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Abstract
Background.  Glioblastoma (GBM) is the most devastating brain tumor. Despite the use of multimodal treatments, 
most patients relapse, often due to the highly invasive nature of gliomas. However, the detection of glioma infil-
tration remains challenging. The aim of this study was to assess advanced PET and MRI techniques for visualizing 
biological activity and infiltration of the tumor.
Methods.  Using multimodality imaging, we investigated [18F]DPA-714, a radiotracer targeting the 18 kDa translo-
cator protein (TSPO), [18F]FET PET, non-Gaussian diffusion MRI (apparent diffusion coefficient, kurtosis), and the 
S-index, a composite diffusion metric, to detect tumor infiltration in a human invasive glioma model. In vivo im-
aging findings were confirmed by autoradiography and immunofluorescence.
Results.  Increased tumor-to-contralateral [18F]DPA-714 uptake ratios (1.49 ± 0.11) were found starting 7 weeks after 
glioma cell implantation. TSPO-PET allowed visualization of glioma infiltration into the contralateral hemisphere 
2 weeks earlier compared with the clinically relevant biomarker for biological glioma activity [18F]FET. Diffusion-
weighted imaging (DWI), in particular kurtosis, was more sensitive than standard T2-weighted MRI to detect differ-
ences between the glioma-bearing and the contralateral hemisphere at 5 weeks. Immunofluorescence data reflect 
in vivo findings. Interestingly, labeling for tumoral and stromal TSPO indicates a predominant expression of TSPO 
by tumor cells.
Conclusion. These results suggest that advanced PET and MRI methods, such as [18F]DPA-714 and DWI, may be 
superior to standard imaging methods to visualize glioma growth and infiltration at an early stage.

Key Points

1. � Longitudinal TSPO-PET and diffusion MRI of a mouse model monitor infiltrative human 
glioma.

2. � Early glioma detection with [18F]DPA-714 is compared with the clinical PET biomarker 
[18F]FET.

Glioblastoma (GBM) is the most common and aggressive form 
of primary human brain tumor. Although GBM therapy con-
sists of aggressive multimodal treatments including surgery, 
radiation, and concomitant and adjuvant chemotherapy, the 

currently available treatment options have limited efficacy.1 
Invasion of glioma cells into the surrounding brain parenchyma 
is a hallmark of GBM and one of the reasons for treatment fail-
ure.2,3 Imaging glioma cell infiltration remains challenging but 
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advanced magnetic resonance imaging (MRI) and posi-
tron emission tomography (PET) might help in visualizing 
directly or indirectly the growth of diffuse GBMs.4

Diffusion-weighted imaging (DWI) probes tissue at a 
microscopic scale, well below image resolution, by meas-
uring the interaction of diffusing water molecules with 
tissue elements. Hence, DWI reveals unique information 
about brain microarchitecture.5 By modeling the signal at-
tenuation (S/S0) using a non-Gaussian diffusion model,6 
parametric maps can be computed for the apparent diffu-
sion coefficient (ADC0) and kurtosis. These non-Gaussian 
diffusion parameters can help distinguish malignant from 
benign lesions in a rat brain tumor model.7 Clinical studies 
have demonstrated that DWI parameters are helpful for 
grading gliomas by measuring the increased heteroge-
neity in more malignant tumors8 and could be relevant 
as predictive biomarkers of patients’ outcome after treat-
ment.9,10 Consistently, recent studies suggested the use 
of DWI to characterize tumor infiltration11 and improve de-
lineation of the tumor margin.12 A novel composite diffu-
sion metric, designed as a signature index (S-index) was 
proposed to distinguish tumoral from normal tissue. The 
S-index combines perfusion and diffusion parameters to 
enhance the sensitivity of DWI to assess tumor function 
and heterogeneity.13

