

pooled, nationwide average effect (11-13). The results of this analysis include site-by-site 

and overall estimates of the change in concentrations for O3, PM2.5 and the constituents of 

PM2.5, organic and elemental carbon (OC and EC), as well as a characterization of the 

smoke impacts on the number of unhealthy air quality days at each monitoring site in the 

study.

DATA & METHODS

Smoke Plume Data

We obtained shape files of smoke plumes that define the geographic extent of smoke from 

the NOAA Hazard Mapping System (HMS). The HMS incorporates data from seven NOAA 

and NASA environmental satellites and indicates the extent of smoke as seen by animated 

visible band satellite imagery. Nearly all of the smoke plumes in this study were detected 

and generated using the two NOAA Geostationary Operational Environmental Satellites 

(GOES), GOES-East and GOES-West.

Air Pollution Data

We obtain O3, total PM2.5 and PM2.5 constituent measurements for 2006 to 2013 from the 

U.S. Environmental Protection Agency’s (EPA) Air Quality System database. We use daily 
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average 8-hour O3 measurements, daily average concentrations of PM2.5 measured by 

Federal Reference Method (FRM, PM2.5
FRM) and daily average of PM2.5 species from the 

Interagency Monitoring of PROtected Visual Environments (IMPROVE, PM2.5
IMP) network 

(14,15). The species of PM2.5 included sulfate, nitrate, potassium, mercury, elemental 

carbon (EC) and organic carbon (OC). In this study, we only consider EC and OC. Ozone 

concentrations were measured daily, while total PM2.5
FRM, PM2.5

IMP and speciated 

PM2.5
IMP readings are typically collected every third or sixth day. We did not include gases 

associated with wildfires (carbon monoxide and carbon dioxide) due to the sparseness of 

these monitoring networks. We used daily temperature recorded at the nearest NOAA 

stations within 50 km of the O3 and PM2.5
FRM monitoring sites (16,17). For IMPROVE 

sites, we used mean daily temperature recorded at the monitoring sites.

We denote ‘plume days’ as days on which visible smoke plumes are detected in the vertical 

column above a monitoring site. The geographical distribution of environmental monitors 

and HMS smoke plumes on June 14th, 2008 is displayed in Figure 1. Multiple smoke plumes 

observed by geostationary and orbiting satellites on June 14th, 2008 are overlaid in gray-

shaded polygons with darker regions implying multiple plumes at the same locations.

Air Quality Index

To quantify the impact of smoke plume days on unhealthy air quality, we used Air Quality 

Index (AQI) values for O3 and PM2.5
FRM. AQI is a public health tool published daily by the 

EPA to inform the public about air quality and associated health risks (18). For each 

pollutant, AQI classifies air quality into one of six health risk categories (“Good,” 

“Moderate,” “Unhealthy for Sensitive Groups,” “Unhealthy,” “Very Unhealthy,” and 

“Hazardous”) and codes each with a distinct color (green, yellow, orange, red, purple, and 

maroon). For O3, the AQI values consistent with the 2008 O3 standard (https://

www.epa.gov/criteria-air-pollutants/naaqs-table) were downloaded with the monitoring data. 

AQI values for daily PM2.5
FRM were calculated from the data (19). We did not identify any 

Hazardous “Maroon” days. We summarize the percent of days with smoke-plumes for each 

AQI category as well as the odds ratio of each color code observed on smoke-plume days 

versus no-smoke-plume days in Table 1.

Methods

We examined the impact of smoke on regional air pollution with a two-stage analysis for 

each pollutant (O3, PM2.5
FRM, PM2.5

IMP, EC, OC). In the first stage, we estimated the 

plume effect on pollutant concentrations at each monitoring site in the study separately and 

defined standard errors at each site. In the second stage, site-specific estimates are pooled to 

estimate an overall plume effect, taking spatial variability into account (11-13).

