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Abstract
 With insecticide resistance in malaria vectors spreading inBackground:

geographical range and intensity, there is a need for compounds with novel
modes of action to maintain the successes achieved to date by long-lasting
insecticidal nets and indoor residual sprays, used as part of an insecticide
resistance management strategy. Screening existing registered pesticides,
predominantly those developed for use in agriculture, may provide a more
rapid and less logistically challenging route to identifying active ingredients
of value to public health than screening and chemical synthesis
programmes for novel compounds.

 Insecticides and acaricides from all IRAC classes, includingMethods:
those with unclassified modes of action, were assessed for inclusion in a
laboratory bioassay testing cascade against adult female Anopheles

 mosquitoes. A longlist of representative candidate compoundsgambiae
was selected, excluding those with safety concerns, unsuitable
physiochemical properties, and likely hurdles to registration for public
health use.  An initial screen using topical application eliminated
compounds with insufficient intrinsic activity, and a tarsal contact assay
identified those with activity at an appropriate concentration. Compounds of
interest were ranked by relative potency using dose response assays and
discriminating dose calculations.

 Inclusion of an adjuvant enhanced the tarsal efficacy of severalResults:
compounds, facilitating the promotion of chemistries with great potential,
given suitable formulation, which would not progress based on activity of
compound alone. Comparison of data between stages in the testing
cascade suggest that a more streamlined approach, topical application to
test for intrinsic activity and determining the discriminating dose to compare
relative potency of compounds, may be sufficient to identify compounds
with potential value for use in long lasting insecticidal nets and indoor
residual spray products.

 Identified were 11 compounds of interest as vector controlConclusions:
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 Identified were 11 compounds of interest as vector controlConclusions:
agents (in descending order of potency): clothianidin, spinetoram,
metaflumizone, dinotefuran, indoxacarb, abamectin, sulfoxaflor,
oxazosulfyl, triflumezopyrim, fenpyroximate, and tolfenpyrad.
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Introduction
Long-lasting insecticidal nets (LNs) and Indoor Residual Sprays 
(IRS) are the most widely used and effective vector control  
interventions for the control of malaria and other mosquito-
borne diseases (Bhatt et al., 2015). Until recently, pyrethroids 
were the only class of insecticides used in LNs (World Health  
Organisation, 2015) with chlorfenapyr (N’Guessan et al., 2016) 
and pyriproxifen (Ngufor et al., 2014) being included more 
recently. Four additional classes of insecticides are currently 
used for IRS (organophosphates, carbamates, organochlorines 
and, recently, neonicotinoids; World Health Organisation, 2016). 
Increasing spread and intensity of insecticide resistance amongst 
African malaria vectors (Ranson & Lissenden, 2016) threatens to 
reverse the progress that has been made in recent years (World  
Health Organisation, 2019). To restore the efficacy of these  
vector control tools, insecticides that overcome existing  
resistance phenotypes and that are compatible for use in LNs  
and IRS must be identified (Hemingway et al., 2016).

High-throughput screening of existing compound libraries 
and chemical synthesis programmes provide an opportunity to  
identify novel insecticides, but are costly, risky and take  
a long time from initiation to delivery as a vector control tool 
to the market (Turner et al., 2016). The cost of bringing a new  
crop protection product to market was estimated to be $286m 
in 2014 (McDougall, 2016), and though the cost of developing  
a dedicated vector control insecticide would be lower, the total  
market for all public health insecticides may be only around  
$400m (BMGF and BCG, 2007).

Repurposing of existing insecticides originally developed for  
non-vector control uses provides an alternative strategy for 
the development of vector control products containing active  
ingredients with new modes of action, benefiting from pre-existing  
registrations and manufacturing knowhow and, consequently, 
shorter development time, reduced risk and lower costs (Hoppé  
et al., 2016). Repurposing of active ingredients with modes of 
action that circumvent the resistance mechanisms associated  
with traditional neurotoxic insecticides such as pyrethroids, 
carbamates and organophosphates have been demonstrated as  
a means of delivering new insecticidal products, including 
Interceptor G2, a LN based on chlorfenapyr, developed by BASF 
for agriculture and urban pest control.

The Innovative Vector Control Consortium (IVCC) is a product  
development partnership established in 2005 with the aim of  
overcoming the market failures which inhibit the development of 
new insecticides for public health use by supporting the devel-
opment of a range of new compounds and technologies for the  
control of mosquito populations in malaria endemic countries 
(Hemingway et al., 2006). In addition to IVCC’s efforts to develop 
completely novel compounds for vector control, this study was  
initiated to develop a laboratory bioassay cascade to screen  
existing agrochemical insecticides with no previous history 
of use in vector control that may have potential for LN and/or  
IRS uses and which offer new modes of action.

As the starting point for the testing cascade was insecticides  
that have already completed commercial development, a high 

throughput bioassay system, such as the larval screen developed 
by Matthews et al. (2018) was not necessary. Therefore, screen-
ing began with topical application to adult female mosquitoes. 
This served as a rapid first step to eliminate compounds with low  
intrinsic insecticidal activity against mosquitoes. However, as 
the potential uses being explored were for LN and IRS, all of the  
subsequent steps were based on insecticidal efficacy via tarsal 
contact. Tarsal contact assays were then run both with and without 
Mero, rapeseed oil, methyl ester with an added emulsifier, which  
is a wetting agent developed for use with herbicides, hereafter  
referred to as RME. The addition of an adjuvant prevents the  
crystallisation of an insecticide on a glass surface and seems to 
improve bioavailability and hence uptake by exposed insects 
(Ohashi et al., 2018). The inclusion of an additional step with 
an adjuvant was expected to increase the sensitivity of the  
bioassays. Knock down of mosquitoes immediately after topical  
and tarsal exposure was observed in addition to mortality;  
although pyrethroids are known for their rapid effects on mosquito 
vectors, some compounds with different modes of action may be 
slower acting.

Methods
Compiling the list of compounds to include in the screening 
cascade
To evaluate the testing cascade, it was first necessary to compile  
a list of potential pesticides for inclusion in the project. The initial  
list included representative insecticides and acaricides from 
all Insecticide Resistance Action Committee (IRAC) mode of 
action classes including those with unclassified mode of action  
(IRAC, 2018). The initial list of 620 pesticidal active ingredi-
ents was reviewed to produce a shortlist of candidate compounds 
for testing. The criteria for determining which insecticides to 
include or eliminate from the list included a) elimination of 
insecticides from classes with current or historical vector con-
trol use (e.g. organochlorines, organophosphates, carbamates 
and pyrethroids); b) Elimination of active ingredients that did 
not have a current registration with at least one stringent regula-
tory authority (e.g. US EPA, EU Biocides, Japan etc.); and finally  
c) exclusion of arsenic based insecticides and cyclodienes on 
the grounds of safety, fumigants on the grounds of physiochemi-
cal properties, and insect growth regulators (juvenile hormone 
analogues, ecdysone antagonists etc.) because the focus of the 
project was on identifying compounds causing direct mortality.

Where classes were represented by a number of active ingre-
dients, one or two representative candidates were selected 
for initial screening. This resulted in a refined list of  
40 compounds (Figure 1).

Samples of technical-grade active ingredients were obtained  
either from commercial suppliers or via custom synthesis.

Rearing mosquitoes for bioassays
All tests were carried out using 2-5-day-old non-blood-fed 
female mosquitoes of the insecticide-susceptible Kisumu strain of  
Anopheles gambiae s.s. reared in the Liverpool Insect Testing  
Establishment (LITE) insectaries at the Liverpool School of  
Tropical Medicine (LSTM) (Edi et al., 2012). Insectaries were 
maintained at 26°C ± 2°C and 80% relative humidity ± 10%.  
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Figure 1. Testing cascade to screen existing insecticides for use against mosquito disease vectors, including key findings. Intrinsic 
insecticidal activity is measured by topical application of compound directly onto adult female Anopheles gambiae mosquitoes, activity 
through tarsal contact is measured in a bioassay with and without RME as an adjuvant, and relative potency is judged by determining the 
discriminating dose in CDC bottle bioassays. Activity in Phase I was defined as ≥80% mortality 24 hours after topical application, and the 
breakpoint denotes the concentration at which activity was first observed; ‘>1’ means that activity was not observed even when the highest 
concentration, 1% active ingredient, was applied. Activity in Phase II was defined as ≥80% mortality 24 hours after tarsal exposure, and the 
breakpoint denotes the concentration ay which activity was first observed; ‘>125’ means that activity was not observed even at the highest 
concentration tested, 125 mg/m2. Compounds which were only active in tarsal contact bioassays (Phase II) in the presence and not the 
absence of RME are highlighted in red. Of 40 compounds from 20 IRAC MoA classes, and 7 compounds not listed or not classified by IRAC, 
11 compounds are shortlisted for further investigation. The hexagon symbol denotes compounds which showed insecticidal activity during 
screening but which were not progressed for other reasons.
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Larvae were fed ground fish food (Tetramin tropical flakes,  
Tetra, Blacksburg, VA, USA) and adults maintained on 10%  
sucrose solution fed ad libitum. For egg production, female adults 
were fed on human blood procured from the non-clinical blood 
product stock from the UK blood bank up until November 2016. 
After this point adult mosquitoes were fed on defibrinated horse 
blood supplied by TCS Biosciences. Mosquitoes were reared  
under a L12:D12 hour light:dark cycle with a 1 hour dawn  
and dusk.

