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ARTICLE INFO ABSTRACT

‘Eliska,” an endangered black rhino (Diceros bicornis), died suddenly in Mkomazi National Park in Tanzania in
2016. Three Amblyomma gemma ticks were collected from Eliska's body, and four ticks were collected from the
surrounding field. We conducted 16S rRNA targeted high-throughput sequencing to evaluate the overall com-
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;F‘id;? position of bacteria in the ticks' microbiomes and investigate whether the ticks could be the cause of Eliska's
O YOmIma gemina death. The ticks collected from Eliska's body and the field were found to differ in their bacterial composition.

Microbiome . . . i . X

Metagenomics Bacillus chungangensis and B. pumilus were the most commonly found bacteria in the ticks collected from the field,

and B. cereus and Lysinibacillus sphaericus were the most commonly found in the ticks collected from Eliska's
body. The abundance was higher in the ticks collected from the field. In contrast, the equity was higher in the
ticks collected from Eliska's body. No known pathogenic bacteria that could explain Eliska's sudden death were
found in any of the ticks. The differences between the microbiome of ticks collected from Eliska's body and from

the field indicate that the microbiome of ticks' changes through the consumption of blood.

1. Introduction

Tick-borne diseases are caused by infectious agents transmitted
through tick bites. Tick-borne diseases may be caused by rickettsia or
other types of bacteria, as well as viruses and other pathogens (de la
Fuente et al., 2017). A previous study reported that the geographic
distribution and genotypes of Coxella burnetii and rickettsia differed
among the different tick species that occur in Ethiopia, which suggests
that there may be patients with tick-borne diseases of unknown etiology
in this country (Kumsa et al., 2014, 2015). Tick-borne diseases cause
major problems in livestock and wild animal health, especially in sub-
Saharan Africa (Brites-Neto et al., 2015). There are many species of tick
species including Amblyomma gemma, Rhipicephalus appendiculatus
found on livestock and wild animals in Tanzania, and pathogens such as
Anaplasma marginale and Babesia bigemina were found in the ticks
(Fyumagwa et al., 2009; Kim et al., 2018b).

Black rhinos (Diceros bicornis) are critically endangered. In 2012,
Eliska, a female black rhino, was born in Dvur Kralove Zoo in the Czech
Republic, and moved to Mkomazi National Park in Tanzania. Although
the average lifespan of black rhinos is between 35 and 50 years, Eliska
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died suddenly in 2016 (AWF, 2013). Ticks were found on Eliska's dead
body, and these were collected and sent to the laboratory of the Ar-
thropods of Medical Importance Bank, Yonsei University College of
Medicine, Seoul, Korea, where we identified the species of ticks. We
further analyzed the tick microbiomes using 16S rRNA targeted high-
throughput sequencing to evaluate whether the ticks had any patho-
genic bacteria that could explain Eliska's sudden death. We also col-
lected and analyzed several ticks from the field where Eliska lived in
order to compare the microbiome of ticks collected from the field and
from Eliska's body.

2. Materials and methods
2.1. Tick collection from Eliska's body and the surrounding field

Simultaneously, three fully engorged ticks were collected from
Eliska's dead body and four ticks were collected from the field sur-
rounding the body (—4.094504, 38.122419 in World Geodetic System
(WGS84)) in Mkomazi National Park, in Tanzania, in 2016. The four
field samples were collected by flagging. All ticks used in this study
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were in their adult stage. Each ticks' surface was sterilized using alcohol
immediately after collection, and the ticks were then individually
stored. The samples were transferred to the laboratory in Korea, and
their surfaces were again washed with alcohol. The ticks were then
individually crushed and DNA immediately extracted.

2.2. Morphological identification of ticks

The ticks were identified as Amblyomma gemma based on mor-
phology under a stereomicroscopic (Stemi DV4, Korea). Morphological
characteristics of A. gemma include flat eyes and fine connections be-
tween central and lateral spots. Amblyomma gemma specimens also have
medium size punctuations in the anterior area of the scutum (Walker
et al., 2013). All ticks were in their adult stage, and the ticks collected
from Eliska's body were fully engorged (Fig. S1).

