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Abstract

Disease diagnosis using cell-free DNA (cfDNA) has been an active research field recently. Most existing approaches perform
diagnosis based on the detection of sequence variants on cfDNA; thus, their applications are limited to diseases associated
with high mutation rate such as cancer. Recent developments start to exploit the epigenetic information on cfDNA, which
could have substantially wider applications. In this work, we provide thorough reviews and discussions on the statistical
method developments and data analysis strategies for using cfDNA epigenetic profiles, in particular DNA methylation, to
construct disease diagnostic models. We focus on two important aspects: marker selection and prediction model construc-
tion, under different scenarios. We perform simulations and real data analysis to compare different approaches, and pro-
vide recommendations for data analysis.
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Introduction

Prognosis and diagnosis play vital roles in the prevention and
treatment of diseases. Traditionally, various types of surgical
biopsies such as bone marrow or needle biopsies are performed
in clinical setting, especially for cancer diagnosis [1]. However,
because of the invasive nature of the procedure and the poten-
tial sampling bias of tumor biopsy, surgical biopsy is often not a
preferred choice. As an alternative to surgical biopsy, research-
ers and clinicians have been looking for molecular biomarkers
for disease diagnosis. These biomarkers, either genetic or epige-
netic, carry various indicative features for biological or disease
states. They help achieve disease state detection, subtypes clas-
sification, progression prediction and response-to-treatment
characterization [2]. The scope of molecular biomarker discov-
ery has been greatly expanded during the past two decades,
because of the advances of high-throughput genomics technol-
ogies such as microarray and next-generation sequencing. For
example, based on gene expression microarray data, Prediction
Analysis for Microarrays (PAM) identified a subset of gene bio-
markers for cancer class prediction [3]. The PAM50 panel, which

tests a group of 50 selected genes, has become the de facto gold
standard for breast cancer subtype classification and metastasis
prediction [4]. Zilliox et al. [5] created the ‘gene expression
barcode’, which was trained on public gene expression microar-
ray data, and can predict for a number of diseases given a new
microarray data set.

In recent years, disease diagnosis based on molecular bio-
markers in specimen, including blood, urine and cerebral spinal
fluid, has gain tremendous attention. For example, the practice
to look for traces of cancer DNA by interrogating biomarkers on
plasma-isolated cell-free DNA (cfDNA) or circulating tumor DNA
(ctDNA) is known as ‘liquid biopsy’ [6]. As a safer, cheaper and
quicker alternative to surgical biopsy, the liquid biopsy has
great potential in clinical practice. cfDNAs are short DNA frag-
ments (�160–180 base pairs) existing in plasma. When normal
cells undergo apoptosis in a healthy individual, DNA fragments
from the cells are shredded and released to blood stream. Thus,
cfDNA is a mixture of DNA fragments from different cell types.
In cancer patients, the cfDNA includes some ctDNA, which are
DNA fragments released from cancer cells [7]. As a hallmark of
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cancer, the ctDNA carries tumor-specific genetic variants such
as copy number variation and point mutations. After capturing
and sequencing the cfDNA, ctDNA can be distinguished from
normal cfDNA by tumor-specific genetic variants. Presence of
nontrivial amount of ctDNA is an indication of cancer.

The essence of using cfDNA for cancer diagnosis is to detect
‘abnormal’ cfDNA segments. Here, the abnormality is defined as
the presents of unusual genetic variants. This principal, how-
ever, is only applicable to ‘mutation-rich’ diseases—the ones
with high rate of genetic alteration such as cancer. For many
‘mutation-poor’ diseases and disorders not associated with
high level of genetic alteration, other approaches are needed.
Recently, researchers start to explore the cfDNA epigenetics
information such as DNA methylation or nucleosome position
to look for biomarkers for diagnosis [8–11]. In analogous to the
liquid biopsy, these approaches try to define abnormality based
on the epigenetic profiles, and then construct model for disease
prediction.

In this work, we focus on cfDNA methylation and explore
how they can be used for disease prediction. We systematically
review the existing publications and investigate the statistical
methods for cfDNA methylation study. We discuss two impor-
tant aspects: marker selection and prediction model construc-
tion, under different scenarios. We conduct extensive
simulation and real data analysis, and provide some recom-
mendations for data analysis strategies based on the results.

The cause of alteration of cfDNA methylation
in disease

DNA methylation is an epigenetic modification on the DNA
molecule. It plays an important role in cell development and
gene regulation, and is associated with many diseases [12–14].
DNA methylation is known to be highly tissue-specific [15],
which is an important basis for cfDNA methylation data analy-
sis. Even though different tissues share exactly the same DNA
sequence, the differences in their methylomes allow one to
trace the tissue of origins of cfDNA, and subsequently use that
information for disease prediction.

Considering cfDNA as a mixture of DNA segments from dif-
ferent tissues, the differences in cfDNA methylation between
patients and healthy people could be from two sources. The first
one is the alteration in one particular tissue type in disease, for
example the methylation level changes in certain cell types
between breast carcinoma versus normal [16]. The second is the
change in mixing proportions in the composition of cfDNA, for
example hepatocellular carcinoma (HCC) patients have an
increasing proportion of cfDNA fragments originates from apop-
totic liver cells [17]. It is important to note that both changes are
usually not reflected in the methylation profiles in the blood
sample; thus, one cannot construct disease prediction model
from blood data but have to rely on cfDNA.