Moreover, PET as a molecular imaging technique has 
been suggested as a promising alternative in glioma im-
aging, in particular for tumor growth and delineation of 
the tumor border.14 Recent preclinical imaging studies sug-
gested PET imaging of the translocator protein of 18 kDa 
(TSPO) as a potential molecular imaging technique to im-
prove tumor detection and possibly track glioma cell infil-
tration.15,16 Initial studies on TSPO and TSPO ligands in the 
brain indicated that the density of TSPO was high in ma-
lignant gliomas and glioma cell lines, but low in normal/
unaffected brain tissue.17,18 Furthermore, TSPO expression 
levels positively correlated with the grade of malignancy 
and showed a negative correlation between TSPO expres-
sion and survival.19,20 Some results also propose TSPO as a 
marker of glioma invasiveness.21,22 TSPO expression can be 
monitored non-invasively using radiolabeled TSPO ligands. 
Several classes of TSPO radioligands have been devel-
oped in the last two decades, including the second gener-
ation TSPO tracer, N,N-diethyl-2-(2-(4-(2-[18F]fluoroethoxy)
phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acet-
amide ([18F]DPA-714). We and others have shown specific 
[18F]DPA-714 imaging in different models of rat glioma.23–25 
Lately, a preclinical PET imaging study using another TSPO 

radioligand, N-(2,5-dimethoxybenzyl)-2-[18F]-fluoro-N-(2-
phenoxyphenyl)acetamide ([18F]PBR06), demonstrated 
elevated tracer uptake in human glioma xenotransplants 
according to the tumor grade and indicated infiltrative 
glioma growth not visible on conventional MRI.26

We investigated the potential of TSPO-PET and diffusion-
weighted MRI to assess glioma cell infiltration. Infiltrative 
glioma growth was monitored longitudinally alone and in 
combination with conventional T2-weighted imaging (T2w) 
and DWI in a human invasively growing glioma model. We 
hypothesized that [18F]DPA-714 PET and DWI, in particular 
the composite S-index, can be used to (i) track glioma in-
filtration into the surrounding brain parenchyma and (ii) 
monitor glioma growth earlier than with T2w MRI or the 
clinically established PET marker for endothelial amino 
acid transport, O-(2-18F-fluoroethyl)-L-tyrosine ([18F]FET).27

Materials and Methods

Study Design and Animal Model

Longitudinal PET and combined PET/MRI studies were con-
ducted to investigate the sensitivity and specificity of TSPO-
PET as well as DWI to image infiltrative glioma growth. 
Animal studies were approved by the animal ethics com-
mittee of local authorities and were conducted in accord-
ance with the ARRIVE (Animal Research: Reporting of In Vivo 
Experiments) guidelines and directives of the European 
Union on animal ethics and welfare. Male Naval Medical 
Research Institute nu/nu mice (Janvier Labs) 5–7 weeks old 
were housed in standard conditions under a regular 12-hour 
dark/light cycle. Food and water were available ad libitum. 
Stereotactically implanted were 2 × 105 human GBM cells 
in 1 µL Neurobasal medium into the right striatum (2.5 mm 
lateral to the bregma and 3 mm deep) of the mice. In total, 
27 mice were orthotopically implanted with human P3 cells 
and imaged at weeks 1, 3, 5, 7, and 9 post cell implantation 
(p.i.), respectively. A more detailed description is given in 
Supplementary Figure 1. At the end of the last PET scan, 
mice were euthanized and brains were removed and frozen 
immediately for histology and autoradiography.

Cell Culture

The P3 human GBM cells used in the present study, 
obtained from Professor Hrvoje Miletic (Department of 

Importance of the Study

Invasiveness of glioma cells into the brain parenchyma 
is a major issue for failure of GBM treatment and tumor 
recurrence. However, common non-invasive imaging 
techniques fail to monitor these invading cells. Here, 
we report the use of TSPO-PET and DWI to follow tumor 
growth and invasion into the brain parenchyma using 
an invasively growing human GBM model. TSPO-PET 

imaging accurately reflects GBM infiltration into the con-
tralateral brain hemisphere, whereas diffusion kurtosis 
imaging detects early differences between the tumor and 
the contralateral brain parenchyma. This multimodality 
approach to monitor GBM invasiveness will improve the 
early detection of glioma invasion, help to assess therapy 
response, and be readily available for clinical translation.
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Biomedicine, Translational Cancer Research, University 
of Bergen, Norway), were derived from one GBM patient 
(P3) and have previously been characterized in a human 
GBM-derived xenograft model in nude rats.28 Glioma cells 
displayed typical growth patterns and phenotypes in vitro 
and in vivo. The cells were not further genetically authenti-
cated. Cells were grown in Neurobasal medium containing 
x1 GlutaMax, x1 B27 supplement, 20  ng/mL basic fibro-
blast growth factor and epidermal growth factor, x1 peni-
cillin/streptomycin (all from Gibco, Life Technologies), and 
32 U/mL heparin (Panpharma) at 37°C in a 5% CO2/95% air 
atmosphere.