In the first stage, we use a generalized additive model to estimate a plume effect at each site, 

accounting for seasonality and temperature,

Ys, t = αs + βsplumes, t + hs(t) + gs(T t) + ϵs, t . (1)
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The response, Ys,t, is daily air pollutant concentrations at a monitoring site s on day t. The 

intercept term, αs, denotes background pollutant concentrations at site s. The variable 

plumes,t is an indicator of HMS-detected smoke plumes in the vertical column of monitor s 
on day t. The plumes,t regression coefficient or ‘plume effect’, βs, is the expected change in 

pollutant concentration at site s on days with plumes, adjusted for seasonality and 

meteorological conditions. Seasonal trends were modeled with the smooth function, h, using 

natural splines with four degrees of freedom (df) per year or 32 df in total. The effects of 

daily temperature (Tt) were accounted for with the smooth function, g, using natural splines 

with two df. We compared several choices and found that two df minimized BIC (Swartz 

1978). We assumed the errors, ϵs,t, are normally distributed with zero mean and a constant 

variance for each site.

The first stage analysis therefore provides us with the site-specific estimate of the plume 

effect, βs , and associated standard errors, νs. Controlling for seasonality and temperature in 

this stage ensures that the effect of plume presence is not confounded with the (smoothly 

varying) seasonal effect or any nonlinear changes due to effects of temperature, which are 

typically associated with high O3 values.

In the second stage, we pool site-specific plume effects to estimate the overall effect, μ, via a 

2-level hierarchical model:

βs = βs + vses,
βs = μ + εs .

In level 1, we have stage one estimates of the plume effect, βs , as the response, which are 

centered around true but latent plume effect, βs , with error νses, where νs are standard 

errors of the plume effect from stage one and the random errors, es, are Gaussian. In level 2, 

we model the true plume effects with overall mean μ where the random error term, εs, 

captures variation in the true effect.

For each pollutant, we considered two models (spatial and non-spatial) by specifying 

distribution of error terms (es and εs) capturing different scales of spatial dependence and 

giving us four possible model formulations. Namely, in the non-spatial models, es and εs are 

independent between sites (indexed by s), whereas in the spatial models, we specify spatial 

correlation among the within-site errors (es) and spatial variation among the true unobserved 

plume effects (εs). The first form of spatial dependence captures the spatial variability of the 

plume effect that may be introduced as spatially correlated measurement error, such as the 

error induced by smoke plumes covering multiple sites simultaneously. The second form of 

spatial variability captures the spatial heterogeneity of true plume effects. The true plume 

effects may exhibit variations because the properties of burning vegetation, climate, and 

other factors vary regionally. Correlation between the errors at any two locations decays 

exponentially as the distance between them increases. Parameters of the decay function were 

estimated from the data. Further details of the model can be found in Appendix A.
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In the results, we report stage two estimates of the plume effects, βs , for O3 (ppb) and for 

PM2.5
FRM (μg/m3) and comment on the spatial patterns displayed. A positive estimate of βs

is evidence for increased pollutant concentrations during plume episodes as compared to 

clear days. A negative estimate indicates the converse. In Table 2, we record the model of 

best fit for all four pollutants using BIC and report an estimate of the overall mean, μ. 

Viewing stage two as a meta-analysis of smoke plume impacts on all sites in the US, the 

overall mean estimate serves as summary of impacts. We also present these estimates in 

terms of relative change, procured by implementing the analysis on log-transformed 

pollutant concentrations.

RESULTS

Distribution of Days by AQI on Smoke Plume vs. Clear Days

The frequency of each AQI code on both clear and smoke plume days is given in Table 1. At 

O3 monitoring sites, “Good” air quality days (green) occurred most commonly; they were 

observed on 89.5% of clear days and 70.3% of plume days. “Very Unhealthy” days (purple) 

occurred least commonly; they were observed on only 0.0057% of clear days and 0.0277% 

of plume days. For PM2.5
FRM, “Good” days were also the most common, accounting for 

70.6% of clear days and 46.4% of plume days. Incidence of “Very Unhealthy” days at the 

PM2.5
FRM monitoring sites was low for both clear (0.0004%) and plume days (0.0061%).

Plume days accounted for a larger percentage of unhealthy days than healthy days (Table 1). 