It is well known that DNA methylation is highly tissue-
specific [8, 18–20]. Thus, both of these changes will lead to the
marginal cfDNA methylation changes between cases and con-
trols. For disease prediction, the most straightforward idea is to
detect differentially methylated loci (DML) or regions (DMRs)
between cases and controls from the cfDNA methylation data,
and use the methylation levels in those regions as predictors for
diagnosis [10, 11]. Another family of approaches is to first trace
the tissue-of-origin of cfDNA and estimate the mixing propor-
tions, and then construct a model to predict disease status
based on the estimated proportions. This type of methods takes

advantage of the tissue specificity of epigenetic profiles such as
DNA methylation or nucleosome position, and uses signal
deconvolution methods for proportion estimation [8, 17, 21]. We
conduct detailed simulation studies to compare these two types
of approaches under different scenarios (detailed in later
section).

Existing works

Table 1 lists the existing publications for using cfDNA epigenetic
profiles in disease diagnosis [8–11, 15, 17, 21–30]. As discussed
before, the prediction model construction can be roughly cate-
gorized into two classes: (1) using the marginal cfDNA epige-
netic profile as predictors or (2) using the mixing proportions as
predictors. The first class includes [9–11, 15, 22, 23, 26, 27, 30].
For example, Xu et al. [9] used 10 cfDNA methylation markers
for diagnosis of HCC using logistic regression. Another example
is using Random Forest (RF) on a set of regions to classify cancer
types [10]. The second class includes [8, 17, 28]. For example,
Kang et al. [8] modeled proportion of tumor-derived cfDNA and
used a probabilistic model to predict tumor burden and tumor
type. Sun et al. [17] used an external thousands-marker refer-
ence panel to solve for tissue proportions in HCC patients and
healthy controls. The estimated proportions can potentially be
used for disease diagnosis.

In addition to DNA methylation, there is attempt to use
other cfDNA epigenetic information such as nucleosome posi-
tion for disease prediction [29]. Snyder et al. found that during
apoptosis, genomic DNA protected by nucleosomes will be
released to bloodstream, and the unprotected naked DNA will
be degraded. The tissue-specific nucleosome positioning causes
different fragmentation pattern in cfDNA, thus allows one to
trace the tissue of origin, which could be helpful for conducting
disease prediction. However, because of the limited number of
researches and data available, using cfDNA nucleosome posi-
tion to predict disease will not be included in this review.

Methods
Marker selection

Marker selection is the first step in disease prediction model
construction. In cfDNA methylation studies, both the whole-
genome bisulfite sequencing (WGBS) and the human 450k/27k
methylation array profile large number of CpG sites. A majority
of these CpG sites are either irrelevant, noisy or redundant for
distinguishing the underlying disease status. Including all CpG
sites as features in the model will have harmful impacts on tra-
ditional machine learning algorithms such as support vector
machine (SVM) [31]. Therefore, marker selection is an important
step to alleviate problem caused by bad markers. Typically,
researchers select tens to thousands of markers based on data
from all CpGs. These makers could be CpG sites, CpG clusters [8]
or fixed-size genomic bins [17]. The selection criteria are typi-
cally based on the differentiating power of the markers, that is,
selecting features showing significant differences among differ-
ent tissues [17] or wide between-group methylation ranges [8].
All existing publications use their own approach for selecting
CpG sites. These approaches generally take following three
aspects into consideration. First, some studies use DML as pre-
dictive markers. For example, Xu et al. [9] used 10 highly
selective CpGs as the informative markers in diagnosis of HCC.
It is a direct and reasonable approach because selected markers
are discriminative for disease status. Second, some studies use
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regions instead of single CpG markers as features for prediction.
For example, Song et al. [10] used 5hmC signal within the gene
body, Kang et al. [8] used 100 bp upstream and downstream CpG
sites as regions and Lehmann-Werman et al. [23] used several
adjacent CpG sites as the basic unit for features. The underlying
assumption of choosing region instead of single CpG site as the
feature is that adjacent CpG sites have similar methylation
level, and pooling information from nearby CpG sites together
can stabilize and enhance signals. Third, some studies borrow
biological information from external data to select markers. For
example, Xu et al. [9] used solid tumor samples from The Cancer
Genome Atlas (TCGA) to conduct preliminary marker selection.
The intuition behind such approach is that features differ sig-
nificantly between solid tumor and normal tissue would also be
likely to demonstrate detectable methylation differences in the
cfDNA of the same disease.

To select informative and discriminative markers for disease
prediction, we suggest detecting DML from training data first.
The criteria for selecting markers from this step can be rela-
tively loose, to retain relatively large number of markers. Next,
when external biological information such as markers from
tissue-specific methylation is available, one can use these loca-
tions to filter the markers from the previous step. Furthermore,
one should consider pooling nearby CpG sites together to create
regions if possible, instead of using single CpG site. This will

help boost and stabilize the methylation signals. Finally, to
determine the number of markers allowed in the final statistical
model, one needs to conduct cross-validation to select the opti-
mal number that minimize the prediction error. After all these
steps above, data of the selected markers for all samples can be
used either directly as features for disease prediction or for sig-
nal deconvolution (more details in ‘Disease prediction
approach’ subsection).