Radiochemistry

[18F]DPA-714 and [18F]FET were synthesized as previously 
described.29,30 [18F]DPA-714 was obtained in 28 ± 5%, [18F]
FET in 44 ± 7% decay corrected radiochemical yield with 
radiochemical purity above 99% and molar activity of 
158 ± 68 GBq/μmol and 150 ± 51 GBq/μmol, respectively.

PET Acquisitions

During all experimental procedures, mice were anes-
thetized with isoflurane (3.0% for induction, 1.5–2% for 
maintenance of anesthesia) in 100% O2. PET images were 
acquired on a Siemens Inveon small animal PET or PET-CT 
scanner. Both scanners were used in parallel in order to 
ensure a high specific radioactivity at the time of injection. 
Static PET scans were acquired 30–60 minutes after a tail 
vein injection of 8.2 ± 3.6 MBq [18F]DPA-714 or 7.2 ± 0.6 MBq 
[18F]FET. For attenuation correction, a CT or a transmis-
sion scan using an external 68-germanium point source 
was performed. Images were reconstructed using Fourier 
rebinning and a 2D ordered subset expectation maximiza-
tion algorithm (16 subsets and 4 iterations). Except for the 
first timepoint (5 wk p.i.), PET image acquisition was per-
formed within 24 h after MRI acquisition.

MRI Acquisitions

MRI experiments were conducted on an 11.7 T Biospec MR 
scanner equipped with a CryoProbe dedicated for mouse 
brain imaging (Bruker BioSpin) as previously described.31 
For more details see the Supplementary material.

Data Analysis

PET image analysis was performed using VINCI (v4.63.0; 
http://www.nf.mpg.de/vinci3/), a graphical image analysis 
package equipped with image co-registration tools.32 For 
quantitative analysis, a volume of interest (VOI) analy-
sis was performed on the summed image datasets (30–
60 min). Three VOIs were manually delineated, one around 
the tumor injection site in the ipsilateral hemisphere (T), 
one in the contralateral striatum (C), and one on the cor-
pus callosum (CC). Ipsi- to contralateral and ipsilateral to 
CC ratios as well as standardized uptake values (SUVs) 
were calculated. The SUV is defined as tissue radioactivity 

concentration in kBq/mL / ((injected dose in kBq) / (body-
weight in g)).

For image co-registration [18F]DPA-714 PET-CT images 
were manually co-registered to the corresponding T2w MRI 
and [18F]FET PET-CT images, respectively, using the con-
tour and image co-registration tool of VINCI. A threshold-
ing approach was applied on [18F]DPA-714 PET images as 
previously described,16 and detailed in the Supplementary 
material.

DWI data were processed using a homemade software 
implemented with MatLab (Mathworks) as previously 
described.31 Details can be found in the Supplementary 
material. For each animal, a region of interest (ROI) cor-
responding to the brain tumor (ipsilateral ROI) was man-
ually delimited in the striatum on 3 consecutive slices, 
identified from the presence of the tumor cell injection site. 
For this ispilateral ROI, the cell injection site identified by 
T2-hyposignal was excluded to avoid biasing the results. 
In the striatum of the hemisphere opposite to the tumor in-
jection site, a contralateral ROI was delimited on the same 
slices. Mean values for ADC0, kurtosis, and S-index for each 
ROI were calculated.

Autoradiography, Histology, and 
Immunohistochemistry

Frozen brain sections (20-µm thick) of whole 
tumor specimen were cut using a cryostat (Leica). 
Immunohistochemistry, autoradiography, and hematox-
ylin/eosin (H&E) staining were performed on adjacent 
20-µm-thick brain sections as previously described33 or ac-
cording to the manufacturer’s instructions (Labonord). For 
more details, see the Supplementary material.