For O3, only 6.1% of “Good” days were observed on plume days whereas 18% of 

“Moderate” air quality days (yellow), 25.8% of “Unhealthy for Sensitive Groups” days 

(orange), 30.1% of “Unhealthy” days (red), and 28.8% of “Very Unhealthy” days (purple) 

were observed on days with plumes. The odds of observing yellow, orange, red, and purple 

coded days were, respectively, 3.1, 4.3, 5.2, and 4.8 times higher on plume days than on 

clear days.

Similarly, for PM2.5
FRM, plumes were observed on 4.2% of “Good” days, 10.6% of 

“Moderate” days, 15.8% of “Unhealthy for Sensitive Groups” days, 16.5% of “Unhealthy” 

days, and 50% of “Very Unhealthy” days. We did not identify any “Hazardous” days 

(maroon). The odds of observing yellow, orange, red and purple coded days were, 

respectively, 2.7, 2.9, 3.0, and 15.0 times higher on plume days than on clear days.

O3 and PM2.5
FRM

We summarized daily smoke plume activity from 2006 to 2013 at environmental monitors 

located within the continental U.S. Figure 2 provides the distribution of days with smoke 

plumes across O3 monitoring sites (panel a) and PM2.5
FRM monitoring sites (panel b). 

Monitors are color coded by quartiles of the daily smoke plume frequency distribution. The 

median percent of days with smoke plumes at O3 sites was 6.85% and 5.4% at the FRM sites 

(O3: 25th = 4.5%, 50th = 6.85%, 75th = 11%, 100th = 36.3%; PM2.5: 25th = 3.7%, 50th = 

5.4%, 75th = 8.3%, 100th = 30.1%). Both O3 and FRM monitoring stations in the Great 

Lakes region, Central and Northwest U.S., and Northern California had the highest 

proportion of days of HMS-detected plume cover. Ozone and PM2.5
FRM monitoring stations 
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in the Northeast, Southwest and Florida peninsula had the lowest proportion of days with 

plume coverage. The spatial distribution of plume coverage across the two monitoring 

networks largely agreed despite differences in the temporal frequency of data collection for 

each pollutant.

The stage-two plume effects on O3 and PM2.5
FRM exhibited strong spatial patterns across 

the continental U.S. Among the four stage-two models, we found the one with spatial 

correlation among site-specific error terms and spatial variation in the true unobserved 

plume effect best fit both pollutants. In Figure 3, we present plume effect estimates from the 

model of best fit for O3 (panel a) and PM2.5
FRM 5 (panel b) by quartiles. For O3 we 

estimated the following absolute (relative) change: 25th = 1.66 ppb (6.5%), 50th = 2.56 ppb 

(9.07%), 75th = 3.69 ppb (12.3%), 100th = 7.45 ppb (24.7%); and for PM2.5: 25th = 2.35 

μg/m3 (22.3%), 50th = 2.9 μg/m3 (26.1%), 75th = 3.45 μg/m3 (34.7%), 100th = 8.48 μg/m3 

(78.4%).

The plume effect on O3 was the largest in the Southeast, scattered sites in the Northeast 

(Connecticut, Massachusetts, and Maine) and West Coasts, and around St Louis, Missouri. 

The lowest plume effects on O3 were found in the Southwest and West. For PM2.5
FRM 

concentrations, smoke plumes had the highest impact in the Southeastern, Western, and 

Northwestern regions. The lowest plume effects on PM2.5
FRM were found in the Great Lakes 

Region (Minnesota, Michigan and Wisconsin) and parts of South West. Nationally, the 

average impact of fire plumes on O3 and PM2.5
FRM was estimated at 2.6 (2.5, 2.7) ppb and 

2.9(2.8, 3.0) μg/m3, respectively, as summarized in Table 2 where we also present estimates 

of relative change.

Speciated PM2.5
IMP from IMPROVE Network

Concentrations of PM2.5
IMP components measured at IMPROVE sites also increased during 

plume events. We observed a 0.09 μg/m3 increase for EC and a 0.7 μg/m3 increase for OC. 