Data generative model

Once the markers are selected, the next step is to build statisti-
cal model to predict the disease status. The training data
include the cfDNA methylation profiles (denoted as Y, could be
from the WGBS or the 450k/27k methylation array) for the
selected markers, and disease status (denoted as Z) for N sub-
jects including N0 patients and N1 healthy people (N¼N0 þN1).
Y is a matrix of M by N, where M is the number of preselected
biomarkers (CpG sites or regions). Z is a binary vector of length
N (1 for case and 0 for control). The goal of the problem is to use
cfDNA methylation data (Y) to predict disease status (Z).

Suppose there are T tissues releasing DNA fragments into
the cfDNA pool in plasma. Denote the methylation profiles for
the M biomarkers in these T tissues as matrix R. R is of dimen-
sion M by T, where each column represents the methylation

Table 1. List of publications of using cfDNA epigenetics information to infer disease

Disease Epigenetic profile
used

Data type Sample size Prediction method Publication

Lung cancer, HCC, pancreatic
cancer, glioblastoma, gastric
cancer, colorectal cancer,
breast cancer patients

5hmC hMe-Seal 49 RF, Mclust Song et al. [10]

Colorectal cancer, gastric can-
cer, pancreatic cancer, liver
cancer, thyroid cancer

5hmC hMe-Seal 350 Logistic regression Li et al. [11]

HCC 5mC BS-seq 1933 Logistic regression Xu et al. [9]
Pregnant/nonpregnant plasma 5mC BS-seq 27 NA Jensen et al. [22]
General cancer 5mC Methylation 450k micro-

array/BS-seq
87 Probalistic model for

tumor burden
Kang et al. [8]

Diabetes, multiple sclerosis,
traumatic or ischemic brain
damage, pancreatic cancer or
pancreatitis

5mC Methylation 450k
microarray

218 NA Lehmann-Werman et al.
[23]

General disease 5mC Methylation 450k micro-
array/BS-seq

NA NA Tanic et al. [24]

Colorectal, breast, lung, pancre-
atic and ovarian cancers

5mC Methylation 450k micro-
array/BS-seq

NA NA Warton et al. [25]

General disease-related patho-
genic mechanisms

5mC Methylation 450k
microarray

N¼4 (17
tissues)

NA Lokk et al. [26]

Colon, prostate, breast, lung
cancer

Nucleosome
positioning

DNA sequencing 179 Coverage depth Ulz et al. [21]

Pregnancies/nonpregnancies 5mC Methylation 450k
microarray

22 NA Hatt et al. [27]

Lung, colorectal cancer 5mC BS-seq 59 NA Guo et al. [28]
Tissue-specific methylation 5mC MethylC-seq N¼ 4 (18

tissues)
NA Schultz et al. [15]

General cell types contribution Nucleosome
positioning

DNA sequencing 60 Coverage depth Snyder et al. [29]

Prenatal, cancer and transplan-
tation assessments

5mC BS-seq 83 QP Sun et al. [17]

Metastatic breast cancer 5mC BS-seq 120 NA Legendre et al. [30]

Note: The epigenetics information used is either DNA methylation (5mC), DNA hydroxymethylation (5hmC) or nucleosome position.
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levels of the M biomarkers from one tissue. It is important to
note that because of biological variation, the R matrices are not
exactly the same from different people. However, the marker
selection step guarantees that the variation among individual
for the same tissue is significantly lower than the difference
among different tissues. Moreover, as there could be differential
methylation in certain tissue types between cases and controls,
R in cases can be potentially different from the R in controls. In
some situation, R can be obtained from methylomes of specific
tissues or purified cell types [17]. R could also be unknown or
unavailable if we do not have external information about those
biomarkers or the tissues of interests.

As described earlier, cfDNA is a pool of mixing DNA frag-
ments from each of the T tissues. For each individual, the tissue
proportion is a vector of length T. Each element in the vector is
a number between 0 and 1, and all elements from the vector
will sum up to 1. For these N individuals, the tissue proportions
are represented as a T by N matrix P, where pij is the tissue
proportion of the ith tissue in the jth individual, and i ¼ 1; . . . ; T;

j ¼ 1; . . . ; N: It has the restriction of
PT

i¼1 pij ¼ 1 and each
pij 2 ½0; 1�.

Following the above notations, the expected values of
the cfDNA methylation (Y) are a mixture of the tissue-specific
methylation (R): E Yð Þ ¼ RP. We use the expectation notation
Eð:Þ here because the observed cfDNA methylation data Y con-
tains random noises. For modeling and computational conven-
ience, it is commonly assumed the random errors following
normal distribution with mean 0. From this model, it is clear
that the differences in either R or P will cause E Yð Þ to differ
between two groups. In the next section, we will discuss the
possible statistical methods for using cfDNA methylation data Y
to predict the disease.