Intrinsic activity measured by topical application
A total of three replicates of ten mosquitoes were treated by  
topical application with 0.01, 0.1 and 1% solutions of each  
compound solubilised in acetone, with solvent-only (negative  
control) and with 0.1% Permethrin in acetone (positive control).  
Mosquitoes were anesthetized for 30 seconds using carbon  
dioxide, distributed across a Petri dish lined with filter paper  
(Whatman, Grade 1) with the dorsal thorax exposed, and placed 
onto a 4°C chill table (BioQuip products, Rancho Dominguez,  
CA). A 0.25-µl droplet of insecticide solution was applied to the 
dorsal thorax using a 1 cm3 syringe and a hand-operated micro 
applicator (Burkhard Scientific, Uxbridge, UK). Mosquitoes 
were then transferred to holding cups, supplied with 10% sucrose  
solution, and held in a stability cabinet kept at 26°C ±2°C and  
70% RH ±10% under a L12:D12 hour light: dark cycle.  
Mosquitoes were scored for knock down or mortality 24 hours  
and 48 hours after topical application, according to the 
World Health Organisation (WHO) definition (World Health  
Organisation, 2018), a mosquito being classified as “dead” or 
“knocked down” if it is immobile or unable to stand or take 
off. After testing the first batch of compounds, an additional  
observation time was added to measure immediate effect on  
mosquitoes, with knock down being scored 60 minutes after  
topical application.

Further screen for efficacy: tarsal contact assay with and 
without the addition of RME
A total of three replicates of ten mosquitoes were exposed to  
0.05, 0.25, 1.25, 5, 25 and 125 mg/m2 of each insecticide applied 
in acetone to glass Petri dishes (radius 2.5cm, area 19.635cm2,  
SLS, Nottingham, UK). Petri dishes treated with 0.05 and 5 mg/m2  
permethrin were also included as positive controls and Petri  
dishes treated with acetone-only as a negative control. A 
500-µl aliquot of 0.000002, 0.00001, 0.00002, 0.0001, 0.0005, 
0.002, 0.01 and 0.05% solutions of each insecticide solubilised 
in acetone were applied to glass Petri dishes and dishes placed  
onto an orbital shaker for 4 hours to provide an even coating  
of insecticide across the dish during evaporation of the acetone.

Bioassays were conducted immediately after the 4-hour drying 
period, at 26°C ±2°C and ambient humidity. A 25-ml plastic deli 
pot (Cater4you, High Wycombe, UK) with a hole melted through 
the base was fixed onto each Petri dish with Parafilm. Mosquitoes 
were introduced through the hole and, after exposing them to the  
treated surface for 30 minutes, they were aspirated out and  
transferred to holding cups. Mosquitoes were scored for knock 
down immediately after being placed into the cups, 30 minutes  
after the start of exposure. Mosquitoes were then held as for the 
topical application assay and scored for mortality 24 and 48 hours 
after exposure.

The assay was repeated for each compound with the addition of 
RME (Mero, Bayer, Reading, UK: 81.4% w/w rapeseed fatty 
acid esters and emulsifier ethoxy (7) tridecanol) in combination  
with each insecticide. A 0.392 mg/ml RME in acetone solution  
(a concentration based on a typical field application rate) was 
used to prepare insecticide dilutions, which were applied to the 
glass Petri dishes to give a final application rate of 100 g/m2 RME  
and the bioassay conducted as described above.

Judging relative potency by determining discriminating 
doses
The discriminating dose (DD) of 11 compounds (dinotefuran,  
clothianidin, sulfoxaflor, triflumezopyrim, spinetoram, abamectin,  
fenpyroximate, Tolfenpyrad, indoxacarb, metaflumizone and  
oxazosulfyl) was established using a variation of the CDC bottle 
bioassay test (Brogdon & Chan, 2010). Wheaton bottles (250 ml, 
Fisher Scientific, Loughborough, UK) were coated with active 
ingredient dissolved in acetone as described, but with the addi-
tion of with 1.5 mg/bottle of RME. Bioassays were conducted a  
minimum of an hour and no more than 24 hours after coating, at 
26°C ±2°C and 70% ± 10% relative humidity. A total of 25 female 
mosquitoes were added to the test bottles alongside a negative  
control bottle containing acetone and RME only, and a positive  
control bottle containing 20 µg/bottle permethrin applied in  
acetone but without RME. After a 60-minute exposure, mos-
quitoes were transferred from the bottles into holding cups, and 
scored as knocked down or dead if they are immobile or unable to  
stand as described by Brogdon & Chan (2010). Mosquitoes 
were held as for topical and tarsal contact assays, and mortality 
scored 24 hours after exposure. Mosquitoes were exposed to dif-
ferent concentrations (reported in µg/bottle) of compounds until 
data was collected from concentrations which produced mortal-
ity values covering the whole range from 0–100%. These data  
were used to calculate the DD of each compound.

Data analysis
Percentage knock down and percentage mortality were calcu-
lated from the total number of mosquitoes in each replicate of the  
topical and tarsal assays counted at the end of the experiments. 
If mortality in the topical application or tarsal contact test  
negative control was between 5 and 20% mortality in test repli-
cates was corrected for negative control mortality using Abbott’s 
formula (Abbott, 1925), with negative values reported as 0% 
mortality. If control mortality was above 20% at 24 hours after  
exposure the test was repeated. Breakpoints were determined as 
being the lowest concentration at which 80% or more of mos-
quitoes were killed within 24 hours of exposure. Compounds  
which failed to reach 80% mortality at 24 hours after topical  
application or tarsal contact exposure with RME were rejected  
from further testing in the cascade.

To calculate a DD for each compound, 24-hour mortality data 
was included from at least n=50 mosquitoes exposed to each  
concentration used in the analysis. Data from concentrations 
below the highest tested concentration that gave 0% mortality 24 
hours after exposure, above the lowest tested concentration that 
gave 100% mortality, and those with an n value lower than 50 
were excluded from data analysis. The number of subjects n and 
the number of responders r were aggregated across the replicates  
for each concentration, and these data were analysed to determine 
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LC
95

 values for each compound using PoloPlus software (Version 
2.1, LeOra Software), via log-probit analysis (Robertson et al., 
1980). This calculated LC

95
 value was then multiplied by three to 

give a discriminating dose (LC
95

×3=DD), and compounds were 
ranked for relative potency: a low DD indicates a higher potency. 
This differs from the standard WHO discriminating dosages 
which are defined as being twice the experimentally derived 100%  
lethal concentration (LC

100
 value) of a reference susceptible  

strain (World Health Organisation, 1998).

Results
Forty compounds were included in the testing cascade, first  
tested for activity when applied topically, then for activity on  
tarsal exposure alone and in the presence of RME as an adjuvant,  
to identify a shortlist of 11 compounds which have potential for  
use to control Anopheles vectors of disease, which were then 
ranked for relative potency by calculating their DD. An overview 
of the data is presented in Figure 1. During the completion of  
the study additional information was gathered about the com-
pounds of interest, beyond entomological activity, and some com-
pounds were not progressed in the cascade despite demonstrating  
efficacy, as described below and summarised in Figure 2.

Intrinsic activity measured by topical application
Mortality observed 24 hours after topical application of  
40 compounds is presented in Table 1, together with knock down 
observed 60 minutes after topical application where these data were 
collected. Major differences were evident between the insecticidal 
efficacy of test chemicals in terms of the level of knock down and 
mortality they caused, demonstrating the sensitivity of the method. 
Activity was not determined relative to the positive control as only 
a single concentration of permethrin was applied (0.1%). The  
positive control consistently resulted in 100% mortality.

A total of 40 compounds were screened in this initial step in the 
testing cascade, of which 17 failed to reach the 80% mortality 
threshold 24 hours after application of the highest dose. Of these, 
13 were eliminated at this stage but five compounds (diafenthiuron, 
fenazaquin, tyclopyrazoflor, benzpyrimoxan and dicloromezotiaz) 
were taken forward to testing in the tarsal contact assays in order 
to validate topical application as a first step in the testing cascade. 
There were ten compounds that reached the threshold of activity  
at 0.01%, the lowest concentration tested; six reached the thresh-
old at the intermediate dose of 0.1%. On reviewing these results 
and other available information about the compounds, 15 of these 
23 compounds were taken forward to the next step of the testing 
cascade. 

There were eight compounds which showed activity in the  
topical application screen that were not taken forward for further 
testing for reasons other than insecticidal efficacy. Tebufenpyrad  
was rejected because four other active mitochondrial com-
plex I electron transport inhibitors were already being taken  
forward. Fenazaflor was rejected as it was no longer commercially 
available. Ethiprole and nitenpyram showed acceptable activity 
with topical application but were not taken forward in the test-
ing cascade due to their high water solubility as this made them 
unsuitable for use in LNs, the priority development area for IVCC 

at the current time, but may have potential for use in IRS. Flumeth-
rin and imiprothrin were included in this initial topical applica-
tion screen as potential alternative pyrethroids. They were active 
at the lowest concentration tested and may be useful in providing  
alternatives to existing pyrethroids used on LNs. However, they  
did not meet the key criteria of this study, being alternatives to  
pyrethroids with novel modes of action for vector control, and so 
were not taken forward at this time. Formetanate hydrochloride  
and amitraz were rejected despite being active in topical  
application due to perceived regulatory challenges.

Mortality was assessed at 24 and 48 hours after topical  
application of the test compounds. However, only seven  
compounds gave more than a 20% increase in mortality between 
these two time points, and in each case only with one of the three 
concentrations tested (Lees et al., 2019). For four compounds 
the breakpoint (concentration giving 80% mortality) decreased  
between 24-hour and 48-hour observations: dinotefuran from  
1 to 0.01%; sulfoxaflor from 1 to 0.1%; and pyrifluquinazon  
and tyclopyrazoflor which did not reach 80% mortality based on 
24-hour observation, but by 48 hours post-exposure the threshold 
was reached at the highest concentration, 1 %. 

For 31 compounds, knockdown was assessed 60 minutes after  
topical application in addition to assessment of mortality, and  

Figure 2. Fate of the 40 compounds taken through the testing 
cascade. In general, compounds which were active (≥80% mortality 
24 hours after exposure) in topical application were progressed to 
tarsal contact assays, and those active at this step were progressed 
to measure relative potency through determining their discriminating 
dose. However, of the 23 compounds which were active when 
applied topically, not all were progressed to tarsal contact testing 
due to a range of considerations including physicochemical 
properties and regulatory challenges foreseen in their development. 
Of the compounds which were active in tarsal contact assays, 
only a representative compound from each IRAC MoA class were 
progressed, with the exception of fenpyroximate and tolfenpyrad, 
both from class 21A.
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Table 1. Effect of topical application of forty compounds on adult female Anopheles gambiae. Knock down 
and mortality was observed 60 minutes and 24 hours after topical application, respectively, and were corrected 
for negative control mortality using Abbott’s formula (Abbott, 1925). UN denotes a compound listed by IRAC 
(2018) with unknown or uncertain mode of action. Compounds indicated as being unclassified have not been 
listed by IRAC (2018). ND indicates a data point which was not collected.

