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Metabolic phenotypes are the products of interactions among a variety of factors—dietary, 

other lifestyle/environmental, gut microbial and genetic1–3. We use a large-scale exploratory 

analytical approach to investigate metabolic phenotype variation across and within four 

human populations, based on1H NMR spectroscopy. Metabolites discriminating across 

populations are then linked to data for individuals on blood pressure, a major risk factor for 

coronary heart disease and stroke (leading causes of mortality worldwide4). We analyse 

spectra from two 24-hour urine specimens for each of 4,630 participants from the 

INTERMAP epidemiological study5, involving 17 population samples aged 40–59 in China, 

Japan, UK and USA. We show that urinary metabolite excretion patterns for East Asian and 

western population samples, with contrasting diets, diet-related major risk factors, and 
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coronary heart disease/stroke rates, are significantly differentiated (P < 10−16), as are 

Chinese/Japanese metabolic phenotypes, and subgroups with differences in dietary 

vegetable/animal protein and blood pressure6. Among discriminatory metabolites, we 

quantify four and show association (P < 0.05 to P < 0.0001) of mean 24-hour urinary 

formate excretion with blood pressure in multiple regression analyses for individuals. Mean 

24-hour urinary excretion of alanine (direct) and hippurate (inverse), reflecting diet and gut 

microbial activities2,7, are also associated with blood pressure of individuals. Metabolic 

phenotyping applied to high quality epidemiological data offers the potential to develop an 

area of aetiopathogenetic knowledge involving discovery of novel biomarkers related to 

cardiovascular disease risk.

Prehypertensive and hypertensive blood pressure (BP) is prevalent among a majority of 

middle-aged and older adults in most countries, and is a major risk factor perpetuating the 

cardiovascular disease epidemic8. The goal of the INTERMAP metabonomic study1 is to 

develop metabolic phenotyping approaches to elucidate aetiopathogenetic mechanisms 

underlying the global BP problem and related disorders8. It aims to identify urinary 

metabolites that discriminate across population/subgroup strata defined by geographic or 

dietary criteria, and assess—for individuals—independent relationships of these metabolites 

to BP. The basic concepts are: (1) for population/subgroup strata with differing coronary 

heart disease (CHD)/stroke rates or BP levels, the differences are largely attributable to 

lifestyles, especially diet; (2) these differences across strata are reflected in urinary 

metabolite patterns and specific metabolic biomarkers; and (3) for individuals, these 

biomarkers may relate independently to their BP. We use a technology platform that is 

analytically unbiased and detects a wide variety of metabolites from dietary, gut microbial 

and host metabolism sources in one analytical sweep1, thus maximizing opportunity for 

novel biomarker discovery. The numbers of individuals in our population samples are as 

follows: China, n = 832; Japan, n = 1,138; UK, n = 496; and USA, n = 2,164.

A schematic summarizing data-analysis strategy is shown in Supplementary Fig. 1a, b. From 

hierarchical clustering analysis (HCA) with group average linkage applied to the 

probabilistic quotient normalized9 median1H NMR spectrum (Methods), we find that East 

Asian and western populations have well-differentiated metabolic phenotypes (Fig. 1). 

Results fo rfirst and second urine specimens show highly similar clustering order (Fig. 1 and 

Supplementary Fig. 2a), as do HCA dendrograms generated using the single-linkage method 

(Supplementary Fig. 2b, c). Geographic metabolic differences are greater than gender 

differences. Metabolic phenotypes of southern (Guangxi) and northern (Beijing and Shanxi) 

Chinese are also differentiated; those of UK and USA population samples overlap. These 

findings are consistent with principal components analysis (PCA) results (Fig. 2a–d and 