Disease prediction approach

With training data, several methods can be applied for disease
status prediction:

Directly using marker methylation to predict
As the most straightforward approach, one can directly use the
observed cfDNA methylation (Y) to predict disease status Z,
using an off-the-shelf machine learning [9–11] or model-based
approach [8]. The trained model can be evaluated using test
data, and eventually used as a panel to diagnose new patients.
This approach is easy and intuitive, and widely used in many
existing publications [8–11]. As differences in either R or P will
cause E Yð Þ to differ between case and control, one does not
need to know exactly the source of changes as long as Y can
predict Z.

Prediction based on tissue mixing proportions
To take a step further than using marker data directly, there are
some researches to first estimate the mixing proportion P, and
then using P as predictor for diagnosis. The underlying
assumption is that the disease is associated with the change of
mixing proportions (which is related to cell death rates). The
proportions estimation can be viewed as a dimension reduction
step, which can potentially improve the signal-to-noise ratio in
the data and lead to better prediction accuracy. An added bene-
fit of this approach is that the results are more interpretable:
disease is associated with the proportion change of certain cell
type, which could be related to the cell death rate for that
tissue.

The estimation of the mixing proportions can be achieved by
using following two different procedures.

1. Reference-based method

When external reference panel R is available, the estimation
can be done by regressing the mixed signal Y to purified tissue
reference R. As the regression coefficients are not totally free
parameters and have to satisfy some constraints (between 0
and 1, sum up to 1 in each individual), the problem is a con-
strained linear regression in the following form:

E Yð Þ ¼ RPPT
i¼1 pij ¼ 1

0� pij � 1

:

8>><
>>:

This can be converted into an optimization problem to mini-
mize the residual sum of squares. The optimization problem
has a quadratic loss function and linear constraints, and thus
can be solved by quadratic programming (QP) algorithm.

With estimated proportions, we can train a SVM to predict Z
from bP from training data. When a new patient coming in, one
can use the reference panel R to solve for new individual’s tis-
sue proportion bp using QP, and then apply the trained SVM on bp
to predict disease status.

This approach is easy, intuitive and computationally effi-
cient. The only shortcoming is the requirement of R. One can
look for R in public data but has to assume that it is not signifi-
cantly different from the reference methylome of the popula-
tion under study, which could be a strong assumption.

2. Reference-free method

When external reference panel R is unavailable, one can use
nonnegative matrix factorization (NMF) algorithm to jointly
solve for R and P: Briefly speaking, NMF is an algorithm that fac-
torizes a matrix, say V, into two matrices W and H, such that:
V ¼WH, where all three matrices contain nonnegative ele-
ments. Because W and H are both unknown, the factorization is
solved by numerical approximation methods [32]. To be specific,
the estimator of W and H follows:

argminW;Hj V �WHj jj2;

where 0 � W � 1, 0 � H � 1 and
P

iHij ¼ 1 for any j. After initi-
alization of W and H, a procedure is taken to estimate W given
fixed H, and then estimate H given fixed W, iteratively, until it
converges. NMF was traditionally used on chemometrics, signal
processing and image processing [33, 34]. Recently, NMF is gain-
ing popularity among computation biological research com-
munity, especially in analyzing data from highly heterogeneous
samples [35–37]. One major reason for this popularity is that the
factorized matrices are in reduced dimensions and have better
biological interpretation.

In estimating mixing proportions from cfDNA methylation, we
factorize methylation matrix Y into two nonnegative matrices W
and H, while constraining each cell in matrix H takes value within
[0, 1] and each column in matrix H sum up to 1. To be noticed, the
original version of NMF only requires W and H to be nonnegative
but does not have those added constrains. The algorithm was spe-
cifically customized by adding these new constraints to solve for
W and H for DNA methylation study [36, 38, 39]. Then, W can be
interpreted as a sudo-reference matrix comparable with the exter-
nal reference matrix R, and H can be interpreted as a sudo-tissue-
proportion matrix similar to the tissue proportion matrix P.
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Matrix H can then be used for disease status prediction, resem-
bling using QP-solved proportion matrix P.

NMF provides a flexible way to solve for tissue proportions
when the external tissue reference information is unavailable.
Under the context of cfDNA methylation study, assume we
have training data for N individuals (with known disease status)
and new patients (with cfDNA methylation data but disease sta-
tus is unknown). Reference-free NMF-based approach is the fol-
lowing. First, we apply NMF on training data Y to factorize it
into two matrices W and H. As the columns from H represent
individuals with known disease status Z, we train an SVM using
H to predict Z. Then, we regress new patients’ data (Yb) on W
using a constrained linear regression to get testing data’s tissue
proportions (Hb). Finally, we apply the trained SVM on Hb to pre-
dict disease status for new patients.

To summarize the methods described above, a schematic
illustration of plasma cfDNA methylation mixing procedure and

deconvolution methods for disease detection and monitoring is
shown in Figure 1. Besides directly using markers to for disease
predication and monitoring, signal deconvolution methods can
be categorized into either the ‘reference-based approach’ when
the tissue-specific reference profiles are known, or ‘reference-
free approach’ when the tissue-specific methylation reference
profiles are unavailable.