IRAC Class Compound Name Mean % Knock Down Mean % Mortality Breakpoint 
(% AI)0.01% 0.1% 1% 0.01% 0.1% 1%

1A Formetanate 
hydrochloride

ND ND ND 81.50 86.20 90.00 0.01

2B Ethiprole ND ND ND 100.00 100.00 100.00 0.01

3A
Flumethrin 6.67 86.67 96.88 96.70 100.00 96.70 0.01

Imiprothrin ND ND ND 96.70 96.70 100.00 0.01

4A

Dinotefuran 74.42 100.00 100.00 65.13 0.00 100.00 1

Clothianidin 80.65 81.25 93.10 100.00 96.49 96.49 0.1

Nitenpyram 96.88 100.00 100.00 96.56 100.00 100.00 0.1

Thiacloprid 63.33 81.25 86.67 19.00 0.00 42.33 >1

4C Sulfoxaflor 37.68 50.00 93.33 58.52 78.61 100.00 1

4D Flupyradifurone ND ND ND 48.20 33.30 73.60 >1

4E Triflumezopyrim 29.17 64.44 92.96 55.50 89.12 100.00 0.1

5 Spinetoram 90.00 76.67 90.00 92.56 100.00 100.00 0.01

6

Ivermectin 13.10 35.69 60.98 100.00 100.00 100.00 0.01

Tetranactin ND ND ND 0.00 0.00 3.54 >1

Avermectin ND ND ND 73.00 100.00 100.00 0.1

Abamectin 0.00 19.35 35.71 100.00 100.00 95.80 0.01

9B Pyrifluquinazon 86.67 45.16 80.77 46.37 18.11 77.85 >1

12A Diafenthiuron 3.23 85.19 72.73 19.31 11.68 20.50 >1

14
Cartap Hydrochloride 77.42 100.00 100.00 13.40 30.00 40.00 >1

Thiosultap-disodium 9.09 6.67 44.44 19.22 0.00 42.33 >1

19 Amitraz ND ND ND 97.50 86.70 79.30 0.1

21A

Tebufenpyrad 41.38 60.00 74.07 0.58 34.60 82.93 1

Fenpyroximate 96.77 100.00 100.00 85.22 96.22 82.36 0.01

Tolfenpyrad 47.58 90.91 100.00 100.00 100.00 100.00 0.01

Pyridaben ND ND ND 42.00 94.00 76.00 0.1

Fenazaquin 3.33 5.56 31.85 3.98 31.33 70.42 >1

Pyrimidifen 45.45 96.67 100.00 64.63 100.00 100.00 0.1

22A Indoxacarb 3.70 3.33 0.00 68.15 76.67 100.00 1

22B Metaflumizone 14.29 27.59 25.00 92.90 96.60 96.40 0.01

23 Spiromesifen ND ND ND 0.00 0.00 10.00 >1

25A Cyenopyrafen 0.00 0.00 0.00 10.00 3.33 6.66 >1

28 Flubendiamide 3.33 3.33 6.67 16.70 16.70 3.30 >1

29 Flonicamid 3.33 10.34 56.67 6.70 13.80 30.00 >1

UN Pyridalyl 0.00 0.33 0.00 0.00 0.00 0.78 >1

Unclassified

Closantel 6.67 10.00 10.00 0.00 7.11 32.08 >1

Fenazaflor 3.33 82.76 71.88 0.00 77.81 89.92 1

Tyclopyrazoflor 14.44 35.02 38.18 38.89 46.46 66.67 >1

Oxazosulfyl 25.45 25.45 50.34 70.91 74.85 96.67 1

Benzpyrimoxan 0.00 0.00 3.33 0.65 0.00 8.53 >1

Dicloromezotiaz 0.00 0.00 0.00 0.00 0.00 2.54 >1
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breakpoints were determined. Four compounds (spinetoram,  
fenpyroximate and pyrimidifen) had the same breakpoint for knock 
down and mortality, indicating relatively rapid action, whilst for 
nine compounds, a lower breakpoint was observed at 24-hour  
mortality, indicating slow action. Within this latter list of  
compounds, ivermectin, abamectin and metaflumizone stand out  
as being effective in terms of mortality but gave very low knock 
down rates. The breakpoint was lower when scored at 60 minutes 
in nine compounds, indicating some recovery from knock down 
during the subsequent holding period: thiacloprid, pyrifluquinazon,  
diafenthiuron and cartap hydrochloride were particularly active 
in terms of knock down but failed to achieve 80% mortality  
at 24 hours.

Further screen for Efficacy: Tarsal contact assay with and 
without the addition of RME
A total of 16 compounds from nine IRAC MoA classes, plus four 
which are unclassified by IRAC (20 compounds in total), were 
taken forward to be tested in tarsal contact bioassays with and  
without RME as an adjuvant. Knockdown 60 minutes after  
exposure and mortality 24 hours after exposure, in the presence  
and absence of RME, is presented in Table 2. Only five  
compounds, dinotefuran, avermectin, abamectin, tolfenpyrad and 
ivermectin achieved 80% mortality 24 hours post-exposure in  
the absence of RME, at any of the doses tested. 

An additional 11 compounds, from eight different IRAC MoA 
classes plus one unclassified compound, reached 80% mortality 
in the tarsal test in the presence of RME. All compounds which 
achieved 80% mortality in tarsal bioassays did so at a lower  
concentration in the presence of the adjuvant RME. 

Of the 16 compounds which were thus judged to be active in tar-
sal contact assays, 11 were taken forward to the next stage in the 
testing cascade, fenazaquin had previously been rejected due to 
low activity at topical application, and the other four were not 
progressed since they were represented by other compounds in 
the same IRAC class. Tolfenpyrad and fenpyroximate were taken 
forward as the most efficacious mitochondrial complex I electron 
transport inhibitors, and abamectin was taken forward to repre-
sent the avermectin class due to the availability of commercial  
formulations. 

The five compounds which did not show activity in the topi-
cal application screen but which were included for method  
validation purposes also did not reach the 80% mortality thresh-
old in tarsal contact assays either with or without the addition of  
RME, with the exception of fenazaquin which was active only 
at the highest concentration tested (125 µg/bottle) and only  
with the addition of RME.

Initially, mortality was assessed 24 and 48 hours after exposure.  
However, no compound gave more than a 10% increase in  
mortality between the 24-hour and 48-hour assessments in any 
tarsal assay with or without the addition of RME. Therefore,  
a 48-hour mortality assessment was not included for all  
compounds and mortality data is presented here at the 24-hour 
assessment only (Table 2). 

Compounds were defined as fast acting if more than 80% knock 
down was observed immediately post-exposure at the breakpoint  
concentration. Based on tarsal contact in the absence of RME, 
only dinotefuran was judged to be fast acting, but with the  
addition of RME, fenpyroximate, pyridaben, fenazaquin,  
pyrimidifen and tolfenpyrad were also judged to be fast acting  
(although knock down was not scored for oxazosulfyl or  
Indoxacarb). Of these, fenpyroximate and pyrimidifen had also 
been judged to be fast acting through topical application.

Judging relative potency by calculating DD
A total of 11 compounds were shortlisted after review of the  
results from tarsal contact assays. Discriminating doses,  
calculated from 24-hour mortality data from bottle bioassays in 
the presence of RME and ranked in order of potency, are shown in  
Figure 3. The LC

95
 values from log-probit analysis ranged from 

8.07 µg/bottle for clothianidin to 1101.44 µg/bottle for tolfen-
pyrad. Clothianidin had a significantly greater potency than any 
other compound on the short list, followed by spinetoram and  
metaflumizone which were significantly more potent than all other 
compounds except dinotefuran (95% CI, log-probit analysis). 
In order to compare these results with results from the previous 
step in the testing cascade, compounds were ranked by DD and 
by breakpoint in the tarsal contact assay with RME, and these  
ranks plotted against each other (Figure 4) to show the  
correlation. The chemical structures of these 11 compounds are 
shown in Figure 5.

Discussion
Evaluating the testing cascade
The testing cascade described here was designed to fulfil two  
purposes: firstly, to identify existing crop protection and animal 
health insecticides which have intrinsic activity against mos-
quito vectors of disease and potential for use in public health; and  
secondly to assess their efficacy via tarsal contact. The potential 
for improved activity in an appropriate formulation was explored 
through the inclusion of an adjuvant, RME. Finally, compounds 
were ranked by relative potency by determining their discrimi-
nating dose. Forty compounds were taken through this cascade 
to explore its usefulness to facilitate evidence-based decision  
making on which compounds should be investigated further.  
Following inclusion of factors other than insecticidal effi-
cacy, including safety, regulatory environment and availability,  
a shortlist of 11 compounds with potential for formulation 
into mosquito vector control products is proposed.

Topical application of active ingredients in a volatile solvent  
does not reflect the way that mosquitoes would be exposed to 
insecticides in an LN or IRS product and, in this sense, is a less 
realistic screen than the tarsal contact assay. However, it is  
recommended by WHO as the first step in screening adulticides 
for possible inclusion in indoor residual sprays (IRS) or mosquito 
nets to identify compounds with intrinsic activity against mos-
quito vectors (World Health Organisation, 2006). Topical applica-
tion is suitable as a rapid first stage in a screening cascade, where  
screening large numbers of compounds through tarsal contact  
may not be logistically feasible. Much smaller quantities of  
compound are required for topical application, which is an  
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Table 2. Effect of tarsal contact with 20 compounds, with/without RME, on adult female 
Anopheles gambiae. There were 20 compounds applied in acetone to a glass plate and allowed to 
dry before mosquitoes were exposed to the surface and scored for knock down and mortality  
60 minutes and 24 hours, respectively, after exposure. Percentages have been corrected for 
negative control mortality using Abbott’s formula (Abbott, 1925). Compounds indicated as being 
unclassified have not been listed by IRAC (2018). ND indicates a data point which was not collected.

