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Abstract

Regulation of proteolysis plays a critical role in a myriad of important cellular processes. The key to better understanding
the mechanisms that control this process is to identify the specific substrates that each protease targets. To address this,
we have developed iProt-Sub, a powerful bioinformatics tool for the accurate prediction of protease-specific substrates and
their cleavage sites. Importantly, iProt-Sub represents a significantly advanced version of its successful predecessor,
PROSPER. It provides optimized cleavage site prediction models with better prediction performance and coverage for more
species-specific proteases (4 major protease families and 38 different proteases). iProt-Sub integrates heterogeneous
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sequence and structural features and uses a two-step feature selection procedure to further remove redundant and irrele-
vant features in an effort to improve the cleavage site prediction accuracy. Features used by iProt-Sub are encoded by 11 dif-
ferent sequence encoding schemes, including local amino acid sequence profile, secondary structure, solvent accessibility
and native disorder, which will allow a more accurate representation of the protease specificity of approximately 38 prote-
ases and training of the prediction models. Benchmarking experiments using cross-validation and independent tests
showed that iProt-Sub is able to achieve a better performance than several existing generic tools. We anticipate that iProt-
Sub will be a powerful tool for proteome-wide prediction of protease-specific substrates and their cleavage sites, and will fa-
cilitate hypothesis-driven functional interrogation of protease-specific substrate cleavage and proteolytic events.

Key words: protease; substrate; cleavage site; sequence analysis; machine learning; five-step rule

Introduction

Proteolytic cleavage is one of the few irreversible posttransla-
tional modifications. It plays a key role in numerous develop-
mental and physiological processes, including digestion, protein
degradation, endocrine signaling and cell division [1]. This pro-
cess is controlled by proteases (also known as peptidases or pro-
teinases) that selectively cleave the peptide bonds between
amino acids in specific protein or peptide substrates. Proteases
have central roles in ‘life or death’ processes. Through the highly
selective proteolytic processing, proteases can precisely regulate
a myriad of biological processes across all living organisms [1]. In
addition, these are also many other proteases involved in protein
degradation rather than processing, for example cathepsin D and
cathepsin B. Pepsin, trypsin and chymotrypsin also come into
this category, even though they have a defined specificity be-
cause they degrade so many substrates, most of which are for-
eign to the body [2]. The malfunction or deregulation of proteases
results in many pathological conditions [3]. For example, prote-
ases are often associated with cancer invasion and metastasis
because of their ability to degrade the extracellular matrix [4–8].
Intriguingly, proteases can function as part of an extensive net-
work of proteolytic interactions through interacting with other
important signaling pathways involving other protein substrates
and enzymes, termed the ‘protease web’ [9].

Our knowledge of the mechanisms that regulate and control
the proteolytic processing of proteases remains limited. The
precise understanding of the biological function of a protease
requires the identification of the complete repertoire of its nat-
ural substrates and corresponding substrate cleavage sites [10,
11]. The specificity of proteases can vary significantly, depend-
ing on the protease and the active sites, with the cleavage site
selectivity ranging from preferences for limited and specific
amino acids at specific positions, to more general preferences
with little discrimination. Current experimental methods for
proteolytic cleavage characterization include one-dimensional
and two-dimensional gel-based methods (used for identifying
the substrates) [12], N-terminal peptide identification methods
(for identifying both substrates and cleavage sites), methods
using mass spectrometry, as well as quantitation methods of
proteolysis to better understand the dynamics and extent of
proteolytic events such as the TAILS method [13]. Despite the
advances of these experimental methods, they are labor inten-
sive, expensive and time-consuming, and are often limited to
the investigation of one protease each time. In this context, it is
highly desirable to develop cost-effective computational meth-
ods that can be used to identify the target substrates for a spe-
cific protease and to facilitate the characterization of substrate
specificity and the function of proteases.