Supplementary Fig. 3a–d). The plots of PCA scores show similarity of median urine 

metabolite profiles by gender, with separate subclusters for China (north and south), Japan 

and the two western population samples. Analyses of spectroscopic data sets from first and 

second urine specimens are highly consistent (Supplementary Fig. 4a), as are analyses 

limited to normal weight, non-diabetic participants (Supplementary Fig. 4b), and analyses 

repeated after removal of metabolic outliers (individual data shown in Supplementary Fig. 5) 

using the 95% Hotelling’s T2 statistic10 (Methods and Supplementary Fig. 6a, b).
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We examine pairwise comparisons across countries (except for UK and USA which are 

poorly discriminated) and show significant differences (Hotelling’s T2, P < 10−16) using 

orthogonally filtered partial least squares discriminant analysis (O-PLS-DA)11, after 

exclusion of metabolic outliers. Japanese living in Japan and Japanese Americans are also 

differentiated (P < 10−16). Discriminatory metabolites (Supplementary Table 1a, b) are 

identified from the O-PLS-DA coefficients on the basis of four criteria: P value, the rank of 

the P value, stability of rank and regression coefficient strength from a bootstrap resampling 

procedure (Methods). They include metabolites of predominantly dietary origin, for 

example, amino acids, creatine and trimethylamine-N-oxide; compounds related to energy 

metabolism (acetylcarnitine, tricarboxylic acid cycle intermediates); and dicarboxylic acids 

(for example, suberate). We also find that population gut microbial-mammalian co-

metabolites2 are discriminatory, for example, hippurate, phenylacetylglutamine and 

methylamines; we have previously shown structural differences in Chinese and American 

gut microbial speciation and direct linkage of microbial composition to metabolic 

phenotype12.

Participants consuming dietary protein predominantly from vegetable or from animal 

sources (subgroups differing in BP levels6) are also differentiated (Hotelling’s T2 P < 10−13) 

for East Asian and western samples considered separately (Fig. 3a, b and Supplementary 

Fig. 7a, b). Significant discriminatory metabolites (Fig. 3c, d and Supplementary Fig. 7c,d) 

closely correspond to those from the pairwise country comparisons.

We then quantify four discriminatory metabolites (alanine, formate, hippurate and N-

methylnicotinate) from the1H NMR spectra (Methods and Supplementary Fig. 1b) and 

analyse these with respect to all other spectral variables usingO-PLS regression11. Largest 

r2values (first urine specimens), other than for intra-molecular correlations, are (1) for 

alanine, with 2-oxoglutarate, reflecting close metabolic linkage via glutamate-pyruvate 

transaminase activity13; (2) for formate, with alanine, explained by pyruvate/Co-A 

metabolism; (3) for hippurate with N-methylnicotinate; and (4) for N-methylnicotinate with 

hippurate, reflecting common or related renal transporter/secretion mechanisms. We also 

find significant correlations (|r| ≥ 0.10, P < 10−9) with other variables (Supplementary Table 

2): (1) alanine, positively with energy intake, dietary cholesterol, body mass index, 24-h 

urinary Na+ and K+ and Na+/K+ ratio; inversely with alcohol intake; (2) formate, positively 

with energy intake, 24-h urinary Na+ and K+; (3) hippurate, positively with dietary fibre, 

Mg2+, phosphorus, 24-h urinary Na+ and K+; inversely with alcohol intake and urinary Na
+/K+ ratio; and (4) N-methylnicotinate, positively with dietary Mg2+, 24-h urinary Na+ and 

K+; inversely with urinary Na+/K+ ratio.Strongest correlationsare with 24-h urinary Na+ 

excretion for alanine (Pearson r = 0.39) and formate (r = 0.37), and with 24-h urinary K+ 

excretion for hippurate (r = 0.40) (when excreted as the sodium salt, hippurate can cause an 

aldosterone-mediated increase in K+ excretion14).