Compound 
(IRAC Class)

Conc. 
(mg/m2)

Compound alone Compound + RME Breakpoint 
with RME 
(mg AI/m2)

Mean % 
Knock Down

Mean% 
Mortality

Mean % 
Knock Down

Mean % 
Mortality

Dinotefuran 
(4A)

125 100.00 100.00 100.00 100.00

1.25

25 79.17 100.00 93.75 100.00

5 31.03 86.21 97.14 100.00

1.25 28.00 64.00 93.33 100.00

0.25 6.06 15.15 14.29 78.57

0.05 10.00 0.00 3.85 42.31

Clothianidin 
(4A) 

125 11.99 35.71 68.00 100.00

0.25

25 12.95 31.25 89.45 100.00

5 59.03 67.65 96.38 100.00

1.25 60.71 60.00 82.94 100.00

0.25 3.94 6.90 40.00 96.55

0.05 9.60 9.38 0.00 78.13

Sulfoxaflor 
(4C) 

125 6.36 70.91 82.14 96.43

5

25 0.00 40.94 96.55 100.00

5 0.00 26.36 35.71 85.71

1.25 0.00 6.67 0.00 58.62

0.25 0.00 3.03 6.90 10.34

0.05 5.90 0.00 0.00 11.11

Triflumezopyrim 
(4E) 

125 ND ND ND ND

5

25 36.67 50.00 60.71 96.97

5 6.36 20.00 9.09 81.82

1.25 10.37 35.56 0.00 62.22

0.25 0.00 0.00 8.82 25.07

0.05 0.00 0.00 6.67 6.73

Spinetoram 
(5) 

125 7.69 73.08 0.00 100.00

25

25 9.68 29.03 22.50 100.00

5 3.33 10.00 0.00 71.82

1.25 7.69 7.69 6.58 45.10

0.25 7.41 3.70 7.14 40.00

0.05 0.00 6.45 0.00 0.36

Ivermectin 
(6)

125 5.00 100.00 0.00 100.00

0.25

25 5.00 100.00 0.00 100.00

5 0.00 100.00 10.00 100.00

1.25 0.00 70.00 0.00 95.00

0.25 0.00 10.00 0.00 95.00

0.05 0.00 5.00 5.00 60.00
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Compound 
(IRAC Class)

Conc. 
(mg/m2)

Compound alone Compound + RME Breakpoint 
with RME 
(mg AI/m2)

Mean % 
Knock Down

Mean% 
Mortality

Mean % 
Knock Down

Mean % 
Mortality

Avermectin 
(6) 

125 20.94 100.00 ND ND

0.25

25 2.00 100.00 37.50 100.00

5 9.00 37.00 21.21 100.00

1.25 3.45 3.45 14.71 97.06

0.25 0.00 0.00 39.29 92.86

0.05 0.00 0.00 0.00 24.14

Abamectin 
(6) 

125 17.86 96.43 0.00 100.00

1.25

25 13.33 100.00 46.88 100.00

5 6.90 89.66 35.48 100.00

1.25 10.34 41.38 55.88 94.12

0.25 3.33 20.00 9.09 66.67

0.05 0.00 0.00 13.79 13.79

Diafenthiuron 
(12A) 

125 0.00 3.23 ND ND

>25

25 6.90 10.34 0.00 48.17

5 0.00 6.45 0.00 0.00

1.25 10.00 10.00 1.59 1.02

0.25 3.45 0.00 0.00 0.00

0.05 0.00 0.00 0.00 0.00

Fenpyroximate 
(21A) 

125 22.73 59.09 100.0 100.0

5

25 12.90 16.13 100.00 96.28

5 9.68 6.45 85.03 82.01

1.25 7.14 21.43 45.63 61.66

0.25 8.00 4.00 13.94 10.05

0.05 15.38 3.85 2.71 31.64

Tolfenpyrad 
(21A) 

125 70.37 100.00 86.21 100.00

5

25 12.50 3.13 91.18 97.06

5 7.41 11.11 82.86 88.57

1.25 7.14 7.14 53.33 46.67

0.25 0.00 3.33 43.75 18.75

0.05 3.23 0.00 24.14 17.24

Pyridaben 
(21A) 

125 42.72 14.49 75.06 90.00

25

25 43.31 7.05 96.44 100.00

5 23.78 0.00 69.94 68.75

1.25 32.37 0.00 38.45 36.36

0.25 17.86 0.00 0.00 3.23

0.05 34.17 38.83 9.81 15.63

Fenazaquin 
(21A) 

125 20.88 21.55 80.00 80.00

125

25 20.83 0.00 63.64 33.33

5 8.33 3.33 17.65 5.88

1.25 9.44 6.11 3.23 3.23

0.25 0.00 6.67 3.57 7.14

0.05 3.03 0.00 3.23 0.00
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Compound 
(IRAC Class)

Conc. 
(mg/m2)

Compound alone Compound + RME Breakpoint 
with RME 
(mg AI/m2)

Mean % 
Knock Down

Mean% 
Mortality

Mean % 
Knock Down

Mean % 
Mortality

Pyrimidifen 
(21A) 

125 54.07 46.67 90.63 81.25

25

25 50.00 6.67 100.00 100.00

5 6.67 6.67 51.61 54.84

1.25 0.00 0.00 17.86 3.57

0.25 0.00 0.00 10.00 10.00

0.05 0.00 0.00 17.86 14.29

Indoxacarb 
(22A) 

125 3.03 1.55 3.33 100.00

25

25 3.33 10.00 3.23 93.55

5 0.00 0.00 0.00 76.92

1.25 2.78 2.80 3.45 31.03

0.25 0.00 0.00 6.45 6.45

0.05 0.00 0.00 0.00 0.00

Metaflumizone 
(22B) 

125 3.33 3.33 7.41 64.55

5

25 0.00 3.33 3.33 100.00

5 0.00 0.00 6.67 100.00

1.25 0.00 3.33 0.00 61.11

0.25 0.00 3.33 3.33 16.67

0.05 0.00 6.67 3.33 3.33

Tyclopyrazoflor 
(Unclassified) 

125 33.33 73.33 64.29 64.29

>125

25 23.70 68.89 28.13 59.38

5 10.00 40.00 22.58 35.48

1.25 3.03 3.03 17.24 13.79

0.25 6.67 7.04 0.00 0.00

0.05 0.00 0.00 0.00 6.45

Oxazosulfyl 
(Unclassified) 

125 3.33 3.33 36.67 100.00

5

25 3.33 6.36 43.33 100.00

5 0.00 13.89 50.00 90.00

1.25 0.00 0.00 56.67 60.00

0.25 3.33 0.00 3.33 3.33

0.05 0.00 0.00 0.00 6.90

Benzpyrimoxan 
(Unclassified) 

125 3.33 6.67 3.13 0.00

>125

25 0.00 3.33 0.00 7.14

5 0.00 0.00 0.00 0.00

1.25 0.00 0.00 0.00 7.14

0.25 0.00 3.33 0.00 0.00

0.05 0.00 6.67 0.00 3.57

Dicloromezotiaz 
(Unclassified) 

125 0.00 3.33 0.00 13.33

>125

25 0.00 0.00 0.00 3.33

5 0.00 0.00 6.67 6.67

1.25 0.00 0.00 0.00 6.06

0.25 0.00 0.00 19.35 25.81

0.05 0.00 0.00 24.14 24.14
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Figure 3. The 24-hour mortality dose response curves and discriminating doses of the 11 shortlisted compounds. Dose response 
curves were produced by measuring mortality of adult female Anopheles gambiae mosquitoes exposed to dried deposits of compounds 
applied in acetone to the inside of a bottle, in a version of the CDC bottle bioassay. Discriminating dose is calculated as the LC95 multiplied 
by 3.

important consideration when compounds can be costly to  
purchase or to synthesise.

The WHO guidelines recommend tarsal exposure of mosquitoes 
to compound applied to filter paper in a WHO tube assay as the 
next step in screening potential new insecticides (World Health  
Organisation, 2006). However, to minimise the quantities of  
compound required, a method that involved exposing mosqui-
toes to small treated Petri dishes was developed to determine 
efficacy through tarsal contact, the typical route of exposure of  
mosquitoes to the chemistries used in IRS and LNs. 

Of the five compounds which failed to reach the activity  
threshold in the topical application screening, but which were  
taken forward to tarsal testing to validate the screening cascade 
as a whole, all showed little or no activity in the tarsal contact  
assay. Of the 14 compounds which reached the 80% threshold 

for activity in topical application, all were also active in the tarsal 
contact assays in the presence of an adjuvant, although not always 
without adjuvant. A good correlation was seen between the results 
of the two testing stages, with activity of active ingredients when 
applied topically being a good predictor of tarsal contact activity, 
with compounds having very low intrinsic activity being screened 
out in the process. The final stage in this testing cascade, the  
calculation of DD based on 24-hour mortality in mosquitoes 
exposed to a treated bottle, was included to provide robust data on 
the relative potency of the shortlisted compounds. Combined with 
information on cost of goods information, this provide information 
on the cost-efficacy of a compound. The WHO recommends the 
use of twice the calculated LC

99.9
 values determined by baseline 

susceptibility testing against a susceptible laboratory strain or a  
susceptible field population of mosquitoes as the DD (World  
Health Organisation, 2018). However, using the LC

99.9
 is prone 

to error since the confidence intervals are typically wider at the 

Page 12 of 23

Gates Open Research 2019, 3:1464 Last updated: 24 JUN 2019



Figure 4. Relative Potency of Compounds assessed by discriminating dose and tarsal contact assay with RME. Compounds in the 
shortlist ranked from highest (1) to lowest (11) potency according to the breakpoint concentration in the tarsal contact assay with RME is 
plotted against the rank assigned according to the DD. Where compounds have the same breakpoint they were assigned the same rank and 
ranks skipped correspondingly.

extreme lower and upper range of LC values, and a much greater 
number of replicates are required to achieve an accurate estimate 
(Robertson et al., 1980). For this reason, a DD of three times the 
calculated LC

95
 was used in this screen.