Statistical Analysis

All data are presented as mean ± standard deviation. The 
statistical analyses were performed using GraphPad Prism 
software, v6.05. Comparisons of PET and DWI data be-
tween ipsilateral and contralateral VOIs over time were 
performed using a one-way ANOVA and Bonferroni mul-
tiple comparison tests for post hoc analysis. Differences 
in radiotracer uptake ratios ([18F]DPA-714, [18F]FET) were 
tested using a t-test. Significance levels were set at P < 0.05.

Results

Longitudinal [18F]DPA-714 PET Images of Human 
Invasive Glioma

PET imaging using the TSPO radioligand [18F]DPA-714 
shows an increase in [18F]DPA-714 uptake in the ipsilateral 
(tumor-bearing) brain hemisphere over time. From 7 weeks 
p.i. onward, extended [18F]DPA-714 uptake in the ipsilat-
eral hemisphere was observed. [18F]DPA-714 highlights 
infiltration of the tumor into the contralateral hemisphere 
via the CC after 7–9 weeks of glioma growth (Figure 1A, 
C). The mean SUVs after one (0.22 ± 0.06 vs 0.18 ± 0.04; 
n  =  10), three (0.19  ±  0.06 vs 0.17  ±  0.06; n =  9), or five 
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weeks (0.28 ± 0.11 vs 0.23 ± 0.10; n = 10) were not signifi-
cantly different between ipsilateral and contralateral hemi-
spheres, respectively. However, a significant increase in 
[18F]DPA-714 uptake is observed in the tumor-bearing hem-
isphere compared with the contralateral site at seven (SUV 
0.31 ± 0.11 vs 0.21 ± 0.07; *P < 0.05; n = 10) and nine weeks 
(0.32 ± 0.12 vs 0.21 ± 0.08; *P < 0.05; n = 10) (Figure 1B). Ipsi- 
to contralateral ratios rise over time showing significantly 
increased ratios at 7 and 9 weeks (Supplementary Figure 
2A). In contrast, ipsilateral-to-CC ratios do not increase sig-
nificantly but demonstrate significantly decreased values 
compared with ipsi- to contralateral at 9 weeks, indicating 
increased tracer uptake by invasive cells at the CC. Based 
on the applied thresholding, [18F]DPA-714 volumes signifi-
cantly increased over time, reaching parts of the contralat-
eral hemisphere (****P < 0.0001; n = 10; Supplementary 
Figure 2B). Validation of the in vivo imaging findings on 
brain sections using in vitro autoradiography with [18F]
DPA-714 and H&E staining confirms glioma growth over 

time, with infiltration of the tumor into the contralateral 
hemisphere, especially along the CC (Figure 1C).

Human TSPO as the Main Source of TSPO 
Expression in P3 Infiltrative Glioma

In vivo [18F]DPA-714 PET indicates tumor growth with infil-
tration into the contralateral brain hemisphere and signifi-
cant differences regarding [18F]DPA-714 uptake or volume 
over time and between the injected and contralateral hemi-
sphere from 7 weeks on. To investigate tumor development 
and contribution of different tumor components over time, 
immunohistochemistry was performed. Labeling of tumor 
cells with an anti-human Nestin antibody shows the pres-
ence of human glioma cells in the ipsilateral hemisphere 
and close to the CC as early as 3 weeks (Figure 2, hNestin). 
The labeling spreads within the ipsilateral site but also via 
the CC into the contralateral site at 5 weeks and extends 
in both brain hemispheres, but covers nearly the whole 
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corresponding coronal mouse brain sections showing [18F]DPA-714 binding and tumor growth over time.
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ipsilateral site at 7 and 9 weeks of glioma development. 
As [18F]DPA-714 uptake reflects general TSPO expression, 
we employed 2 different antibodies, recognizing primar-
ily the human or specifically the murine TSPO (hTSPO and 
mTSPO, respectively). Immunofluorescence images show 
faint hTSPO signal at 3 weeks, which, similar to the Nestin 
labeling, becomes clearly visible at 5 weeks in the ipsilat-
eral hemisphere and its part of the CC (Figure 2, hTSPO). 
Comparable to Nestin and in line with the in vivo findings, 
the hTSPO staining propagates within the ipsilateral and via 
the CC into the contralateral hemisphere at 7 and 9 weeks. 
In contrast, mTSPO staining is barely visible on the over-
view scans (Figure 2, mTSPO). Higher resolution images 
indicate only limited signal within the tumor core or the 
infiltrative zone (Supplementary Figure 3). Labeling of gli-
oma-associated microglia/macrophages (GAMs) as a pos-
sible source of mTSPO indicates the presence of CD11b+ 
GAMs as early as 3 weeks around the injection site as well 
as in the ipsilateral hemisphere and the corresponding CC 
(Figure 2, CD11b). The signal evolves from there into neigh-
boring regions and into the contralateral hemisphere at 5, 7, 
and 9 weeks, underlining the abundance of CD11b+ GAMs 
in and around the tumor. Only individual CD11b+ cells are 