In multiple linear regression models (four per metabolite for each of systolic and diastolic 

BP), accounting for the key non-dietary and dietary/urinary excretion variables associated 

with BP15, we find significant inverse associations of formate with both systolic and 

diastolic BP (all eight models, Table 1); also of hippurate in six models, and a significant 

direct association of alanine with BP in five models (Table 1). Regression estimates are 
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similar or larger with analyses restricted to ‘non-intervened’ individuals16, that is, people 

without special diet/nutritional supplements or diagnosis/treatmentfor cardiovascular disease 

or diabetes (Supplementary Table 3). Technical errors and reliability estimates of quantified 

metabolites are provided in Supplementary Information and Supplementary Table 4.

Using large-scale metabolic phenotyping, we have identified novel candidate urinary 

biomarkers related to BP. Endogenous formate is largely the product of one-carbon 

metabolism via the activities of mitochondrial and cytosolic serine hydroxymethyl 

transferases, and the tetrahydrofolate pathway17. Formate is also produced as one by product 

of fermentation of dietary fibre by the gut microbiome18. It is involved in active Cl− 

reabsorption at the apical proximal tubule via the CFEX anion exchanger under inhibitory 

control of the serinethreonine kinase WNK4; gain-of-function mutations in WNK4 cause 

pseudohypoaldosteronism type II, a mendelian disorder associated with hypertension19. We 

show that urinary formate and urinary Na+ excretion are positively correlated. Given the 

central importance of NaCl in control of BP and the rise of BP with age15,20, our findings 

suggest a previously unrecognized role for formate in BP regulation.

The inverse association of hippurate (benzoyl glycine) with BP may reflect physiological 

connections with diet7 and gut microbial activity2. Availability of calories from the diet is 

also modulated by gut microbes in human obesity21, which in turn relates to BP15. We 

previously reported that dietary alanine is higher in people consuming a predominantly 

animal compared with a predominantly vegetable diet6, consistent with our findings here of 

a direct association of urinary alanine excretion with BP. Also in experimental animal 

models, alanine modulates cardiovascular responses to circulating catecholamines and 

increases BP22.

Cross-population metabolic differences shown here add a new dimension to the decades-

long knowledge of East–West contrasting patterns of diet, diet-related major risk factors and 

CHD/stroke mortality (Supplementary Information, Supplementary Figs 8a, b and 9a, b, and 

Supplementary Tables 5 and 6). We have shown that urinary metabolic phenotyping across 

populations/subgroups at differing risks of CHD/stroke and high BP identifies novel 

candidate biomarkers that relate to BP of individuals. This may provide the basis for a new 

‘metabolome-wide association’ approach in molecular epidemiology to help understand the 

complex interactions of lifestyles, environment and genes that determine major diseases in 

the twenty first century.

METHODS SUMMARY

INTERMAP is an international standardized population-based epidemiological investigation 

of diet and BP5. We collected four in-depth 24-h multi-pass dietary recalls, eight BP 

measurements, anthropometric and questionnaire data and obtained two timed 24-h urine 

specimens, on average three weeks apart, from each individual according to standard 

protocol. We performed 600 MHz1H NMR spectroscopy on these samples; estimated 

within-specimen reproducibility was > 98% from blinded analysis of 8% specimens split in 

the field1. Scans (64) for each spectrum were acquired using standard parameters and pre-

processing algorithms23; spectra were reduced to 7,100 variables by integrating spectral 
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intensity in segments (width in chemical shift δ 0.001) corresponding to the regions δ = 0.5–

9.5 (excluding δ = 4.5–6.4 containing the residual water and urea resonances). We 

performed HCA and PCA using the median NMR specrum for each of 34 gender-specific 

population samples. The Hotelling T2 statistic (95% criterion)10, calculated from PCA 

analyses of all first and second 24-h urine spectra, was used to remove metabolic outliers (n 

= 575), enabling finer spectral detail. For the remaining 4,055 individuals, we used O-PLS-

DA11 to detect patterns of metabolites differentiating pairs of populations/subgroups. All 

models were computed separately for first and second 24-h urine specimens. For four 

quantified metabolites, we estimated technical error5 from the 8% split samples and intra-

individual reliability24 from comparison of first and second 24-h urinary excretion values. 