The inclusion of a concentration range in the tarsal contact assay 
was designed to give more quantitative data and allow compounds 
to be selected for progression based on level of activity, with a  
breakpoint concentration for each being used as a measure of 
potency. However, there was a poor correlation between this  
breakpoint and the DD for the final list of proposed compounds, 
and activity in the tarsal contact assay was a poor predictor of 
DD. Clothianidin had the lowest DD (i.e. was the most potent) 
of the compounds on the shortlist and reached 80% mortality  
24 hours after exposure to the lowest dose used in the tarsal contact 
assay with RME, which none of the other shortlisted compounds  
achieved. However, this does not hold true with the other  
compounds. For example, spinetoram was the second most potent 
of the compounds in terms of DD but was relatively inactive in 
the tarsal contact assay with RME. There are some key differ-
ences in the format of these assays which may go some way to  
explaining this discrepancy. For example, for a compound hav-
ing a higher volatility, the greater quantity of compound applied 
to the inside of the sealed bottles used in the bottle bioassay may 
have a disproportionate effect relative to the smaller surface area 
and more ventilated environment of the tarsal contact assay. The 
small number of mosquitoes used in each tarsal contact assay 

may also lead to a certain level of ‘noise’ in the data not seen with 
the larger scale of the dose response assays which along with the  
more robust analysis, means that the ranking of compounds for 
potency is likely to be more accurate based on the DD analysis  
than on the earlier stages in the testing cascade.

When viewed together, the data collected on the compounds  
evaluated through this screening cascade suggest that a topical 
application screen is sufficient to eliminate compounds without 
sufficient intrinsic activity against the target mosquito species, 
and that calculating the DD is the most informative subsequent 
assay for the selection of the most potent compounds for further  
development. This more streamlined screening cascade, without 
the inclusion of the tarsal contact assay, may be an efficient way 
to identify compounds with potential for development for LN or 
IRS products. Other tests may be required to identify compounds  
suitable for use in other product classes. Flupyradifurone, for  
example, was rejected based on low efficacy in the topical  
screen but has since been developed into a space spray product 
by Bayer Vector Control, Fludora® Co-Max EW, in combination 
with Transfluthrin. It may be that atomisation of the compound 
into small droplets that contact across a greater area of the mos-
quito serves to increase potency, and that inclusion of a screen-
ing methodology such as a wind tunnel may be valuable for those 
compounds which are not shown to be active in topical applica-
tion. Volatile insecticides with potential for use in commercial  
household insecticide emanators might be better tested in an 
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Figure 5. Chemical structures of the shortlisted compounds. From the 40 compounds taken through the testing cascade for repurposed 
pesticides, 11 are highlighted as potentially suitable for use against mosquito vectors of malaria in an insecticide treated net. Their chemical 
structures are presented here. Compounds are arranged by IRAC MoA class, class 4 Nicotinic acetylcholine receptor competitive modulators 
on the first row, class 22 Voltage-dependent sodium channel blockers on the second, and mitochondrial complex 1 electron transport 
inhibitors on the third. Abamectin is Class 6, a glutamate-gated chloride channel (GluCl) allosteric modulator, spinetoram is Class 5, a 
nicotinic acetylcholine receptor (nAChR) allosteric modulator – Site I. Oxazosulfyl is not listed by IRAC.

assay which exposes mosquitoes without physical contact with a  
compound.

The importance of including an adjuvant
Where tarsal contact assays are to be used to screen com-
pounds for activity against mosquitoes, this study demonstrates 
how important it is for an adjuvant to be applied to the treated  
surface along with the active ingredient. Of the 11 compounds 
shortlisted by following this testing cascade, eight would have 

been rejected as having insufficient tarsal efficacy when applied  
to bottles with acetone alone but, with the addition of the adjuvant 
RME, reached the acceptable threshold of activity: sulfoxaflor,  
triflumezopyrim, spinetoram, fenpyroximate, oxazosulfyl, clo-
thianidin and indoxacarb. Each of these compounds, with the 
exception of oxazosulfyl, which was not included in their screen, 
were rejected by Hoppé et al (2016) as having too low an activity 
against Aedes aegypti, and in some cases also against Anopheles 
stephensi. Although differential activity of insecticides against  
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different species is sometimes seen, the inclusion of an adjuvant 
is a potential explanation, or at least partial explanation, for this 
lack of correlation between studies. Of particular note on this  
list is clothianidin, which is the active ingredient in Sumishield 
50WG and Fludora Fusion, IRS products produced by Sumitomo 
Chemicals and Bayer Crop Science, respectively, which was  
found to be inactive against Aedes aegypti though not tested  
against An. stephensi (Hoppé et al., 2016). 

Susceptibility testing of clothianidin is performed by Sumitomo 
Chemical using the CDC bottle bioassay (Brogdon & Chan, 2010) 
with the addition of 500 µg/bottle Span 80, a surfactant. The 
addition of Span 80 is shown to prevent the formation of large  
crystals of clothianidin on the glass surface which form particu-
larly at high concentrations and are correlated with the reduction 
of mortality in exposed An. gambiae (Ohashi et al., 2018). Using 
this method and a 2-hour exposure time a DD of 20 µg/bottle was  
determined for clothianidin in the presence of Span 80 and a much 
lower potency was measured in its absence. Since the current 
study calculated the DD to be less than half this with a 60-minute  
exposure it is possible that RME may be a more effective  
adjuvant than Span 80, although variations between experimen-
tal conditions cannot be discounted as an alternative explana-
tion. In its current multi-centre study to identify discriminating  
doses, the WHO is including RME in the methodology for  
clothianidin, as well as for flupyradifurone and imidacloprid  
(Corbel, personal communication). 

The activity of a suspension concentrate formulation of  
indoxacarb has been demonstrated on treated nets against  
Anopheles gambiae and Culex quinquefasciatus (Oxborough  
et al., 2015a), which again would have been rejected follow-
ing testing without the addition of RME but was included in the 
final shortlist of proposed compounds in this study. The neonico-
tinoid dinotefuran has been shown to be toxic against strains of  
Anopheles gambiae Giles, Culex quinquefasciatus Say, and Aedes 
aegypti L carrying commonly found resistance mechanisms, and 
may be even more effective against mosquitoes resistant due 
to insensitive acetylcholinesterase (Corbel et al., 2004) and is  
proposed for use in attractive toxic sugar baits (ATSBs) against 
mosquitoes (Khallaayoune et al., 2013). This active ingredient  
was shown not to be active against Aedes aegypti in the absence  
of an adjuvant by Hoppé et al. (2016), whereas the activity  
was shown in the present study to be enhanced by the addition  
of RME and it was included in the final short list. 

Speed of kill
Pyrethroids and other classes of insecticide that have, until 
recently, been used in vector control are fast acting, and it is upon 
the particular modes of action of these compounds that the cur-
rent WHO guidelines for screening compounds for efficacy and  
cross-resistance are based (World Health Organisation, 2006). 
However, there is a growing number of chemistries being  
repurposed from agricultural and other uses into mosquito vec-
tor control, which do not rapidly knock down mosquitoes or 
kill within 24 hours, but which can still be effective in control-
ling malaria vector mosquitoes when used in IRS or LN prod-
ucts. Notably, reports of trials of clothianidin as an IRS indicate 
much longer residual efficacy if mortality of exposed mosquitoes 
is assessed for several days after exposure than if the standard 

24-hour endpoint is used (Agossa et al., 2018; Uragayala et al., 
2018). For these compounds, assessing the mortality over a longer 
period post-exposure and even assessing sub-lethal effects may 
need to be taken into consideration (Oxborough et al., 2015b).  
Sulfoxaflor, spinetoram, fenpyroximate and pyrimidifen were 
judged to be fast acting and ivermectin, abamectin and metaflu-
mizone particularly slow acting based on topical application. No 
compound exhibited substantial knock down activity in tarsal  
contact assays in the absence of RME but, with the addition of  
RME, the majority of mosquitoes exposed to dinotefuran, fenpy-
roximate, pyridaben, fenazaquin and tolfenpyrad were affected 
immediately post-exposure at the breakpoint concentration. The 
differences in observation between these two bioassays may be 
due to a difference in the means of exposure. Speed of action is 
a function of both the mode of action and the physical properties 
of a compound so that even compounds that act on the nervous 
system of insects may be slow acting if it takes the compound  
some time to traverse the cuticle barrier and reach the target 
site. RME seems to help speed up the movement of some active  
ingredients across the cuticle, thus speeding up their action and 
making them effective at lower doses. Several compounds were 
highly effective based on mortality at 24 hours, but had extremely 
low knock down rates, which must be taken into consideration 
when developing new treated net products as exposure to them on 
a LN may not result in any significant blood feeding inhibition.  
Therefore, when considering possible mixture partners of  
compounds for use in LNs, it will be important to consider  
speed of action and to pair compounds where at least one of 
them is fast acting. 

In the tarsal contact assay, no great difference was detected between 
mortality at 24 hours and 48 hours, and in the topical applica-
tion screen the increase in mortality was not great over this same 
period for any compound tested. It is possible, however, that longer  
periods of mortality assessment might have shown a greater  
efficacy for some of the slower-acting, non-neurotoxic compounds,  
as has been reported for clothianidin (Agossa et al., 2018;  
Uragayala et al., 2018). The high level of knock down and  
24-hour mortality seen with clothianidin seems to be at variance 
with these studies, although the high potency of the compound 
may mean that the concentrations used in the tarsal contact assay,  
standard for all compounds in the screen, were high enough 
to cause a rapid effect which might not be seen at operational  
doses. The speed of action judged from topical and from tarsal 
exposure routes were not in complete agreement, an observation 
which warrants further investigation.