Simulation

To evaluate and compare the aforementioned prediction
approaches under different scenarios, we performed a series of
simulations. In all simulations, data are generated to mimic the
real data characteristics. The main simulation procedures are
as following. We obtain the cfDNA WGBS methylation data of 32
healthy people as control samples and 29 HCC patients as case
samples from a previous study [17]. Then, we take the

Figure 1. Schematic overview of plasma cfDNA methylation mixing procedure and deconvolution methods for disease detection and monitoring. One straightforward

approach is to use marker directly for disease detection. Besides using biomarkers directly, signal deconvolution methods can be categorized into either the ‘reference-

free approach’ when the external tissue-specific methylation reference in unavailable, or the ‘reference-based approach’ when the tissue-specific profile is known.
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methylation levels for 1013 CpG clusters (500 bp, each) from 14
different tissues as the reference panel R, which are reported by
the authors and chosen based on tissue-specific methylation
profiles. We further obtained the cfDNA methylation levels for
all samples in these 1013 regions as the methylation data of
interest, and applied QP on the methylation data and reference
panel to solve for tissue proportions for each patient. Next, we
assume 32 healthy people’s tissue proportions come from a
common Dirichlet distribution Dir(a0), and 29 HCC cancer
patient’s proportions from another common Dirichlet distribu-
tion Dir(a1). We obtain the MLE of a0 and a1, as ba0 and ba1 ,
respectively.

Using ba0 and ba1 , we generate 50 controls’ tissue proportions
P0 from Dir( ba0 ), and 100 cases’ proportions P1 from Dir( ba1 ). To
mimic the biological variation in reference panel for different
person, we generate the noise-added reference panel Ri for each
sample i base on the original reference panel R. To be specific,
we use the original reference R as the mean parameter in beta
distribution, and then adjust the dispersion level based on sim-
ulation setting to control the noise level. Using higher disper-
sion will generate noisier reference panel Ri. Then for each
sample, we multiply Ri with the simulated mixing proportion to
obtain the expected values for this individual’s cfDNA methyla-
tion levels. The next step in simulation is adding noise to the
simulated cfDNA methylation level, which is again based
on beta distribution. We reparametrize the beta distribution Bet
a ða; bÞ into the following form:

Betaðl; /Þ;

where l ¼ a
aþb is the mean, and / ¼ 1

aþbþ1 is the dispersion.
Here, we take Ri Pi as the mean l of beta distribution, and use
different values for the dispersion / to investigate the effect of
noise levels on the performance of prediction.

Simulation results

After obtaining the simulation data, we use leave-one-out
cross-validation (LOOCV) to evaluate and compare the classifi-
cation accuracies from different methods. The classification
accuracies from all simulations are summarized by the boxplots
in Figure 2. Simulations are conducted under low (/ ¼ 0:17,
Figure 2A), medium (/ ¼ 0:5, Figure 2B) and high (/ ¼ 0:67,
Figure 2C) noise levels. Each simulation is repeated for 20 times.
The methods under comparison include marker-directly predict
approach (presented as ‘marker’), estimate tissue proportion
approach using QP (‘QP’) and the reference-free NMF approach
(‘NMF’). As a benchmark, we also include the results from using
the true proportions as predictor (‘true prop’).

As shown in Figure 2, using the true proportions as predic-
tors achieves the highest accuracy in all simulation settings, as
expected. When the noise level is low (Figure 2A), the prediction
accuracies of all methods are reasonably good, with NMF’s accu-
racy lower than the others. When the noise level increases, the
three methods under comparison start to differ. At medium
noise level, using marker directly to predict performs worse
than QP (P¼ 10�4, one-sided t-test) but better than NMF
(P¼ 10�3, one-sided t-test). At high noise level, using marker
directly to predict performs worse than the other two methods
(P¼ 10�12 and 10�10 high; one-sided t-test). In particular, at high
noise level (Figure 2C), directly using marker to predict performs
rather poorly. This is because under our simulation setting, the
methylation differences come from the differences in mixing
proportions between cases and controls. The proportion

estimation serves as a signal filtering step to extract better pre-
diction features, which subsequently improves prediction.
Across all noise levels, QP performs better than NMF (P ¼ 10�12

low; 10�8 medium; 10�2 high; one-sided t-test). This is expected
because QP uses external information to help disease status
prediction, which is supposed to outperform reference-free
method NMF.

We then conduct the following simulations to further inves-
tigate the QP and NMF methods from other aspects.

Sample size consideration
As the simulation above contains rather small sample size
(150), we investigate how the size of training data will affect
the results by increasing the sample size to 750 and 1500.
Supplementary Figure S1 shows that the total sample size has
dramatic effect on prediction accuracy. As the sample size
increase, the accuracies of all methods increase, across all
noise levels. However, when the noise level is not low, NMF
performs better than QP under larger sample size. This is
because that when the noise level is high, the reference panel
used for QP is noisy. In this case, it is suitable to use NMF for
reference-free decomposition when the sample size allows.
These results also provide some hints for sample size selec-
tion. For NMF, the gain of accuracy from 150 to 750 is dramatic,
and then plateaued from 750 to 1500. It is therefore advisable
to have at least several hundreds of samples to start using the
NMF approach.