Correlation-regression analyses were performed using standard methods6.

Full Methods and any associated references are available in the online version of the paper 

at www.nature.com/nature.

METHODS

Storage, preparation and 1H NMR spectroscopic analysis of urine.

Urine aliquots (containing boric acid preservative) were stored at −30 ° C, thawed before 

use, and 1H NMR spectra acquired using a standard one-dimensional pulse sequence with 

water suppression (Bruker Avance 600 spectrometer operating at 600.29 MHz in flow-

injection mode23). Spectra were analysed in segments of width 0.6 Hz (less than the 1 Hz 

frequency resolution), thus retaining all structural information. We normalized the data to 

total spectral area to remove outliers. In all other models, the probabilistic quotient method9 

was used to expose finer detail in the metabolic profile, as it is relatively unaffected by 

residual outlying samples.

Data analyses.

Data were available for 4,630 of the 4,680 INTERMAP participants (Supplementary Fig. 

1a). For population/subgroup analyses, we used data separately from the first and second 

urine specimens since averaging them loses spectral resolution due to slight shifts in peak 

registration. For individual-level analyses, for example, regression with BP, we used the 

mean of the two 24-h urinary values to increase precision24.

HCA and PCA.

We used the median spectrum of each gender-specific population sample for each of the two 

24-h urine specimens. For HCA we used Pirouette (version 3.1.1, Infometrix Inc.) with 

euclidean distance, and both group average and single linkages. We computed PCA models 

in Simca P+ (version 11, Umetrics) using sevenfold cross-validation25 to select the number 

of components.

Detection and removal of metabolic outliers.

PCA modelling of all 4,630 participants revealed outlying groups due to high levels of 

urinary glucose, trimethylamine-N-oxide, ethanol, acetaminophen and their metabolites 

(Supplementary Fig. 5). To remove outliers, we normalized the spectra to total area and 
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applied Pareto scaling (dividing each variable by the square root of the standard deviation). 

This method weights the variables such that high concentration metabolites do not dominate 

the model, while avoiding noise amplification. Participants whose scores mapped outside of 

the 95% Hotelling T2 ellipse10 in either first or second specimens were excluded (n = 575), 

leaving n = 4,055 individuals.

O-PLS-DA11 and selection of discriminatory metabolites.

We used an in-house O-PLS-DA algorithm in MATLAB 7.3.1 (MathWorks) to establish 

pairwise models between populations/subgroups, with variables scaled to unit variance. We 

used bootstrap resampling to identify discriminatory variables. Our method of metabolite 

identification used results from urinary collections: a metabolite was only considered 

discriminatory (Supplementary Table 1) if it was significantly associated and ranked among 

the top metabolites for both specimens. At each iteration, a bootstrap sample of the same 

size as the full sample was constructed by sampling at random with replacement. The 

sample was used to compute an O-PLS-DA model and the corresponding regression 

coefficients bi were obtained, representing the contribution of the ith metabolic variable to 

between-group discrimination. This procedure was repeated 250 times; the resulting 

sampling distribution generated the bootstrap standard deviation of each regression 

coefficient, bi, for calculation of an approximate Student’s t statistic and corresponding P 
value, Pi, for the significance of the ith coefficient (following the procedure of ref. 26). The 

P values at each bootstrap iteration were ranked, and for each coefficient, the median and 

width of the 95% confidence interval of the ranks across the 250 bootstrap samples were 

calculated. For each pairwise model, the ith metabolic variable was then considered 

discriminatory if, separately for both first and second 24-h urinary specimens, the following 

criteria were met: (1) the coefficients bi were significant, Pi, 7 < 10−6 (corresponding to P < 

0.05 after Bonferroni correction for 7,100 spectral variables; this is conservative given the 

correlation structure between spectral variables); (2) the median ranks for the ith coefficient 

were in the top 5%; (3) the width of the confidence intervals of the ranks were in the bottom 

5%; (4) the coefficients bi were in the top 60%.