Additional compounds considered for their potential value
During the course of this study, six additional compounds were 
considered for inclusion, but not taken through the complete 
testing cascade (Supplementary Data, included in Raw Data  
file). Diflumetorim, a mitochondrial complex 1 inhibitor, and 
acynonapyr, an acaricide with unclassified mode of action, were 
screened for tarsal activity with RME, but did not reach 80% mor-
tality at the highest concentration tested (125 mg/m2) (Lees et al., 
2019). Pyflubumide, IRAC class 25A, a Beta-Ketonitrile deriva-
tive, pyriministrobin, IRAC class 20, and flometoquin, unclas-
sified by IRAC, were screened for tarsal activity both with and  
without RME but did not reach 80% mortality at the highest con-
centration tested (125 mg/m2) in either assay (Lees et al., 2019). 
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Fluralaner (IRAC Class 30), a GABA-gated chloride channel 
allosteric modulator and, therefore, representing a novel mode 
of action for public health, is currently under consideration for  
use as an endectocide (Miglianico et al., 2018). In this screening 
study it was effective in tarsal contact assays at the higher con-
centrations, particularly when mortality was scored at 48 hours,  
both with and without the presence of an adjuvant (Lees 
et al., 2019). Very little knock down was observed at any  
concentration.

The shortlisted compounds: 11 repurposed chemistries 
with potential for use in public health
A total of 11 compounds from eight IRAC classes and  
oxazosulfyl (which is unclassified by IRAC) were shortlisted at 
the conclusion of this testing cascade on the basis of their bio-
logical efficacy against a pyrethroid susceptible lab colony of  
Anopheles gambiae. Two of these, both from the neonicotinoid  
IRAC class 4, have now been formulated into products for 
malaria control: clothianidin is the active ingredient in two IRS 
products, SumiShield™ 50WG (from Sumitomo Chemical) and 
Fludora®Fusion (from Bayer Crop Science, in combination with 
deltamethrin); and dinotefuran is being evaluated in trials of  
attractive targeted sugar baits (Khallaayoune et al., 2013). Oxa-
zosulfyl is in development against rice pests by Sumitomo under 
the trade name Alles™. Indoxacarb (IRAC class 22 Voltage- 
dependent sodium channel blocker) was developed by DuPont 
as an oxadiazine pesticide against lepidopterans and has been  
formulated into a line of commercial pesticidal products by 
Syngenta: Advion and Arilon. Spinetoram (IRAC class 5) is  
a derivative of biologically active substances (spinosyns) pro-
duced by the soil actinomycete Saccharopolyspora spinosa, 
discovered Dow AgroSciences LLC. and sold as Radiant® SC. 
Spinetoram affects nicotinic acetylecholine receptors and GABA 
receptors on postsynaptic membranes in insect nervous systems,  
thereby causing abnormal neural transmission. Metaflumizone 
is a novel semicarbazone insecticide (IRAC class 22B) derived 
chemically from the pyrazoline sodium channel blocker insec-
ticides (SCBIs) discovered at Philips-Duphar in the early 1970s. 
This compound is a novel sodium channel blocker insecticide, 
which blocks sodium channels by binding selectively to the slow- 
inactive state which is characteristic of SCBIs (Salgado &  
Hayashi, 2007). Abamectin is a macrocyclic lactone that acts 
through chloride channel activation. Discovered in 1981, this com-
pound has been shown to be active in contact bioassays against 
house flies, cockroaches and fire ants, and has been employed 
in combination with fenpyroximate as a novel durable wall  
lining (Malima et al., 2017). Sulfoxaflor is from the sulfoximine 
class of compounds (IRAC class 4C) which are structurally  
distinct from neonicotinoids. This compound is marketed  
by Dow AgroSciences as Isoclast™ Active for use against sap- 
feeding insect pests. Triflumezopyrim, belongs to the novel 
class of mesoionic insecticides (IRAC class 4E), binding to the  
orthosteric site of the nicotinic acetylcholine receptor and, 
therefore, also distinct from the neoniconoids (Cordova et al., 
2016). Triflumezopyrim is being commercialized by Corteva  
Agriscience for control of hoppers, including the brown plan-
thopper, Nilaparvata lugens, including populations showing  

resistance to neonicotinoids such as imidacloprid (Zhang, 2017). 
Tolfenpyrad and fenpyroximate are classified by IRAC in Group 
21A mitochondrial electron transport inhibitors which inhibit the 
electron transfer system of energy metabolism and respiration 
in the mitochondria of susceptible insects. Tolfenpyrad has been 
employed within an ATSB system in studies in Tanzania (Stewart  
et al., 2013), and fenpyroximate is a broad spectrum acaricide 
which has been employed with abamectin as a novel durable  
wall lining (Malima et al., 2017).

There are non-entomological parameters to be considered  
before deciding which of the shortlisted compounds should be 
progressed for consideration as a component in a vector control  
product, including physiochemical properties and suitability  
for use on an LN, human safety risk assessment and cost of 
production. Crucially, the efficacy of these compounds must  
also be assessed against mosquitoes resistant to pyrethroids 
and other existing classes of insecticide to check for any pre- 
existing cross-resistance. Although the modes of action of these 
shortlisted compounds are novel to mosquito control, cross resist-
ance in field strains may occur through metabolic detoxifica-
tion which is not related to mode of action (David et al., 2013)  
and is the predominant form of resistance in populations of  
Anopheles funestus, where the kdr point mutation is absent  
(Tchigossou et al., 2018). Cross resistance, should it be identified, 
would likely make a compound unsuitable for progression.

Conclusion
A screening cascade for evaluating the potential of existing  
insecticidal compounds for repurposing into control tools against 
malaria vectors has been developed. This was used to screen  
40 compounds for intrinsic activity and tarsal contact activity, 
and to determine relative potency. The inclusion of the adjuvant  
RME was shown to be critical to avoid eliminating compounds 
where efficacy could be improved through formulation. A more 
streamlined testing cascade is suggested, that relies on topi-
cal application and determination of discriminating dose in 
the presence of an adjuvant. This would allow for screening of  
compounds to progress more quickly, but without losing criti-
cal information, although further validation of this streamlined 
testing cascade is required. There were 11 compounds were  
identified offering novel modes of action in public health, a 
critical step in the development of products that can control  
insecticide resistant populations of Anopheline vectors of  
malaria. The next key step in progressing these compounds towards 
product development will be to assess their efficacy against 
strains of Anopheles expressing resistance to existing vector  
control insecticides, to assess cross resistance risk. Additional  
information, beyond entomological efficacy, must also be con-
sidered when assessing the suitability of these compounds for  
development into new vector control tools, including safety,  
cost efficacy, and physicochemical properties relating to product 
formulation.

Data availability
Figshare: A comprehensive testing cascade to identify resistance  
breaking repurposed insecticides for next generation vector 
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control tools: screening a panel of chemistries against a malaria  
vector - Raw Data. https://doi.org/10.6084/m9.figshare.c.4490246. 
v1 (Lees et al., 2019).

This collection contains the following underlying data:

•    Raw data Phase 1 Topical Application.xlsx (raw data for  
topical application of 40 compounds for 60-min knock down 
and 24- and 48-hour mortality).

•    Raw data Phase 2 Tarsal Contact Assay.xlsx (60-min knock 
down, and 24- and 48-hour mortality observations of mosqui-
toes exposed to insecticides applied to a glass petri dish).

•    Raw data Phase 3 Discriminating Doses.xlsx (24-hour  
mortality data from CDC bottle bioassay dose response  
experiments used to calculate LC values for 11 compounds).

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).

Grant information
This work was funded by the innovative vector control consor-
tium (IVCC), who are supported by the Bill and Melinda Gates  
Foundation, under grant number OPP1148615. 

The funders had no role in study design, data collection and  
analysis, decision to publish, or preparation of the manuscript. 

Acknowledgements
The authors would like to thank Helen Williams and members 
of Liverpool Insect Testing Establishment (LITE) team past and 
present for rearing all mosquitoes and conducting much of the  
testing described at the Liverpool School of Tropical Medicine 
(LSTM). Our gratitude also goes out to members of the IVCC 
expert scientific advisory committee who contributed to the  
selection of compounds for the long list and other valuable  
advice, notably Trevor Perrier and James Turner.

Author information
Anthony White is a Scientific Advisor to IVCC, Liverpool School 
of Tropical Medicine, Liverpool, UK.

References

 Abbott WS: A method of computing the effectiveness of an insecticide. J Econ 
Entomol. 1925; 18(2): 265–267.  
Publisher Full Text 

 Agossa FR, Padonou GG, Koukpo CZ, et al.: Efficacy of a novel mode of 
action of an indoor residual spraying product, SumiShield® 50WG against 
susceptible and resistant populations of Anopheles gambiae (s.l.) in Benin, 
West Africa. Parasit Vectors. 2018; 11(1): 293.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Bhatt S, Weiss DJ, Cameron E, et al.: The effect of malaria control on 
Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015; 
526(7572): 207–211.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 BMGF and BCG: Market Assessment for Public Health Pesticide Products. 
Seattle: Bill and Melinda Gates Foundation and Boston Consulting Group; 2007. 
2007. 