2.3. DNA extraction from ticks

Total DNA was obtained using the NucleoSpin DNA Insect Kit
(Macherey-Nagel, Germany) following the manufacturer's instructions.
Each tick sample was separately placed in a bead tube and submitted to
the following steps: cell lysis, binding of the DNA to the silica mem-
brane, washing and then drying of the silica membrane. The DNA ex-
tracted from each sample was eluted in 20 pé of the elution buffer. The
entire processing and sequencing of the samples was conducted at a
clean bench, under a sterilized hood, and in a DNA-free room.
Autoclaved 200 p and 1000 £ tips (Chembio, Korea) were used. DNA
concentration was quantified using Nanodrop (Thermo ND-1000, USA).
The extracted DNA was stored at —80 °C in a deep freezer.

2.4. Amplification of 16S rRNA by polymerase chain reaction (PCR)

The V3-V4 region of 16S rRNA was amplified by PCR using the
following primer pair: forward primer, 5-TCGTCGGCAGCGTCAGAT-
GTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3’; reverse primer,
5"-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGG-
TATCTAATCC-3’ (Illumina MiSeq V3 cartridge [600 cycles]; Illumina,
USA) (Kim et al., 2018a).

2.5. Next-generation sequencing (NGS)

A limited-cycle amplification step was performed to add multi-
plexing indices and Illumina sequencing adapters. Libraries were nor-
malized, pooled, and sequenced on the MiSeq platform (Illumina MiSeq
V3 cartridge [600 cycles]; Illumina) in accordance with the manufac-
turer's instructions.

2.6. Bioinformatics and statistics

Bioinformatic analyses were performed following previously de-
scribed methods (Yoon et al., 2017; Kim et al., 2018a). Raw reads were
processed through a quality check, and low quality (< Q25) reads were
filtered using Trimmomatic 0.32 (Bolger et al., 2014). Paired-end se-
quence data were subsequently merged using PandaSeq (Masella et al.,
2012). Primers were then trimmed using the ChunLab in-house pro-
gram (ChunLab, Inc., Seoul, Korea), applying a similarity cut-off of 0.8.
Sequences were denoised using the Mothur pre-clustering program,
which merges sequences and extracts unique sequences, allowing up to
two differences between sequences (Schloss et al., 2009). The EzBio-
Cloud database (https://www.ezbiocloud.net/) (Yoon et al., 2017) was
used for the taxonomic assignment using BLAST 2.2.22, and pairwise
alignments were generated to calculate similarity (Myers and Miller,
1988; Altschul et al., 1990). The UCHIME algorithm and non-chimeric
16S rRNA database from EzTaxon were used to detect chimeric se-
quences for reads with a best hit similarity rate of < 97% (Edgar et al.,
2011). In ChunLab, contigs and singletons, which were identified when
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similarity was under 97% in the taxon assignment stage, were detected
as chimeras based on the non-chimera data base (DB) of the corre-
sponding region. The DB herein used was based on various databases
such as NCBI and the ChunLab DB. The bioinformatics ‘usearch’ tool in
ChunLab was used to directly remove chimeric reads. Sequence data
were then clustered using CD-Hit and UCLUST (Edgar, 2010; Fu et al.,
2012).

All of the described analyses were performed with BIOiPLUG, a
commercially available ChunLab bioinformatics cloud platform for
microbiome research (https://www.bioiplug.com/). Rarefaction for the
obtained operational taxonomic units (OTUs) was calculated using the
ChunLab pipeline, following Heck et al. (1975). The reads were nor-
malized to 16,000 to perform the analyses. We computed the Shannon
index (Shannon et al., 1948), unweighted pair group method with ar-
ithmetic mean (UPGMA) clustering (Sneath and Sokal, 1973), principal
coordinates analysis (PCoA) (Gower, 1966), and permutational multi-
variate analysis of variance (PERMANOVA) (Anderson, 2001) based on
the generalized UniFrac distance (Lozupone and Knight, 2005). We
used the Wilcoxon rank-sum test to test for differences in the number of
OTUs and used the Shannon index to compare microbiome diversity
between the two groups of ticks (collected from Eliska's body and the
field). We used linear discriminant analysis effect size (LEfSe) analysis
to identify significantly different taxa between the two groups of ticks
(Segata et al., 2011).

3. Results

Based on their morphological characteristics, all ticks were identi-
fied as Amblyomma gemma. The average reads assigned to bacteria were
20,091 reads assigned to 110 species (OTUs) for the ticks collected from
Eliska's body. For the ticks collected from the field, the average reads
assigned to bacteria were 64,687 reads assigned to 260 species (Table
S1). The rarefaction curve of all samples formed a plateau (Fig. S2). The
number of OTUs was not significantly different between the two groups
of ticks (Fig. 1a). The phylogenetic (abundance) index was significantly
higher for the ticks collected from the field than for the ticks collected
from Eliska's body (Fig. 1b, p = 0.034). In contrast, the Pielou (equity)
and Shannon (abundance and equity) indexes were significantly higher
in the ticks collected from Eliska's body than in ticks collected from the
field (Fig. 1c and d, p = 0.034).