also mTSPO+, whereas the majority lack TSPO expression 
(Supplementary Figure 3). Less CD11b+ GAMs are present 
within the tumor after week 9 (Figure 2, CD11b).

[18F]DPA-714 Detects Invasively Growing  
Glioma Before the Clinically Established 
Radiotracer [18F]FET

To compare [18F]DPA-714 PET with the clinically established 
tracer for endothelial amino acid transport, [18F]FET, PET 
images for [18F]FET were acquired in addition to [18F]DPA-
714 at 7 and 9 weeks. As reported above, extended [18F]DPA-
714 signal is found in the ipsilateral hemisphere at 7 weeks. 
In contrast, no significant signal for [18F]FET uptake can be 
demonstrated in the glioma-bearing compared with the 
contralateral hemisphere at this timepoint (P = 0.76; Figure 
3). [18F]FET SUVs were 0.36 ± 0.11 versus 0.36 ± 0.13 (ipsi- vs 
contralateral, respectively; n = 5), with an ipsi- to contralat-
eral ratio of 1.04 ± 0.11. Comparison of [18F]DPA-714 and [18F]
FET uptake at 9 weeks shows an increased [18F]FET uptake 
in the ipsilateral hemisphere with SUVs of 0.55 and 0.96 
compared with SUVs of 0.45 and 0.64, respectively, at the 
contralateral side (n = 2). In contrast to [18F]DPA-714, [18F]FET 

  

Week 1

Week 3

Week 5

Week 7

Week 9

DAPI hNestin hTSPO mTSPOCD11b

Fig. 2  Immunohistochemical distribution of human Nestin (hNestin), human TSPO (hTSPO), CD11b, and murine TSPO (mTSPO) in coronal slices of 
mouse brains at different timepoints after glioma cell injection. At 3 weeks p.i., hNestin and CD11b staining indicate the presence of human glioma 
cells and GAMs, respectively, in the ipsilateral brain hemisphere and in proximity to the CC. Human TSPO staining reveals the presence of hTSPO+ 
glioma cells from 5 weeks on (scale bar: 1000 µm).
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uptake at 9 weeks is found in a restricted area in the ipsilat-
eral but not in the contralateral site (Figure 3, week 9).

TSPO-PET and Diffusion MRI Allow Early 
Detection of Invasively Growing Glioma

The results of the longitudinal [18F]DPA-714 PET study dem-
onstrate a significant change in [18F]DPA-714 uptake from 7 

weeks after tumor implantation. Based on these results, a 
second study combining [18F]DPA-714 PET with anatomic 
T2w- and diffusion MRI was performed in order to inves-
tigate particularly glioma growth between 5 and 9 weeks. 
[18F]DPA-714 uptake at 5 weeks shows faint PET signal 
localized around the injection tract (Figure 4A) with SUVs 
of 0.20  ±  0.02 and 0.17  ±  0.02 for ipsi- and contralateral 
VOIs, respectively (n = 7). Similar to the first longitudinal 
study, a significant increase in [18F]DPA-714 uptake in the 
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ipsilateral hemisphere is observed at 7 and 9 weeks (Figure 
4B) with SUVs of 0.27 ± 0.06 versus 0.18 ± 0.02 (week 7: 
ipsi- vs contralateral, respectively; **P < 0.01; n = 7) and 
0.30 ± 0.07 versus 0.17 ± 0.02 (week 9: ****P < 0.0001; n 
= 7). As observed before, 9 weeks p.i. the [18F]DPA-714 PET 
signal indicates a massive tumor involving nearly the com-
plete ipsilateral brain hemisphere, including infiltration 
into the contralateral side. SUVs in the tumor-implanted 
site were significantly increased at 9 (##P  <  0.01) and 7 
(#P < 0.05) weeks compared with week 5. The correspond-
ing T2w anatomic MR images depict the needle tract from 
tumor cell implantation (Figure 4A, white arrow), whereas 
hyperintense areas corresponding to tumor edema can 
only be seen 9 weeks p.i. Precise boundaries of the tumor 
are especially difficult to define.