Quantitation of metabolites, reliability and regression against blood pressure.

Mean concentrations of four metabolites (alanine, formate, hippurate and N-

methylnicotinate) were quantified from the NMR spectra of first and second urine 

specimens. We used an automated method modified from ref. 27, and excluded specimens 

where the estimation procedure failed or the values fell outside the method tolerance limits, 

for either urine specimen. Results were calibrated to the creatinine peak (CH2 δ = 4.06) and 

then to creatinine concentration measured externally using the Jaffé method (Supplementary 

Information). We calculated 24-h urinary excretion (mmol per 24 h) by multiplying urinary 

concentrations by urinary volume. Technical error5 for each quantified metabolite was 

calculated from the 8% split specimens. To compare the NMR findings with independent 

analyses, we calculated the Spearman rank correlation coefficients relating our results (first 

urine specimens) for alanine (n = 4,232) with those from ion exchange chromatography28, 

and, for hippurate (n = 124), with gas chromatography mass spectrometry29.
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Observed regression coefficients relating urinary variables to BP are attenuated because of 

within-person variability24 in metabolite excretion. We estimated within and between-person 

variance for urinary metabolites from one-way ANOVA. Ratios of within to between-person 

variance, λ, were calculated for eight country/gender-specific subgroups and pooled, 

weighted by degrees of freedom. We averaged the two 24-h urinary values for each 

quantified metabolite, and estimated percentage of the theoretical regression coefficient 

(Kxx) for univariate regression by the formula Kxx = 2/(2 +. λ) × 100 (ref. 24). We used 

multiple regression to relate mean metabolite concentrations to mean systolic and diastolic 

BP using SAS (version 9.1, SAS Institute) with adjustment for potential confounders, with 

and without body mass index6. We fitted regression models by country and pooled 

coefficients across countries, weighted by inverse of the variance, to estimate overall 

association, and tested for heterogeneity of country-specific coefficients6. We express 

regression coefficients as mm Hg per 2 s.d. higher urinary metabolite excretion, from pooled 

within-country standard deviations (from one-way ANOVA)6.

Structural characterization of metabolites.

We used available spectral databases and chemical addition experiments to aid structural 

identification of discriminatory metabolites. For the remaining metabolites, we used 

statistical total correlation spectroscopy30 and solid phase extraction chromatography 

coupled with NMR29.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

INTERMAP is supported by the US National Heart, Lung, and Blood Institute (RO1 HL50490 and RO1 
HL084228); the Chicago Health Research Foundation; and national agencies in Japan (the Ministry of Education, 
Science, Sports, and Culture), China and the UK. The funders had no role in the design and conduct of the study, or 
in the collection, management, analysis and interpretation of the data, or in the preparation, review or approval of 
the manuscript. The INTERMAP study has been accomplished through the work of the staff at the local, national 
and international centres. A partial listing of colleagues is in ref. 5. We thank M. Rantalanein, O. Cloarec, E. Want 
and O. Beckonert (Imperial College London) for their assistance with the statistical and NMR analyses; and P. 
Oefner and H. Kaspar (University of Regensburg) for gas chromatography mass spectrometry analyses.

References

1. Dumas ME et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based 
metabonomics for large-scale epidemiological research: the INTERMAP study. Anal. Chem 78, 
2199–2208 (2006). [PubMed: 16579598] 

2. Nicholson JK, Holmes E & Wilson ID Gut microorganisms, mammalian metabolism and 
personalized health care. Nature Rev. Microbiol 3, 431–438 (2005). [PubMed: 15821725] 

3. Sabeti PC et al. Genome-wide detection and characterization of positive selection in human 
populations. Nature 449, 913–918 (2007). [PubMed: 17943131] 

4. Murray CJ & Lopez AD Mortality by cause for eight regions of the world: global burden of disease 
study. Lancet 349, 1269–1276 (1997). [PubMed: 9142060] 