The UPGMA clustering showed that the ticks were organized ac-
cording to group; ticks collected from Eliska's body are mainly clustered
at the bottom of the diagram in Fig. 1e. The PCoA results indicate that
the ticks collected from Eliska's body were more closely distributed than
those collected from the field (Fig. 1d). This indicates that the ticks
collected from Eliska's body shared a greater similarity in bacterial
composition than the ticks collected from the field (Fig. 1f). Moreover, a
significant difference in microbiome composition between the two
groups of ticks was detected using PERMANOVA. This analysis con-
firmed that the fact that ticks were collected from Eliska's body was a
significant factor in determining microbiome composition (p = 0.027).
PERMANOVA is a non-parametric statistical test for differences be-
tween multivariate datasets in the centroid or dispersion of groups
(Ericsson et al., 2018).

Regarding the bacterial taxa found in the two groups of ticks (Table
S2), at the species level, four species of Bacillus accounted for 55.95%
and 89.67% of the total reads in ticks collected from Eliska's body and
the field, respectively. In ticks collected from the field, bacteria that
accounted for more than 1% of the total reads included B. chungangensis
(87.14%) and B. pumilus (2.17%). In ticks collected from Eliska's body,
bacteria that accounted for more than 1% of the total reads included B.
cereus (19.86%), Lysinibacillus sphaericus (16.64%), B. pumilus
(15.82%), Virgibacillus proomii (12.10%), B. subtilis (9.81%), B. chun-
gangensis (7.45%), R. stabekisii (3.28%), S. silvestris (2.87%), Terriba-
cillus saccharophilus (2.41%), and Sporosarcina koreensis (1.38%)
(Fig. 2a).
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Fig. 1. Box plots showing the alpha diversities (measurement of species richness and evenness within a habitat unit) of: (a) the number of operational taxonomic
units (OTUs) found in microbiome taxonomic profiling (MTP); and (b) phylogenetic diversity (abundance); (c¢) Pielou diversity (equity); and (d) Shannon diversity
(measurement of richness and equity in the distribution of species) among the samples from Eliska. Bars indicate the median, and the hinges represent the lower and
upper quartiles. In panel (a), there are no statistically significant differences between the two groups. However, in panels (b), (c), and (d), there are statistically
significant differences between the two groups. (e) Unweighted pair group method with arithmetic mean (UPGMA) clustering, and (f) principal-coordinate analysis
depicting differences in taxonomic compositions of bacterial communities in Amblyomma gemma samples collected from Eliska's body and from the field. * indicates
statistical differences between the two groups of ticks (Wilcoxon rank-sum test, p < 0.05).
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Fig. 2. (a) The distribution of bacterial taxa at the species level in tick samples collected from Eliska's body and from the field. Each bar depicts the mean relative
abundance value of independent replicates. Species comprising more than 1% of reads are shown. Each bar depicts the mean relative abundance value of independent
replicates (n = 4 ticks collected from the field; n = 3 ticks collected from Eliska's body). (b) LEfSe analysis of differentially abundant bacterial taxa between ticks
collected from Eliska's body and ticks collected from the field. Only taxa meeting an LDA significant threshold of > 2 are shown.

To identify significant differences in bacterial abundance between
the two groups of ticks, a LEfSe analysis was performed. The highest
LDA scores found in the ticks collected from Eliska's body were for L.
sphaericus (4.92) and V. proomii (4.76). In the ticks collected from the
field, Melissococcus plutonius (—3.28) and Enterococcus faecalis (—3.16)
were the species with the highest LDA score (Fig. 2b).

4. Discussion

Amblyomma gemma is abundant in dry areas and is mainly dis-
tributed in the northeast of Tanzania (Lynen et al., 2007). Hosts of A.
gemma include herbivores, such as giraffes and buffalo, but adult A.
gemma also use cattle and camels as hosts. Amblyomma species are re-
sponsible for transmissions of viruses and bacteria to animals, including
humans (Sang et al., 2006).