Non-Gaussian diffusion parameters such as the ADC0 
and kurtosis, as well as the composite marker S-index, 
provide information on a different level that is tissue 
microstructure, while information provided by PET is 
more functional in nature. Whereas parametric maps 
of the ADC0 do not show any significant change in the 
tumor-bearing hemisphere or elsewhere in the brain, 
kurtosis and S-index parametric maps indicate increased 
values in the ipsilateral hemisphere and at the site of the 
CC (Figure 5A). Comparison of ipsilateral versus contra-
lateral ADC0, kurtosis, or S-index values demonstrates 
significantly increased values for ipsilateral kurtosis and 
S-index, whereas no significant differences have been 

seen for ADC0 (Figure 5B). Ipsilateral kurtosis values are 
significantly higher compared with the contralateral site 
from 5 weeks p.i. (0.79 ± 0.02 vs 0.74 ± 0.02; ***P < 0.001, 
0.82  ±  0.01 vs 0.76  ±  0.02; ***P  <  0.001, 0.88  ±  0.03 vs 
0.76  ±  0.02; ****P  <  0.0001, at 5, 7, and 9 weeks p.i., 
respectively). Likewise, the S-index shows a significant 
ipsilateral increase compared with the contralateral side 
at week 9 (48.30 ± 5.30 vs 32.35 ± 4.31; **P < 0.01); how-
ever, no difference between the tumor-implanted and 
the contralateral side is found at week 5 (34.82  ±  8.24 
vs 32.02 ± 7.91) or week 7 (40.43 ± 3.97 vs 34.12 ± 3.65). 
Furthermore, ipsilateral kurtosis and S-index are aug-
mented at 9 compared with 5 (####P  <  0.0001 and 
##P < 0.01) and 7 weeks ($$P < 0.01, kurtosis only), respec-
tively (Figure 5B).

Discussion

In this study we investigated the feasibility of [18F]DPA-714 
PET in combination with diffusion MRI to follow glioma 
growth and cell infiltration over time in a human invasively 
growing glioma model. We could demonstrate that longi-
tudinal TSPO-PET imaging allows monitoring and accurate 
reflection of glioma growth and infiltration. Moreover, DWI 
and [18F]DPA-714 PET were superior over conventional 
T2w MRI or [18F]FET PET in early detection of the tumor 
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and tumor infiltration, respectively. Autoradiography and 
immunohistochemistry confirmed the presence of an 
invasively growing tumor as well as distinct TSPO expres-
sion closely reflecting tumor growth and infiltration. 
Tumor growth will yield in changes of cellular density (to 
which diffusion MRI is sensitive) and vascularization, thus 
increasing TSPO receptor density and perfusion. However, 
previous in vivo displacement studies in glioma models 
demonstrated TSPO specificity.25,34

It is well known that high-grade gliomas extensively 
infiltrate into the brain parenchyma. However, glioma 
cell infiltration is usually not detectable by conventional 
clinical MRI (T2w, T1w MRI, with or without gadolinium).2 
Recently, several groups suggested the potential of TSPO-
PET for glioma imaging.15,25,34 PET or SPECT imaging tar-
geting the translocator protein is a well-known technique 
for imaging of neuroinflammation as activated microglia 
highly express TSPO. The fact that some of the recently 
developed so-called second generation TSPO radioli-
gands have already been translated and assessed in clin-
ical studies of neurodegenerative diseases35–37 would 
therefore facilitate application of TSPO imaging in human 
gliomas.