5. Stamler J et al. INTERMAP: Background, aims, design, methods, and descriptive statistics (non-
dietary). J. Hum. Hypertens 17, 591–608 (2003). [PubMed: 13679950] 

6. Elliott P et al. Association between protein intake and blood pressure: the INTERMAP study. Arch. 
Intern. Med 166, 79–87 (2006). [PubMed: 16401814] 

Holmes et al. Page 7

Nature. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Mulder TP, Rietveld AG & van Amelsvoort JM Consumption of both black tea and green tea results 
in an increase in the excretion of hippuric acid into urine. Am. J. Clin. Nutr 81 (Suppl.), 256S–260S 
(2005). [PubMed: 15640488] 

8. Elliott P & Stamler J in Coronary Heart Disease Epidemiology: From Aetiology to Public Health 
2nd edn (eds Marmot M & Elliott P) 751–768 (Oxford Univ. Press, Oxford, UK, 2005).

9. Dieterle F, Ross A, Schlotterbeck G & Senn H Probabilistic quotient normalization as robust method 
to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. 
Anal. Chem 78, 4281–4290 (2006). [PubMed: 16808434] 

10. Hotelling H The generalization of Student’s ratio. Ann. Math. Stat 2, 360–378 (1931).

11. Trygg J & Wold S Orthogonal projections to latent structures (O-PLS).J. Chemometr 16, 119–128 
(2002).

12. Li M et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl Acad. Sci. 
USA 105, 2117–2122 (2008). [PubMed: 18252821] 

13. Chen S-H & Giblett ER Polymorphism of soluble glutamic-pyruvic transaminase: a new genetic 
marker in man. Science 173, 148–149 (1971). [PubMed: 5581908] 

14. Lin S-H, Lin Y-F & Halperin ML Hypokalaemia and paralysis. Q. J. Med 94, 133–139 (2001).

15. Intersalt Co-operative Research Group. Intersalt: an international study of electrolyte excretion and 
blood pressure. Results for 24 hour urinary sodium and potassium excretion. Br. Med. J 297, 319–
328 (1988). [PubMed: 3416162] 

16. Elliott P et al. Dietary phosphorus and blood pressure. International study of macro and mcro-
nutrients and blood pressure. Hypertension 51, 669–675 (2008). [PubMed: 18250363] 

17. Gregory JF et al. Primed, constant infusion with 2H3 serine allows in vivo kinetic measurement of 
serine turnover, homocysteine remethylation and transsulfuration processes in human one-carbon 
metabolism. Am. J. Clin. Nutr 72, 1535–1541 (2000). [PubMed: 11101483] 

18. Samuel BS & Gordon JI A humanized gnotobiotic mouse model of hostarchaeal-bacterial 
mutualism. Proc. Natl Acad. Sci. USA 103, 10011–10016 (2006). [PubMed: 16782812] 

19. Kahle KT et al. WNK4 regulates apical and basolateral Cl− flux in extrarenal epithelia. Proc. Natl 
Acad. Sci. USA 101, 2064–2069 (2004). [PubMed: 14769928] 

20. Elliott P et al. Change in salt intake affects blood pressure of chimpanzees: Implications for human 
populations. Circulation 116, 1563–1568 (2007). [PubMed: 17785625] 

21. Ley RE, Turnbaugh PJ, Klein S & Gordon JI Human gut microbes associated with obesity. Nature 
444, 1022–1023 (2006). [PubMed: 17183309] 

22. Conlay LA, Maher TJ & Wurtman RJ Alanine increases blood pressure during hypotension. 
Pharmacol. Toxicol 66, 415–416 (1990). [PubMed: 2371250] 

23. Holmes E et al. Detection of urinary drug metabolite (xenometabolome) signatures in molecular 
epidemiology studies via statistical total correlation (NMR) spectroscopy. Anal. Chem 79, 2629–
2640 (2007). [PubMed: 17323917] 

24. Grandits GA et al. Method issues in dietary data analysed in the Multiple Risk Factor Intervention 
Trial. Am. J. Clin. Nutr 65 (Suppl.), 211S–227S (1997). [PubMed: 8988939] 

25. Wold S Cross-validatory estimation of number of components in factor and principal components 
models. Technometrics 20, 397–405 (1978).