Other aspects in solving proportion
In either QP or NMF-based method, the estimated proportions
are coordinates when projecting the original data into a lower-
dimensional space. The improvement in prediction accuracy
using estimated proportions suggests that the coordinates con-
tain cleaner signals for the outcome. We investigate how much
impact the direction of the projection will have on prediction.
We conduct simulations under different external reference R, to
see how the choice of reference will affect the classification
results. We use a ‘high variance reference’ in QP estimate tissue
proportion approach to solve for tissue proportions. That is,
more noise is added to the R used in QP. This mimics the situa-
tion that there is significant bias for the reference panel being
used. We also try to use a ‘random’ reference by randomly shuf-
fling the entire R used in QP. This mimics the extreme situation
where the reference R is completely off. Results in
Supplementary Figure S2 indicate that using the ‘high variance
reference’ (‘QP high var’) and ‘randomly shuffled reference’ (‘QP
random’) both lead to a decrease of accuracy, where using ran-
dom reference is much worse than all other methods
(P¼ 0.0159, analysis of variance). Both QP and NMF project a
matrix into lower-dimensional space with either known or
unknown coordinates. Whether the projection has predictive
power for the outcome is important for the performance of the
method. The results in Supplementary Figure S2 illustrate that
a bad projection direction leads to unfavorable prediction accu-
racy, and that using a more accurate external reference R will
benefit the classification.

We also explore if directly solving proportions in ordinary
least squares (OLS) without any constraint will affect the predic-
tion accuracy. Results in Supplementary Figure S2 indicate that
OLS has comparable performance with QP. Of course, the OLS
results will lose biological interpretation, as without con-
straints, the regression coefficients cannot be interpreted as
mixing proportions anymore. Thus, the QP is still a preferred
method than OLS. When adopting reference-based approaches,
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we also compare QP with two other newly designed methods:
Cibersort (CBS) [40] and EpiDISH [41]. CBS uses support vector
regression, and EpiDISH uses robust partial correlations (RPCs).
Results in Supplementary Figure S3 indicate that CBS performs
better than QP in high noise level, whereas RPC and QP are com-
parable overall. This indicates the reference-based algorithms
that specifically designed for gene expression or DNA methyla-
tion data, where solved proportions constraint can be imple-
mented a posteriori, can provide alternative means for QP.

Validation of NMF results
To validate if the NMF-solved reference matrix W is a good
approximation to the true reference panel, we investigate the

NMF results in simulation. As the column orders of W is ran-
domly generated from NMF, we first need to ‘assign’ tissue
types to the columns of W. To do so, we find matches based on
pairwise correlations of the columns of W and the true referen-
ces. In these two matrices, two columns with highest correla-
tion are regarded to represent the same tissue. After this, we
exclude these two matched columns and use the highest corre-
lation on the remaining data to identify the second matched tis-
sue. We iterate this procedure until all tissue types are
determined. We found that overall the estimations of the refer-
ence are accurate. The average correlation between estimated
and true reference is >0.83. Figure 3 shows the scatterplot for
NMF-solved reference methylation versus the truth for 4 (of 14)

Figure 2. Boxplot of classification accuracies for multiple methods in simulations. Marker: Marker directly predict approach. QP: using tissue proportions solved from

QP procedure for prediction. NMF approach. True Prop: using simulated true proportion in classification. A total number of 20 simulations are conducted. (A) Low noise

level; (B) medium noise level; (C) high noise level.
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tissues. Such scatterplots for all tissues are available in
Supplementary Figure S4.

We further compare the NMF-solved proportion matrix H
with the true proportions in simulation. Figure 4 shows the
scatterplots of NMF-solved tissue proportions versus true
proportions for the four tissues. In general, NMF-solved
proportions correlate with true proportion well in most esti-
mations, although in some tissues this relationship is
weak. Possible reason for the inaccurate estimation in some
cases is that the low abundance of certain tissue makes
them difficult to estimate. The scatterplot for all tissues
solved proportion versus true proportions are available in
Supplementary Figure S5. Overall, reference-free approach
has the capacity to elucidate compositions of heterogeneous
cfDNA samples pertaining to their constituent homogeneous
tissue types.

Real data results

We further evaluate and compare the methods in real data. We
obtain and process the cfDNA WGBS data for 27 HCC patients, 32
healthy unpregnant control subjects and 17 healthy pregnant sub-
jects from [17]. This data set is referred to as the WGBS data set
thereafter. The external reference panel is obtained from the same
study, with reference data from the Roadmap Epigenomics
Consortium [42] included. With this external reference panel
known, we first apply QP to solve for tissue proportions. For each
individual among HCC patients, healthy controls and pregnant
subjects, the bar plots for estimated tissue proportions are shown
in Figure 5. Each bar represents one person. To take a close look at
the tissue proportions in a tissue-specific manner, the boxplot for
liver and placenta tissue proportions among these three groups
(HCC, control and pregnant) are shown in Figure 6. It demonstrates

Figure 3. Scatterplots of NMF estimated reference methylation levels versus true reference methylation levels in four tissues. (A) Small intestines; (B) adipose tissues;

(C) adrenal glands; (D) lungs. Relatively strong correlations are observed. Spearman’s correlation is shown in each panel.
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Figure 4. Scatterplots of NMF estimated tissue proportions versus true tissue proportions in four tissues. (A) Small intestines; (B) adipose tissues; (C) adrenal glands;

(D) lungs. Relatively strong correlations are observed. Spearman’s correlation is shown in each panel.