We evaluated the microbiomes of A. gemma collected from Eliska's
body and from the surrounding field, to check whether the bacterial
profiles differed between the two groups of ticks. Regarding alpha di-
versity analyses, the phylogenetic (abundance) index was higher in
ticks collected from the field than in those collected from Eliska's body;
however, the Pielou (equity) and Shannon (abundance and equity) in-
dexes were significantly higher in the ticks collected from Eliska's body.
This result indicates that the number of bacterial species (OTUs) in the
field group was high but that equity was low, as few species (B. pumilus
and B. chungangensis) accounted for approximately 90% of the micro-
biome of the group. Similarly, there were differences in bacterial
composition between ticks collected from Eliska's body and ticks col-
lected from the field in clusters in PCoA (generalized UniFrac).

Rickettsia, Anaplasma, Ehrlichia, and Bartonella are pathogenic
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bacteria that can exist in ticks (Khoo et al., 2016). However, none of
these bacteria were found in the ticks included in this study. Coxiella,
Rickettsiella, and Wolbachia, which are known endosymbionts, were also
not found. However, Bacillus spp., the environmental bacteria, which
have been reported in other studies, were abundant in the ticks in this
study. Other environmental bacteria such as Sphingomonas, Pseudo-
monas, and Staphylococcus have also been reported in ticks (Khoo et al.,
2016; Trout Fryxell and DeBruyn, 2016). Therefore, we conclude that
Eliska's death was not caused by any known pathogenic bacterial in-
fection transmitted by ticks.

In the LefSe analysis, we identified the characteristics of the bacteria
that were significantly different between the two groups. In the ticks
collected from Eliska's body, L. sphaericus and V. proomii were more
prevalent. Lysinibacillus sphaericus is a bacterium that is toxic to mos-
quitoes. However, there have been no reports yet of L. sphaericus
causing harm to humans or other mammals (Berry, 2012). Virgibacillus
proomii enhances leukocyte phagocytic activity in fish, and increases
fish survival by activating immune defenses (Salinas et al., 2005). On
the other hand, in the ticks collected from the field, M. plutonius and E.
faecalis were more prevalent. Melissococcus plutonius is morphologically
similar to Enterococcus (Ansari et al., 2017). Melissococcus plutonius
causes European foulbrood, a biological disease that affects and kills the
larvae of honeybees (Budge et al., 2014). Enterococcus faecalis is a gram-
positive bacterium that lives in the gastrointestinal tract of humans or
other mammals (Ryan and Ray, 2004). Enterococcus faecalis is found in
most healthy individuals, but can cause various diseases in humans,
such as endocarditis and meningitis (Pintado et al., 2003).

A previous study reported that the diversity of bacteria of
Amblyomma americanum increased when the ticks consumed blood meal
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(Heise et al., 2010). Our experimental data also indicate that the
Shannon diversity was higher in ticks collected from Eliska's body,
which had been feeding on the rhino's blood.

When Ixodes pacificus ticks feed on the blood of lizards, their mi-
crobiome a change and increase their resistance to Borrelia burgdorferi, a
pathogen. This indicates that, in natural systems, blood meal can affect
the microbiomes of ticks, which in turn can affect pathogen transmis-
sion (Swei and Kwan, 2017). In this study, the differences between the
microbiome of ticks collected from Eliska's body and from the field
indicate that the microbiome of ticks' changes through the consumption
of blood. Blood molecules may regulate growth of specific bacteria. For
example, D-alanine from blood can regulate the gram-positive bacterial
biofilm formation by interrupting Ixodes scapularis antifreeze glyco-
protein (IAFGP) in Ixodes scapularis (Abraham et al., 2017). Therefore,
in the present study, changes in the A. gemma microbiome resulting
from the activity of blood molecules were expected. As Eliska's blood
was not collected, we were unable to search for bacteria in it, which is a
limitation of this study. Nevertheless, given that no pathogenic agent
was found in ticks from Eliska and that mammalian blood usually has
no bacteria, we believe that the microbiomes identified in the ticks
were not from Eliska's blood.

5. Conclusions

In conclusion, the microbiomes of ticks collected from a black rhino
and its surrounding environment were investigated using 16S rRNA
targeted high-throughput sequencing. There were significant differ-
ences between the two groups of ticks, which possibly resulted from the
consumption of blood in the group of ticks collected from the rhino's
body. No pathogenic bacteria were found in any of the ticks that could
explain the sudden death of this black rhino.
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