The importance and value of the in silico identification of pro-
tease target substrates and cleavage sites has led to the

development of a variety of computational methods for predict-
ing protease-specific substrates and cleavage sites. A number of
computational studies have suggested that substrate cleavage
sites (sites surrounding the cleavage P1 sites) targeted by prote-
ases present unique structural and physicochemical properties
that vary across different proteases, which can be exploited to
predict potential cleavage sites [11, 14–24]. However, the most
successful computational methods use a combination of these
features with other complementary features [10, 14–16, 25–31],
achieving overall accuracies of 70–90% for most of the proteases
under investigation. A consensus resulting from such computa-
tional methods is that machine learning algorithms that take
into consideration integrated heterogeneous information can be
used to build more accurate predictive models for most of the
proteases under investigation. Often a consensus scoring mech-
anism is performed using scoring function-based techniques or
machine learning techniques. The former includes PeptideCutter
[32], PoPS [33] and SitePrediction [34]. The latter has gained sig-
nificant interest in recent years and includes CASVM [35],
Cascleave [15], Pripper [36], Cascleave 2.0 [30], PROSPER [29, 31]
and PROSPERous [37]. For the substrate cleavage site prediction of
specific proteases, some ad hoc consensus schemes can also be ef-
fective, including GraBCas [38], CaSPredictor [39] and GPS-CCD
[40].

At the end of 2012, we published PROSPER (PROtease sub-
strate SPecificity servER), a bioinformatic tool for predicting tar-
get substrates and their specific cleavage sites for 23 proteases
[29]. It represented the first comprehensive server capable of
predicting cleavage sites of multiple proteases within a single
substrate sequence using machine learning techniques. To
date, the PROSPER server has attracted >25 000 unique users
worldwide and has processed>60 000 job submissions since its
inception. Here, we build on this previous work to develop a
new computational method, termed iProt-Sub to address the
problem of identifying the most probable protease-specific sub-
strates and their detailed cleavage sites from the substrate se-
quence information. According to the well-known Chou’s five-
step rule [41] in developing a useful predictor, we need to ac-
complish the following: (1) benchmark data set construction, (2)
protein sample formulation, (3) operating algorithm, (4) evaluat-
ing expected accuracy and (5) Web server establishment. In this
work, we have considerably improved the design of iProt-Sub
package for each of the five procedures.

More specifically, using a well-prepared benchmark data set,
iProt-Sub extracts a wide range of sequence-derived structural,
physicochemical and evolutionary information, which is further
integrated into a common machine learning framework in the
form of support vector machine (SVM) classifiers, to identify
and rank potential substrate cleavage sites in a protease-
specific manner. The cleavage site prediction models are
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trained and optimized to achieve best-performing prediction by
performing a 5-fold cross-validation test. Benchmarking experi-
ments indicated that the iProt-Sub method compared favorably
with recently published methods. Moreover, mapping of the
protease-specific cleavage target substrates at the proteome-
wide scale was highly accurate and selective. iProt-Sub is ac-
cessible through a user-friendly Web application available at
http://iProt-Sub.erc.monash.edu/. The Web application of iProt-
Sub features a powerful and convenient graphic interface that
allows the visualization and analysis of the predicted cleavage
site within the same protein by different proteases simultan-
eously. The implemented iProt-Sub server thus represents a
centralized Web resource for accurate in silico prediction of
protease-specific substrates and their cleavage sites.

Materials and methods
Overall workflow of iProt-Sub

iProt-Sub represents an advanced version of PROSPER [29].
Importantly, the improvement of iProt-Sub over PROSPER is re-
flected by the following: (1) larger coverage of more proteases.
iProt-Sub can be used to predict protease-specific substrates
and cleavage sites for 38 different proteases, whereas PROSPER
covered 23 proteases; (2) use of a wider range of sequence-
derived features. iProt-Sub uses 11 diverse types of sequence-
based features (4562-dimensional); (3) application of a more ef-
fective feature selection technique to filter out irrelevant and
noisy features. iProt-Sub uses the mRMR (minimum redun-
dancy maximum relevance) [42] algorithm to identify more in-
formative features to enhance the predictive performance: (4)
improved predictive performance. Through an effective feature
extraction, selection and model learning strategy, iProt-Sub
consistently achieves improved predictive performance for pre-
dicting the substrate cleavage sites for all tested proteases and
(5) completely redesigned interface. The new iProt-Sub Web ser-
ver now provides a more user-friendly and interactive interface
that enhances user experience. The overall flowchart of the
iProt-Sub methodology is shown in Figure 1.