The model of best fit for EC was the fully non-spatial model and the model of best fit for OC 

was the fully spatial model.

DISCUSSION

Our analysis demonstrated impacts of smoke plumes on regional daily air quality from 2006 

through 2013. Smoke-plume days accounted for a disproportionate number of days with 

elevated AQI levels, indicating that moderate increases in regional air pollution due to large 

fires and long distance transport of smoke can tip the air quality to unhealthy levels. 

Unsurprisingly, due to use of visible imagery of smoke, PM2.5 concentrations increased 

more than O3 in relative terms (33.1% vs 11.1%). However, a striking finding here was that 

smoke plumes accounted for a disproportionate number of unhealthy O3 days compared to 

unhealthy PM2.5 days. Namely, while only 6.3% of PM2.5
FRM monitoring days and 7.7% of 

O3 monitoring days had plumes, these days accounted for 16% of days categorized as 

unhealthy (code orange, red and purple combined) for PM2.5
FRM and 27% of unhealthy days 

for O3 (code orange, red and purple combined). Unhealthy days for O3 and PM2.5
FRM were 

3.3 and 2.5 times more likely to occur on plume days than on non-plume days, respectively. 

With a two-stage statistical model, we accounted for spatial heterogeneity of plume effects 

Larsen et al. Page 6

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 June 10.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



and determined that O3 concentrations on days with visible plumes were on average 2.6 ppb 

or 11.1% higher than on the clear days, and PM2.5
FRM concentrations were on average 

higher by 2.9 μg/m3 or 33.1%. Organic and elemental carbon concentrations were elevated 

as well (OC: 0.7 μg/m3 or 30.6%; EC: 0.09 μg/m3 or 21.3%).

The results of our analysis suggest consistent increase in concentrations of both PM2.5 and 

O3 across all sites and in some regions, concentrations of both pollutants increased (e.g. 

Southeast) on smoke days. Health impacts studies of wildfire exposures do not typically 

consider multi-pollutant exposures or the impacts of secondary pollutants formed downwind 

such as O3. However, there is strong scientific evidence implicating both pollutants in 

respiratory and cardiovascular health risks (20,21). Both epidemiologic and clinical research 

suggests that the two pollutants do not share the same biological mechanism leading to 

adverse health outcome and may occur at different temporal scales suggesting that the 

effects of multi-pollutant exposures should be considered to adequately protect public health 

(22). Some studies have previously reported that the joint effect of these two pollutants on 

health is lower than a combination of the two taken together but larger than either alone 

(23,24) while others reported additive effects (25-27). Controlled exposure studies in 

humans and animals have recently demonstrated that combined gaseous (with O3 in 

particular) and particle exposure (e.g., diesel) have a synergistic impact on both the 

respiratory and cardiovascular health risk (28,29). Therefore, frequent and simultaneously 

high exposures to both pollutants during fire episodes may require additional health risk 

messages to adequately protect health in susceptible populations.

We also observed that regional plume transport increased O3 concentrations over several 

densely populated urban areas far removed from large fires; the Massachusetts and 

Connecticut areas, the entire Southeast, and the Illinois, Indiana, and Kansas areas. 

Enhanced O3 production over urban areas has previously been reported in case studies and 

hypothesized to be due to fire-related VOC’s being transported into NOx-rich urban areas 

(30-33). Using similar data as in our analysis, an impact of smoke-plume days on O3 

concentration in the urban areas along the Eastern seaboard and Southeast was also noted by 

Brey and Fischer (34). The authors found a larger increase of up to 35 ppb in comparison to 

our analysis 3.69-7.45 ppb (Figure 3a) however they defined plume days differently. 

Enhanced O3 production in urban areas is a concern because of the population size 

potentially impacted and because air pollution levels could be already elevated due to local 

and mobile sources.

Despite our study’s consistent and robust estimates of air quality changes in the presence of 

HMS smoke plumes we note several limitations. First, HMS smoke plumes are drawn by an 

analyst using visible satellite imagery and represent only smoke plumes that were seen in the 

images. The use of visible imagery is problematic because smoke cannot be visibly detected 

at night and clouds can hinder or completely obscure smoke plumes limiting the number of 

smoke plumes drawn; thus, the number of plumes drawn can be considered conservative. 