TSPO expression in the glioma-bearing brain can be 
of different origins. Specifically in the orthotopic animal 
model, due to the surgical intervention, inflammatory 
TSPO may contribute, although sham-operated animals 
did not show significant tracer uptake.16,25 We and others 
have lately shown that the main source of TSPO expres-
sion in gliomas is related to neoplastic cells.15,25 However, 
also GAMs contribute to the TSPO signal.16,23 Although 
individual TSPO+ GAMs could be detected within and 
around the tumor, we show predominant TSPO expres-
sion by tumor cells in this human invasive glioma model. 
Interestingly, we also found an abundant number of TSPO− 
GAMs specifically at the tumor border.

Depending on the literature, 60–85% of glioma patients 
express TSPO at moderate to high level19,20,26 and TSPO 
imaging would be of value for those patients. Even 
though kurtosis and the composite S-index did not mon-
itor glioma infiltration as early as [18F]DPA-714 PET, im-
aging of infiltration into the contralateral hemisphere is 
improved compared with T2w MRI. Furthermore, kurtosis 
and even the composite S-index may be well suited for 
early tumor detection and to some extent infiltration 
(although to a later timepoint) in patients with TSPO-
negative GBM or in medical centers without access to 
PET scanners.

Recent studies suggest that diffusion kurtosis imaging 
may be useful for differentiating glioma grades and 
detecting microstructural changes in gliomas.38,39 Kurtosis 
reflects the heterogeneous diffusion environments expe-
rienced by water molecules as they encounter barriers, 
move between compartments, and undergo chemical 
exchange. Thus, this parameter could be sensitive to 
microstructural modifications of the cerebral parenchyma 
induced by invasive tumor cells. However, no studies have 
been evaluated whether kurtosis detects areas of glioma 
invasion. In this invasive glioma model, we show for the 
first time that kurtosis is very sensitive for tumor detec-
tion, as indicated by its early increase in the tumor-bearing 

hemisphere. We also demonstrate that the S-index, a new 
metric diffusion combining all DWI parameters, is prom-
ising in detection of invasive glioma. In contrast to current 
approaches based on fitting of DWI signals, which require 
iterative calculations using complex equations, the quan-
tification of the S-index based on only 2 key b-values is 
direct and easy, making the processing time extremely 
short and compatible with real-time processing in clinical 
practice.

The other important finding within this study is the ad-
vanced/early detection of the invasively growing glioma 
using [18F]DPA-714 PET and DWI in comparison to conven-
tional T2w MRI or the clinical imaging biomarker for assess-
ing glioma extent, [18F]FET. This result is in accordance with 
the findings by Jensen and colleagues on TSPO-SPECT 
imaging in 3 GBM patients, who observed tumor expan-
sion predominantly in areas of high [123I]CLINDE binding 
compared with [18F]FET PET and contrast-enhanced struc-
tural MRI.40 Also the multitracer imaging approach from 
Zinnhardt et  al that compared [18F]DPA-714, [18F]BR-351, 
and [18F]FET in a murine model of glioma indicated a 
unique area of [18F]DPA-714 positive glioma tissue, with 
no [18F]FET uptake.16 Taking into account the clinical TSPO-
SPECT data40 and results from a preclinical TSPO-PET 
study using human glioma xenotransplants,26 the authors 
suggested that the unique tissue areas at the tumor mar-
gins are of high interest, as they might be related to sites of 
glioma infiltration, an aspect supported by the outcome of 
the present study.

Quantification of TSPO-PET bears some challenges, such 
as the different binding affinity patterns for the second 
generation TSPO ligands in humans due to a genetic pol-
ymorphism in the tspo gene,41 the question of a suitable 
reference region for quantification of TSPO binding, and 
the impact of the vascular component for TSPO quantifi-
cation.42 However, results from the present study as well 
as the recent preclinical and clinical findings should en-
courage further investigation of TSPO-PET for glioma im-
aging, in particular for tumor infiltration, as limitations 
may be tackled, such as by accounting for the vascular 
compartment43 and including genotyping of patients for 
clinical TSPO-PET studies.

In conclusion, this study strongly supports the high 
promise of clinical translation of [18F]DPA-714 PET to im-
prove delineation of infiltrative components or glioma-
associated inflammation as confirmed by kurtosis-based 
diffusion imaging, which seems to be complementary 
to other established molecular imaging markers for 
gliomas.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
online.
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