Figure 5. Barplot for the estimated 14 tissue proportions from real data for HCC patients, healthy controls and pregnant subjects, using QP with external reference

available. HCC patients showed an increased proportion of cfDNA originating from liver, while pregnant controls showed an increased proportion of cfDNA originating

from placenta.
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that HCC patients have an increased proportion of cfDNA originat-
ing from liver, which is consistent with the original study (Figure 7
in [17]) and suggests that the cell death rates in liver are higher
among HCC patients. Similarly, pregnant women show an
increased proportion of cfDNA originating from placenta. The
marked differences in these proportions indicate that the propor-
tions will be predictive for the outcome.

The boxplots for all 14 tissue-type proportions, with one
panel for each tissue type, are shown in Supplementary
Figure S6. We then apply NMF on real data to see if the NMF-
solved result is similar to the truth. Although on average the
correlation is not as ideal as in simulation, Supplementary
Figure S7 shows that NMF-solved reference correlates true refer-
ence well. NMF is effective for obtaining the underlying refer-
ence panel from real data.

We then apply three different methods to classify the HCC,
control and pregnant subjects. The classification confusion
matrices from LOOCV are shown in Table 2.

As shown in Table 2, QP-based method has the highest clas-
sification accuracy (79%). It is because QP takes advantage of

accurate external reference information, which helps to extract
the proportion used in classification. Directly using markers for
predication also yield satisfying predication accuracy and per-
forms better than NMF approach. This is because when sample
size is relatively small, NMF-solved reference and proportions
are not as accurate as in relatively large samples. QP-based
method can outperform NMF approach under small sample size
setting. We also applied two other reference-based algorithms,
CBS and RPC here. Supplementary Table S1 indicates that all
three reference-based methods (CBS, RPC and QP) perform
similarly.

The results show that the pregnant subjects can be easily
separated with other groups, while separating HCC patients
with healthy controls yields more misclassification. It is
because pregnant subjects show a more profound change in
estimated proportions for placenta (�20% in proportion change
on average) compared with the rest groups; thus, the signal-to-
noise ratio is high. For HCC patients, even though the propor-
tion from liver is significantly higher in liver, there is still non-
trivial overlap in proportions between HCC and normal control,
leading to the misclassifications. Overall, as a noninvasive
prescreening procedure, the real data results are reasonably
good and show promises that cfDNA methylation can poten-
tially be used for disease diagnosis.

We also analyze a set of reference-free real data for further
comparison. We obtain and process cfDNA hydroxymethylation
data for 15 healthy controls and 18 colorectal cancer patients
from [11]. The data were generated from capture sequencing
technology known as 5hmC-Seal, which has similar data char-
acteristics as MeDIP-seq. This data set is referred to as the
5hmC-seq data set thereafter. As there is no external reference

Figure 6. Boxplot of real data solved tissue proportions for liver and placenta, respectively, among three groups. (A) Tissue proportions for liver among three groups;

(B) tissue proportions for placenta among three groups.

Table 2. Classification confusion matrices for the WGBS data

Method Marker predict NMF proportion predict QP proportion predict

HCC Control Preg HCC Control Preg HCC Control Preg

Truth HCC 11 12 4 8 15 4 14 13 0
Control 3 29 0 4 28 0 3 29 0
Preg 0 0 17 0 0 17 0 0 17

Note: Control: healthy, unpregnant control people. Preg: healthy pregnant women. Marker predict accuracy: 0.75. NMF predict accuracy: 0.70. QP predicted accuracy:

0.79.

Table 3. Classification confusion matrices for the 5hmC-seq data

Method Marker predict NMF proportion predict

Cancer Normal Cancer Normal

Truth Cancer 11 4 10 5
Normal 0 18 0 18

Note: Cancer: colorectal cancer patients. Normal: healthy controls. Marker pre-

dict accuracy: 0.88. NMF predict accuracy: 0.85.
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panel available for this data set, we can only apply either
marker-directly approach or NMF approach for disease predic-
tion. We summarize the sequencing read counts on each 2 kb
regions along the genome, and then use the counts as inputs for
disease prediction. During each round of LOOCV, top 1000 DMRs
are first identified in the training samples using DSS [43]. We
then use the log-transformed read counts from the top 1000
DMRs as the input data for both marker-directly approach and
NMF approach. The model is trained using top 1000 DMRs or
deconvoluted proportions, respectively, for marker-directly
approach and NMF approach. The prediction result from LOOCV
is shown in Table 3. Overall, using marker and NMF yields simi-
lar prediction accuracies, although using marker performs
slightly better (one more correct prediction). Based on our obser-
vation, the signal-to-noise ratio in this data set is reasonably
high. Thus, the DMR markers themselves already have good dif-
ferential power to detect the cancer–normal difference.
Therefore, using marker-directly approach yields decent
accuracy.