Additionally, the total areal coverage represented by all of the plumes is also likely to be 

conservative because the plumes are typically drawn once or twice per day and the total area 

covered represents a period of a couple of hours.

Larsen et al. Page 7

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 June 10.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



In this study, we utilize the geographical extent of smoke plumes to characterize impacts of 

fire on unhealthy air quality across continental U.S. With the introduction of new generation 

satellites, such as GOES-16, which distribute data in five minute increments and in near real 

time, satellite-based imagery may have the potential for wider use, including public health 

messaging of risk during wildfire episodes. Satellite imagery is by far the easiest tool to use 

for the general public and public health professionals, and is readily accessible at NOAA, 

AirNow and the websites of a number of state-level departments of environmental quality. 

Additionally, satellite imagery is particularly useful for visualizing and capturing smoke 

impacts coming from distant fires. Using satellite data for public health messaging may, 

however, demand equally important research on the estimation of plume density. While 

HMS utilizes an atmospheric model to estimate PM2.5 concentrations and classifies smoke 

into light (range 0-10 μg/m3), medium (range 10.5-21.5 μg/m3) and dense (range 22+ 

μg/m3) levels for most of the years analyzed here, it does not estimate the PM2.5 and O3 

concentrations from anthropogenic sources. Additionally, we only observed a small 

proportion of dense plumes across all monitoring systems (O3: 0.2%; FRM: 0.1%; 

IMPROVE: 0.1%), resulting in what would be a prohibitively diminished number of 

monitors to analyze. A further limitation, our analysis relied on a determination of whether a 

plume is detected in the vertical column above the monitoring site; it did not account for the 

height of the plumes. Estimating how the planetary boundary height impacts the probability 

of unhealthy air quality at the regional level, particularly when smoke is coming from distant 

fires, may improve specificity of public health messaging where monitors are not available. 

Public health messaging may also require incorporating data on planetary boundary height 

in addition to plume presence. The results of our analysis support the need of ground-to-

model data validation for such purposes (35).

As noted earlier, a large wildfire in the Western U.S., Canada, and Alaska can produce large 

smoke plumes that travel thousands of kilometers from the source fire and remain aloft for 

many days or over a week. This typically results in very large plumes that are lofted well 

above the surface, perhaps as high as 20,000-30,000 ft (~6,000-9,000m). Often, as the 

smoke drifts to the Eastern and Southeastern U.S., it becomes more diffuse and mixes with 

regional haze pollution. It can be very difficult for an analyst to distinguish between smoke 

and haze pollution or even to know when the smoke may have completely dissipated, 

bringing uncertainty to the actual spatial extent of the smoke. Generally speaking, the 

greater the distance travelled, the lighter the winds and the longer the time since the smoke 

was generated, the more difficult it is to distinguish between smoke and haze pollution. In 

our analysis, undetected smoke plumes or plumes that are aloft and not visible could have 

resulted in lower estimated effect sizes. However, our statistical model is robust, combining 

uncertainty within and between sites, so we expect the ramifications of missing plume data 

to be small or negligible.

We used HMS to capture the long-range transport of visible plumes over an extended spatial 

and temporal domain and regional air quality data from the environmental monitoring sites. 

The plume effect therefore is representative of the impacts on regional air quality and not on 

air pollutant concentrations near fires. The impacts of fire smoke on air quality near fires are 

undoubtedly larger by orders of magnitude. Moreover, the plumes from HMS contain an 

aspect of subjective judgment by the operator and are not intended to prove impacts of a 
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specific fire on a specific monitor; instead, we are interested in the average impact of these 

plumes relative to the clear days. Dispersion and chemical transport model predictions could 

be used as an alternative way of specifying plume transport; however, these are modeled 

predictions and are subject to their own uncertainties and limitations.