 Brogdon W, Chan A: Guideline for evaluating insecticide resistance in vectors 
using the CDC bottle bioassay. The Centers for Disease Control and Prevention 
(CDC), Atlanta. 2010.  
Reference Source

 Corbel V, Duchon S, Zaim M, et al.: Dinotefuran: a potential neonicotinoid 
insecticide against resistant mosquitoes. J Med Entomol. 2004; 41(4): 712–7. 
PubMed Abstract | Publisher Full Text 

 Cordova D, Benner EA, Schroeder ME, et al.: Mode of action of triflumezopyrim: 
A novel mesoionic insecticide which inhibits the nicotinic acetylcholine 
receptor. Insect Biochem Mol Biol. 2016; 74: 32–41.  
PubMed Abstract | Publisher Full Text 

 David JP, Ismail HM, Chandor-Proust A, et al.: Role of cytochrome P450s in 
insecticide resistance: impact on the control of mosquito-borne diseases 
and use of insecticides on Earth. Philos Trans R Soc Lond B Biol Sci. 2013; 
368(1612): 20120429.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Edi CV, Koudou BG, Jones CM, et al.: Multiple-insecticide resistance in 
Anopheles gambiae mosquitoes, Southern Côte d’Ivoire. Emerg Infect Dis. 
2012; 18(9): 1508–1511.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Hemingway J, Beaty BJ, Rowland M, et al.: The Innovative Vector Control 
Consortium: improved control of mosquito-borne diseases. Trends Parasitol. 
2006; 22(7): 308–12.  
PubMed Abstract | Publisher Full Text 

 Hemingway J, Ranson H, Magill A, et al.: Averting a malaria disaster: will 
insecticide resistance derail malaria control? Lancet. 2016; 387(10029): 1785–88.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Hoppé M, Hueter OF, Bywater A, et al.: Evaluation of Commercial Agrochemicals 

as New Tools for Malaria Vector Control. Chimia (Aarau). 2016; 70(10): 721–729.  
PubMed Abstract | Publisher Full Text 

 IRAC: IRAC Mode of Action Classification Scheme. Version 9.1. 2018.  
Reference Source

 Khallaayoune K, Qualls WA, Revay EE, et al.: Attractive toxic sugar baits: control 
of mosquitoes with the low-risk active ingredient dinotefuran and potential 
impacts on nontarget organisms in Morocco. Environ Entomol. 2013; 42(5): 
1040–5.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Lees R, Praulins G, Davies R, et al.: A comprehensive testing cascade to 
identify resistance breaking repurposed insecticides for next generation 
vector control tools: screening a panel of chemistries against a malaria vector 
- Raw Data. figshare. Collection. 2019.  
http://www.doi.org/10.6084/m9.figshare.c.4490246.v1

 Malima R, Emidi B, Messenger LA, et al.: Experimental hut evaluation of a novel 
long-lasting non-pyrethroid durable wall lining for control of pyrethroid-
resistant Anopheles gambiae and Anopheles funestus in Tanzania. Malar J. 
2017; 16(1): 82.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Matthews BJ, Dudchenko O, Kingan SB, et al.: Improved reference genome 
of Aedes aegypti informs arbovirus vector control. Nature. 2018; 563(7732): 
501–507.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 McDougall P: A Consultancy Study for CropLife International, CropLife America 
and the European Crop Protection Association. 2016.  
Reference Source

 Miglianico M, Eldering M, Slater H, et al.: Repurposing isoxazoline veterinary 
drugs for control of vector-borne human diseases. Proc Natl Acad Sci U S A. 
2018; 115(29): E6920–E6926.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 N'Guessan R, Odjo A, Ngufor C, et al.: A Chlorfenapyr Mixture Net Interceptor® 
G2 Shows High Efficacy and Wash Durability against Resistant Mosquitoes in 
West Africa. PLoS One. 2016; 11(11): e0165925.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Ngufor C, N'guessan R, Fagbohoun J, et al.: Olyset Duo® (a pyriproxyfen and 
permethrin mixture net): an experimental hut trial against pyrethroid resistant 
Anopheles gambiae and Culex quinquefasciatus in Southern Benin. PLoS One. 
2014; 9(4): e93603.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Ohashi K, Sakamoto N, Himeidan YE, et al.: Optimizing the CDC bottle bioassay 
for susceptibility testing of clothianidin. Poster LB-5281, American Society of 
Tropical Medicine and Hygiene Annual Meeting, 2018. 2018. 

 Oxborough RM, N'Guessan R, Kitau J, et al.: A new class of insecticide for 

Page 17 of 23

Gates Open Research 2019, 3:1464 Last updated: 24 JUN 2019

https://dx.doi.org/10.6084/m9.figshare.c.4490246.v1
https://dx.doi.org/10.6084/m9.figshare.c.4490246.v1
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.1093/jee/18.2.265a
http://www.ncbi.nlm.nih.gov/pubmed/29747684
http://dx.doi.org/10.1186/s13071-018-2869-6
http://www.ncbi.nlm.nih.gov/pmc/articles/5946391
http://www.ncbi.nlm.nih.gov/pubmed/26375008
http://dx.doi.org/10.1038/nature15535
http://www.ncbi.nlm.nih.gov/pmc/articles/4820050
https://www.cdc.gov/malaria/resources/pdf/fsp/ir_manual/ir_cdc_bioassay_en.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15311465
http://dx.doi.org/10.1603/0022-2585-41.4.712
http://www.ncbi.nlm.nih.gov/pubmed/27130855
http://dx.doi.org/10.1016/j.ibmb.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/23297352
http://dx.doi.org/10.1098/rstb.2012.0429
http://www.ncbi.nlm.nih.gov/pmc/articles/3538419
http://www.ncbi.nlm.nih.gov/pubmed/22932478
http://dx.doi.org/10.3201/eid1809.120262
http://www.ncbi.nlm.nih.gov/pmc/articles/3437712
http://www.ncbi.nlm.nih.gov/pubmed/16713358
http://dx.doi.org/10.1016/j.pt.2006.05.003
http://www.ncbi.nlm.nih.gov/pubmed/26880124
http://dx.doi.org/10.1016/S0140-6736(15)00417-1
http://www.ncbi.nlm.nih.gov/pmc/articles/6215693
http://www.ncbi.nlm.nih.gov/pubmed/27779931
http://dx.doi.org/10.2533/chimia.2016.721
https://www.irac-online.org/documents/moa-classification/?ext=pdf
http://www.ncbi.nlm.nih.gov/pubmed/24331613
http://dx.doi.org/10.1603/EN13119
http://www.ncbi.nlm.nih.gov/pmc/articles/3918905
http://www.doi.org/10.6084/m9.figshare.c.4490246.v1
http://www.ncbi.nlm.nih.gov/pubmed/28212636
http://dx.doi.org/10.1186/s12936-017-1710-6
http://www.ncbi.nlm.nih.gov/pmc/articles/5316163
http://www.ncbi.nlm.nih.gov/pubmed/30429615
http://dx.doi.org/10.1038/s41586-018-0692-z
http://www.ncbi.nlm.nih.gov/pmc/articles/6421076
https://croplife.org/wp-content/uploads/2016/04/Cost-of-CP-report-FINAL.pdf
http://www.ncbi.nlm.nih.gov/pubmed/29967151
http://dx.doi.org/10.1073/pnas.1801338115
http://www.ncbi.nlm.nih.gov/pmc/articles/6055183
http://www.ncbi.nlm.nih.gov/pubmed/27851828
http://dx.doi.org/10.1371/journal.pone.0165925
http://www.ncbi.nlm.nih.gov/pmc/articles/5112870
http://www.ncbi.nlm.nih.gov/pubmed/24699827
http://dx.doi.org/10.1371/journal.pone.0093603
http://www.ncbi.nlm.nih.gov/pmc/articles/3974762


malaria vector control: evaluation of mosquito nets treated singly with 
indoxacarb (oxadiazine) or with a pyrethroid mixture against Anopheles 
gambiae and Culex quinquefasciatus. Malar J. 2015a; 14: 353.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Oxborough RM, N'Guessan R, Jones R, et al.: The activity of the pyrrole 
insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing 
and screening of non-neurotoxic insecticides for malaria vector control. Malar 
J. 2015b; 14: 124.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Ranson H, Lissenden N: Insecticide Resistance in African Anopheles 
Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain 
Malaria Control. Trends Parasitol. 2016; 32(3): 187–196.  
PubMed Abstract | Publisher Full Text 

 Robertson JL, Russell RM, Savin NE: POLO: a user’s guide to Probit Or LOgit 
analysis. Gen. Tech. Rep. PSW-38, illus. Pacific Southwest Forest and Range Exp. 
Stn., Forest Serv., U.S. Dep. Agric., Berkeley, Calif. 1980; 15.  
Publisher Full Text 

 Salgado VL, Hayashi JH: Metaflumizone is a novel sodium channel blocker 
insecticide. Vet Parasitol. 2007; 150(3): 182–9.  
PubMed Abstract | Publisher Full Text 

 Stewart ZP, Oxborough RM, Tungu PK, et al.: Indoor application of attractive 
toxic sugar bait (ATSB) in combination with mosquito nets for control of 
pyrethroid-resistant mosquitoes. PLoS One. 2013; 8(12): e84168.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Tchigossou G, Djouaka R, Akoton R, et al.: Molecular basis of permethrin and 
DDT resistance in an Anopheles funestus population from Benin. Parasit 
Vectors. 2018; 11(1): 602.  
PubMed Abstract | Publisher Full Text | Free Full Text 

 Turner JA, Ruscoe CNE, Perrior TR: Discovery to Development: Insecticides for 
Malaria Vector Control. Chimia (Aarau). 2016; 70(10): 684–693.  
PubMed Abstract | Publisher Full Text 

 Uragayala S, Kamaraju R, Tiwari SN, et al.: Village-scale (Phase III) evaluation 
of the efficacy and residual activity of SumiShield® 50 WG (Clothianidin 50%, 

w/w) for indoor spraying for the control of pyrethroid-resistant Anopheles 
culicifacies Giles in Karnataka state, India. Trop Med Int Health. 2018; 23(6): 
605–615.  
PubMed Abstract | Publisher Full Text 

 World Health Organisation: Report of the WHO Informal Consultation. Test 
procedures for insecticide resistance monitoring in malaria vectors, bio-
efficacy and persistence of insecticides on treated surfaces. Geneva: World 
Health Organization: Parasitic Diseases and Vector Control (PVC)/Communicable 
Disease Control, Prevention and Eradication (CPE); WHO/CDS/CPC/MAL/98.12. 
1998; 43.  
Reference Source

 World Health Organisation: Guidelines for testing adulticides for indoor residual 
spraying and treatment of mosquito nets. World Health Organisation (WHO), 
Geneva. 2006.  
Reference Source

 World Health Organisation: WHO recommended insecticides for indoor residual 
spraying against malaria vectors. World Health Organisation (WHO), Geneva. 
2015. 