Discussion and conclusion

Recent studies have reported that cfDNA contains rich informa-
tion of disease status and can be used to extract biomarkers and
construct disease prediction model [8, 24, 28]. As a noninvasive
alternative to surgical biopsy, cfDNA-based assay has great
potential in disease diagnosis. The highly promising and
sought-after liquid biopsy in cancer diagnosis depends on
cfDNA sequence variants, and thus can only be applied on dis-
eases with high mutation rate such as cancer. Using cfDNA
methylation overcomes such limitation and has much wider
application. In this study, we review the published works of
using cfDNA in disease diagnosis. We focus on the strategies for
statistical method and data analysis and conduct simulations
to investigate several potential methods for cfDNA methylation
deconvolution and prediction for disease. The advantages and
disadvantages for the three general approaches are summar-
ized in Table 4.cfDNA is a mixture of DNA fragments from mul-
tiple tissues, and the mixing proportions are potentially
associated with disease status. The difference in proportions
will lead to some marginal cfDNA methylation changes because
of the tissue specificity of the methylomes. The disease predic-
tion can be achieved by either using methylation levels or esti-
mated mixing proportions as predictors, with an off-the-shelf
machine learning algorithm. Regardless of the downstream pre-
diction approach, marker selection is a important first step. We
review the approaches for selecting marker in existing works
and make some recommendation. In general, we recommend
selecting markers based on the training data as well as external
biological information.

When there is no profound change in cell-type-specific
methylomes between cases and controls, it is generally

assumed that the changes of tissue proportions in the mixing
pool of cfDNA are associated with disease status. If the refer-
ence methylome are available, reference-based methods like QP
can produce reliable tissue proportion estimation. Simulation
studies show that the accuracy of using estimated tissue pro-
portions to predict disease status is higher than that of using
marker directly. As an added advantage, the estimated propor-
tions also provide more interpretable result. In contrast, the
reference methylome could be unavailable under certain cir-
cumstances. For example, the subpopulation under this study is
different from the previous one. Under this situation that the
reference panel is different from the original one, NMF is a via-
ble solution. NMF-based method provides a reference-free
approach for solving both tissue proportion and tissue reference
simultaneously. Simulation studies demonstrate that this
method provide comparable results to reference-based
approach.

Although the disease prediction accuracy in real data is rea-
sonable, there could be complications in real practice. The pre-
diction can be influenced by biological and/or technical artifacts
such as genetic background, demographics or batch effects,
which is a difficulty faced by many other genome-based predic-
tive assays. For example, it has been shown that batch effect or
different data normalization methods can negatively affect the
prognosis in cancer using gene expression data [44]. To alleviate
these problems, the training and test sample first need to be
consistent: they must be from the same population and experi-
mental platform. If significant batch effects were observed, one
needs to first perform data normalization using approaches
such as ComBat [45], or consider using alternative rank-based
methods to stabilize the signal. Furthermore, there will be room
for improving the results. First, larger training samples size can
contribute to the improvement in prediction accuracy. We rec-
ommend to start with at least several hundred samples to con-
struct a prediction model. We believe that with advances of
experimental technologies and data analysis method, more
cfDNA methylation data will be generated from larger-scale
studies, which will greatly improve the model. We also envision
that if the sample size increased significantly (e.g. doubled or
tripled), we should retrain the model to improve accuracy. It is
possible that with the retrained model, some diagnoses for
existing patients could be different. In that case, the ethical
issues have to be carefully addressed. However, this is the
nature of clinical research: with accumulation of data and evi-
dence, diagnosis criteria could evolve. Second, both reference-
based and reference-free methods are dimension reduction
approach to project data into lower-dimensional space:
reference-based method projects the data matrix onto the
known reference, and reference-free method jointly solves the
reference and projection. The prediction accuracy will be related
to the reference used (as we showed in our simulation study). It
will be interesting to develop novel statistical method to

Table 4. Advantages and disadvantages of three cfDNA methylation disease predicting approaches

Method Advantages Disadvantages

Marker-directly • Straightforward and easy to apply
• Applicable on disease with no cfDNA tissue proportion change

• Results lack direct biological interpretation
• Results contain no tissue proportion information

Reference-based • Can estimate tissue proportions
• Tissue proportions have biological interpretation

• Require external reference panel from pure tissues

Reference-free • Does not require external reference panel from pure tissues
• Can estimate reference panel and tissue proportions
• Tissue proportions have biological interpretation

• Computationally more intensive
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identify the optimal low-dimension space to project to that can
produce the best prediction accuracy.

Key Points

• cfDNA is a mixture of DNA fragments from multiple tis-
sues, and the mixing proportions could potentially be
associated with disease status. cfDNA screening has
great potential to be a noninvasive procedure for dis-
ease testing.

• Prediction based on cfDNA methylation can be applied
to diseases not associated with significant DNA
sequence changes.

• One can predict disease based on cfDNA methylation
levels, or the estimated mixing proportions.

• Marker selection is important for disease prediction
using cfDNA methylation. It should be done using both
the training data as well as external biological
information.

• Mixing proportion estimation can be performed with or
without reference methylomes.

Methods availability

The R scripts implementing the methods discussed in this work
are available online at: https://github.com/haoharryfeng/
cfDNAmethy, with instructions and an example data set.

Supplementary Data

Supplementary data are available online at https://aca
demic.oup.com/bib.
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