The results of the current analysis show that smoke plumes bring consistent and non-

marginal increases in O3, PM2.5, and PM2.5 components and account for a disproportionate 

number of unhealthy air quality days. We observed that PM2.5 and O3 impacts are not 

uniform across all geographic locations and that the additional O3 production by plume is 

present over densely populated regions. As the frequency of large fires increases and 

emissions from all other sources decrease, fire smoke is expected to account for a growing 

portion of air quality related public health concerns, which may require new health risk 

communication tools in near future.
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Figure 1. 
Geographic distribution of environmental monitoring sites for O3, PM2.5, species of PM2.5, 

and HMS smoke plumes on June 14th, 2008. HMS depicts smoke observed by multiple 

geostationary and orbiting satellites. The geographic extents of the smoke plumes are drawn 

with gray-shaded polygons with darker regions denoting multiple plumes at the same 

locations.
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Figure 2. 
Frequency of days with HMS smoke plumes visible above O3 monitoring sites (panel a) and 

above PM2.5
FRM monitoring sites (panel b). Monitoring sites are colored by the quartiles of 

the frequency distribution with red denoting locations that experienced a frequency of smoke 

plume days in the top quartile.
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Figure 3. 
Geographic distribution of the estimated change in pollutant concentrations on plume days 

for O3 monitoring sites (panel a) and PM2.5
FRM monitoring sites (panel b) by quartiles of 

distribution. These estimates are calculated from the best fitting second stage model.
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Table 1.
Distribution of days by Air Quality Index.

Percent of AQI days on clear and plume days for each AQI category and the odds ratio of each AQI color code 

observed on a plume day versus a clear day. Green, yellow, orange, red, and purple AQI color codes denote 

“Good”, “Moderate”, “Unhealthy for Sensitive Groups”, “Unhealthy”, and “Very Unhealthy” air quality 

respectively.

Pollutant AQI Color Code

Green Yellow Orange Red Purple

Ozone
% of AQI codes on clear days 89.5% 9.15% 1.26% 0.082% 0.0057%

% of AQI codes on plume days 70.3% 24.0% 5.27% 0.425% 0.0277%

% Plume Days for each AQI code 6.1% 18.0% 25.8% 30.1% 28.8%

Odds Ratio 0.278 3.13 4.34 5.20 4.82

PM2.5
FRM

% of AQI codes on clear days 70.6% 28.8% 0.58% 0.083% 0.0004%

% of AQI codes on plume days 46.4% 51.7% 1.65% 0.25% 0.0061%

% Plume Days for each AQI code 4.2% 10.6% 15.8% 16.5% 50.0%

Odds Ratio 0.360 2.65 2.88 3.02 15.0

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 June 10.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Larsen et al. Page 16

Table 2.
Summary of models and national estimates for each pollutant.

Summary statistics represent the average pollution contribution from fire smoke by species as well as the 

estimated relative increase over background levels of each pollutant over the whole nation. The confidence 

limits presented demonstrate that all national effects are plausibly non-zero at a significance level of 0.05. 

These estimates control for temperature, seasonal variation and spatial variation. The relevant spatial variation 

for each pollutant is described under Model Settings. The best model settings are given for the average plume 

effect model as well as the model for relative change.

Pollutant # of
Sites

Model Settings National Summary (95% Confidence
Limits)

Spatially
Correlated

Measurement
Error

Spatial
Variation in
True Plume

Effect

Average Plume
Effect Relative Plume Effect

Ozone (ppb) 1,489 Yes Yes 2.6 (2.5, 2.7) 11.1% (6.4, 15.8)

PM2.5
FRMa

 (μg/m3) 1,096 Yes Yes 2.9 (2.8, 3.0) 33.1% (24.7, 41.5)

PM2.5
IMPb

 (μg/m3) 224 Yes Yes* 2.7 (1.5, 3.9) 24.6% (22.1, 27.2)

EC
b
 (μg/m3) 188 No No** 0.09 (0.07, 0.12) 21.3% (18.9, 23.6)

OC
b
 (μg/m3) 188 Yes Yes 0.7 (0.5, 0.8) 30.6% (23.3, 37.9)

a
FRM sites,

b
IMPROVE sites

*
No for relative change,

**
Yes for relative change
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