26. Martens H & Martens M Modified jack-knife estimation of parameter uncertainty in bilinear 
modelling by partial least squares regression (PLSR). Food Qual. Prefer 11, 5–16 (2000).

27. Crockford DJ et al. Curve fitting method for direct quantitation of compounds in complex 
biological mixtures using 1H NMR: Application in metabonomic toxicology studies. Anal. Chem 
77, 4556–4562 (2005). [PubMed: 16013873] 

28. Fekkes D, Voskuilen-Kooyman A, Jankie R & Huijmans J Precise analysis of primary amino acids 
in urine by an automated high-performance liquid chromatography method: Comparison with ion-
exchange chromatography.J. Chromatogr. B 744, 183–188 (2000).

29. Lenz EM & Wilson ID Analytical strategies in metabonomics. J. Proteome Res. 443, 443–458 
(2007).

Holmes et al. Page 8

Nature. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Cloarec O et al. Statistical total correlation spectroscopy: An exploratory approach for latent 
biomarker identification from metabolic 1H NMR data sets. Anal. Chem 77, 1282–1289 (2005). 
[PubMed: 15732908] 

Holmes et al. Page 9

Nature. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1 |. Hierarchical cluster analysis using group average linkage based on median 1H NMR 
urine spectra, by population sample and gender (n = 4,630).
Data for first 24-h urinary specimens. The hierarchical cluster analysis (HCA) algorithm 

produces a dendrogram showing the overall similarity/dissimilarity between population 

samples. Similarity index is normalized to intercluster distance. The similarity index 

measures the multivariate distance between clusters. A similarity of one indicates zero 

distance between clusters; a value of zero indicates the maximum intercluster separation 

seen in the data. Each branch of the dendrogram defines a subcluster; population samples 

within subclusters are more similar to each other than to those in other subclusters.
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Figure 2 |. Plots of cross-validated principal components analysis scores (n = 4,630). a,
Pseudo three-dimensional plot for principal components (PC) 1–3; b, PC2 versus PC1; c, 

PC3 versus PC1; d, PC3 versus PC2. Median1H NMR spectra of the first 24-h urine 

specimens stratified by country and by gender, female (triangles) and male (squares). R2
x = 

74.2% (percentage variation in the NMR data explained by the model); Q2
× 5 49.6% 

(percentage variation in the NMR data predictable by the model from cross validation). The 

cross-validated scores values for the first three components are available in Supplementary 

Information. Symbols in b–c as in a.

Key: 1, Beijing; 2, Guangxi; 3, Shanxi; 4, Aito Town; 5, Sapporo; 6, Toyama; 7, Wakayama; 

8, Belfast; 9, West Bromwich; 10, Baltimore; 11, Chicago; 12, Corpus Christi Hispanic; 13, 

Corpus Christi non-Hispanic; 14, Honolulu; 15, Jackson; 16, Minneapolis; 17, Pittsburgh.
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Figure 3 |. O-PLS-DA scores and loadings plots (bootstrap analyses) for participants reporting 
high vegetable/low animal protein and low vegetable/high animal protein intakes, first 24-h 
urinary specimens.
Plots (one orthogonal component) compare top and bottom quartiles, adjusted for sample, 

age and sex, from a, East Asian, and b, western population samples. Loadings plots from the 

O-PLS-DA bootstrap analyses are shown with discriminatory metabolites labelled (see 

Methods for metabolite selection criteria) for c, East Asian and d, western participants. 

Analyses are after removal of metabolic outliers using the 95% Hotelling’s T2 statistic in the 

initial PCA. The plots show the number of participants, the number of components used in 

each model and the Q2
Y values (percentage variation in the protein subgroup assignment 

predictable by the model from cross validation).
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