 World Health Organisation: WHO recommended insecticide products 
for treatment of mosquito nets for malaria vector control. World Health 
Organisation (WHO), Geneva. 2016.  
Reference Source

 World Health Organisation: Test procedures for insecticide resistance 
monitoring in malaria vector mosquitoes, second edition. Global Malaria 
Programme, World Health Organisation (WHO), Geneva. 2018.  
Reference Source

 World Health Organisation: World malaria report 2018. World Health Organisation 
(WHO), Geneva. 2019.  
Reference Source

 Zhang W: Mesoionic Pyrido[1,2-a]pyrimidinone Insecticides: From Discovery 
to Triflumezopyrim and Dicloromezotiaz. Acc Chem Res. 2017; 50(9): 2381–
2388.  
PubMed Abstract | Publisher Full Text 

Page 18 of 23

Gates Open Research 2019, 3:1464 Last updated: 24 JUN 2019

http://www.ncbi.nlm.nih.gov/pubmed/26377930
http://dx.doi.org/10.1186/s12936-015-0890-1
http://www.ncbi.nlm.nih.gov/pmc/articles/4573922
http://www.ncbi.nlm.nih.gov/pubmed/25879231
http://dx.doi.org/10.1186/s12936-015-0639-x
http://www.ncbi.nlm.nih.gov/pmc/articles/4390098
http://www.ncbi.nlm.nih.gov/pubmed/26826784
http://dx.doi.org/10.1016/j.pt.2015.11.010
http://dx.doi.org/10.2737/PSW-GTR-38
http://www.ncbi.nlm.nih.gov/pubmed/17959312
http://dx.doi.org/10.1016/j.vetpar.2007.08.032
http://www.ncbi.nlm.nih.gov/pubmed/24367638
http://dx.doi.org/10.1371/journal.pone.0084168
http://www.ncbi.nlm.nih.gov/pmc/articles/3868566
http://www.ncbi.nlm.nih.gov/pubmed/30458849
http://dx.doi.org/10.1186/s13071-018-3115-y
http://www.ncbi.nlm.nih.gov/pmc/articles/6247751
http://www.ncbi.nlm.nih.gov/pubmed/27779925
http://dx.doi.org/10.2533/chimia.2016.684
http://www.ncbi.nlm.nih.gov/pubmed/29602196
http://dx.doi.org/10.1111/tmi.13056
https://apps.who.int/iris/bitstream/handle/10665/64879/WHO_CDS_CPC_MAL_98.12.pdf?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/69296/WHO_CDS_NTD_WHOPES_GCDPP_2006.3_eng.pdf?sequence=1
https://www.paho.org/hq/dmdocuments/2016/2016-cha-insecticide-list-treat-malaria.pdf
https://apps.who.int/iris/bitstream/handle/10665/250677/9789241511575-eng.pdf?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf
http://www.ncbi.nlm.nih.gov/pubmed/28825462
http://dx.doi.org/10.1021/acs.accounts.7b00311


Gates Open Research

 

Open Peer Review

   Current Peer Review Status:

Version 1

 24 June 2019Reviewer Report

https://doi.org/10.21956/gatesopenres.14063.r27185

© 2019 Oxborough R. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 Richard M. Oxborough
PMI VectorLink Project, Abt Associates, Rockville, MD, USA

This is a very important study, given the relative lack of insecticides currently registered for malaria
control. The methods used were generally appropriate. I agree with the authors that the petri dish
bioassays are not necessary & that topical application followed by bottle bioassay is a better
testing cascade. 

Overall, the paper is well-written & I only have a few minor comments for the authors to address. 
Title

I would recommend removing 'comprehensive'. As the authors point out, flupyradifurone was rejected
based on the topical screen, but has since been developed as a space spray. 
I also don't agree with the term 'resistance breaking'. This is a time-sensitive terminology. Bendiocarb
could have been considered resistance breaking when first used for IRS, but now that resistance has
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Suggest title to be "A testing cascade to identify repurposed insecticides for next-generation vector
control tools: screening a panel of chemistries against a malaria vector".

Introduction (& throughout)
Long-lasting insecticidal net should be abbreviated as LLIN and not LN. LN is a specific abbreviation used
by WHO to denote the 'formulation'. e.g. Sumishield WG, Interceptor LN. However, for general use LLIN
should be the abbreviation for long-lasting insecticidal net. 

Introduction
One of the key findings from the paper is the use of RME as an adjuvant which had a huge effect on
mortality for several insecticides. It would be great if you can add more background about RME. Has it
been used previously in mosquito bioassays? Where did this idea come from? Any additional background
info you can provide would be very useful. How did you decide on 100g/m2 RME for Petri dish and
1.5mg/bottle? 

Figure 1
Text related to Phase 1 mentions '>1' means that activity was not observed even when the highest
concentration was used. I don't see >1 anywhere in the diagram, only 0.01, 0.1, 1. 

Methods (holding period)

I was initially surprised to see results reported at only 24h, especially considering clothianidin formulations
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I was initially surprised to see results reported at only 24h, especially considering clothianidin formulations
have been held for several days in other papers. However, it was good to see that there is a section in the
discussion on speed of kill. I would recommend for future cascade testing to increase the holding period
to at least 72h. 

Methods (dosages tested)
It wasn't clear to me why 1% was chosen as the maximum for topical bioassay & 125mg/m2 for petri dish. 

Results (pg 8)
Fenazaquin was rejected due to low topical application but passed tarsal bioassays. I think this is an
important finding to flag up in the discussion as there are bound to always be some insecticides that fail 1
type of screening but may still be of use. 

Figure 5
It is not clear why the chemical structures are presented in this paper. There is no discussion of the
relevance in the text. Suggest to either add text related to the chemical structures or remove the figure. 

Discussion (pg 12)
"all showed little or no activity in the tarsal contact assay". This ignores Fenazaquin, which failed topical
screening but killed 80% in tarsal bioassays.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Medical entomology

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

 03 June 2019Reviewer Report
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© 2019 Hill C. This is an open access peer review report distributed under the terms of the Creative Commons Attribution
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work isLicence

properly cited.

   Catherine A. Hill
Department of Entomology, Purdue University, West Lafayette, IN, USA

General Comments:
The manuscript of Lees et al., was a pleasure to read. It is extremely well written, there is logical
presentation of both the experimental work and the discussion, the experimental approach is valid,
the data are well presented, and the conclusions are appropriate.
The manuscript represents a robust body of work and is significant on several levels: the authors
describe a methodical screening approach to analyze registered pesticides representing major
insecticide classes recognized by the IRAC, and identify chemistries with intrinsic contact toxicity
to adult Anopheles mosquitoes. They identified eleven actives with modes of action distinct from
existing mosquito control chemistries. These chemistries have potential for use as resistance
breaking products and re-purposing in LNs and possibly IRS. Given the limitations of existing
screening regimes and chemical discovery programs, coupled with the urgent need for new mode
of action insecticides, the approach is refreshing, and the results of significant practical impact.
Several features of the study are very attractive. First, the authors describe a primary screen based
on adult mosquitoes; this is unique and has potential to accelerate the discovery process for
adulticides in particular. Second, their data suggest that the inclusion of an adjuvant in the
secondary tarsal assay may improve hit rate and enhance recovery of actives. Lastly, their data
suggest that activity detected in an adult topical assay may be indicative of activity in the tarsal
screen, and that the insecticide discovery process could be further streamlined by elimination of
one of these steps.
Figure 1 while detailed, is particularly effective as an overview of a complex screening process
comprising multiple decision points
The discussion is lengthy but thorough, addressing all the questions that came to mind for this
reviewer regarding such points as further testing on resistant strains and in combination with
existing products etc.
The authors provide rational for use of a DD value that is 3 X the LC  – good – and make clear
their case for a further streamlining their screen.

 Minor revisions to be made at discretion of authors           
Page 12, para 3, line 11; “…this provides…” Plural?
Figure 2. This reviewer found the figure difficult to view. The juxtaposed red and green segments
may be a challenge for some readers, and it is difficult to identify the segment representing
compounds rejected for low tarsal activity. The authors might consider to redraw this figure.
Could Figure 4 perhaps be strengthened by inclusion of compound names? This would make it
easier for readers to cross reference between figures and tables.

 Further Questions/Considerations
The object of the study is a high-throughput primary screen to rapidly identify adulticides. Typically
primary screens test in triplicate/quadruplicate at single, low dose. Thinking ahead, do the authors
see other ways to increase capacity/speed by revisions to the screen?
The reviewer wondered if it might be possible to reserve the modified CDC bottle assay tertiary
screen for the small number of high priority chemistries likely to move forward in development, but
the disconnect between tarsal and bottle assay data, makes it clear that this is not possible. 
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Vector biology (mosquitoes and ticks), insecticide discovery and development,
high-throughput and target-based insecticide discovery, arthropod molecular biology and genomics,
arthropod toxicology, vector-pathogen interactions,

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

 29 May 2019Reviewer Report
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work is properly cited.

   Lizette L. Koekemoer
Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of
the National Health Laboratory Service, Johannesburg, South Africa

This paper highlights the development of a pipeline - procedure (screening cascade) to evaluate a
number of new chemistries against an African malaria vector. The paper is well written, clear and the
authors provided sufficient information under methodology section for the reader to follow.

With increase reports of insecticide resistance to current classes of insecticides, there is an urgent need
to expand chemical compound evaluations to identify novel compounds. A standardized procedure will
assist in comparison of data between different stakeholders and the paper addresses the need for the
development of this screening cascade.
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development of this screening cascade.

It would be good for the authors to standardise on acronyms such as LLINs (Long-lasting insecticidal
nets) as per WHO format and not LNs. I am in favour of indexing the paper.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Vector control, vector biology

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.
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