Data sets

Numerous studies have suggested that a high-quality, well-
established data set is crucial for training a robust and reliable
prediction model of protease cleavage sites [37, 43–45]. In this
study, we constructed a well-prepared benchmark data set for
assessing the predictive performance of our method and other
existing methods. For this purpose, we used the MEROPS data-
base [46], which is a comprehensive information resource for
proteases, their substrates and inhibitors. Only experimentally
verified substrate sequences and cleavage sites were retrieved.
The annotations of experimentally verified cleavage sites and
the corresponding proteases that cleave the target substrates
were extracted from MEROPS, while the annotations of protein
identifiers of the substrates and their sequence information
were extracted from UniProt [47]. In particular, exopeptidases
(aminopeptidases, carboxypeptidases, etc.) and oligopeptidases
were generally not included, which is consistent with our previ-
ous study [29]. As we are more interested in predicting cleav-
ages within native proteins, peptidases that work at pH
extremes and are likely to degrade only denatured proteins
were also excluded [29].

To avoid potential model bias and overfitting, we performed
sequence clustering and homology reduction using the CD-HIT
program [48]. We removed sequence redundancy in the
retrieved data set, so that any two sequences in the benchmark
data set and independent test data set have a sequence identity
of <70%, which is in accordance with previous studies [15, 30,
37, 49, 50]. After this procedure, we only retained those prote-
ases that had �50 experimentally verified cleavage sites.
Finally, we ended up with 38 proteases with a total of 3688 sub-
strates and 6637 cleavage sites. A complete list of these sub-
strate sequences and their cleavage sites can be found at the
iProt-Sub website. A statistical summary of the curated data
sets in this study is shown in Table 1.

In this study, five of the six of the substrate sequences in the
resulting data set obtained above were randomly selected as the
benchmark training data set, while the remaining one of the six
of the data set was used as the independent test data set. The

Figure 1. The workflow of the iProt-Sub methodology. There exist four major stages during the development of iProt-Sub, including Data set curation, Feature extrac-

tion and encoding, Model construction and Performance evaluation. Refer to the main text for a detailed description of each of the major stages. ‘All features’ included

all the 11 types of extracted features (a detailed list is shown in Table 2).
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purpose of constructing a benchmark training data set was to
optimize the parameters of machine learning algorithms, train
the prediction model and evaluate model performance in an
n-fold cross-validation manner, whereas the purpose of con-
structing the independent test data set was to validate the gen-
eralization ability of trained prediction models and compare
them with other existing tools. None of the substrate sequences
in this constructed independent test data set appeared in the
benchmark data set, which ensures that a fair assessment of
model performance can be achieved.

Positive and negative samples

In this study, the number of negative samples (i.e. non-cleavage
sites) in the data set of protease-specific substrate cleavage sites
greatly dominates the number of the positive samples (i.e.
cleavage sites). This leads to a class imbalance problem. If not
addressed, this can result in models that favor negative predic-
tions over positive [29, 51]. To address this data imbalance issue,
we used a down-sampling strategy, randomly discarding from
the overrepresented negative samples, to impose a ratio of 1
positive to every 3 negatives, as previously suggested [15, 25, 29,
51, 52].

To extract the sequence-based features of positive and nega-
tive samples, we used a local sliding window approach, with a
fixed window size of P8–P80 sites (i.e. eight residues in the up-
stream and another eight residues in the downstream to surround
the cleavage site). The overall size of the sliding window was 16
sites. With regard to the selection of reliable negative samples,
several previous studies have indicated that a few cleavage
sites at the P1 position were predicted to be solvent inaccessible
[14–16]. In view of these studies and for the purpose of extracting
reliable non-cleavage sites, we randomly selected those negative
samples with P1 sites predicted as solvent inaccessible by the
SABLE program [53] for constructing the prediction models.

Sequence encoding schemes

We formulate cleavage site prediction as a classification prob-
lem and solve it using machine learning techniques. Each po-
tential cleavage site (or non-cleavage site) of an amino acid
sequence is represented by a feature vector x with D-dimen-
sional feature components {x1, . . ., xD}. The problem is to predict
the label y of the site of interest that is represented and encoded
by D-dimensional features. The y will be defined as ‘1’ if the site
is a cleavage site for a protease, and ‘0’ otherwise.

The representation form of a potential site is determined
based on the so-called ‘sequence encoding scheme’, which is
used for extracting the potentially useful information from the
amino acid sequence (often combined with predicted structural
information) and converting the sequence data into numerical
feature vectors [54, 55]. Accordingly, the sequence-encoding
scheme plays a crucial role in determining the predictive per-
formance of the machine learning-based model. In this study,
we derived a great variety of features organized into 11 different
types. We evaluated the relative predictive performance to
identify effective combinations of features that could lead to
the overall best predictive performance for a given protease. In
addition to sequence-derived features, we also integrated evo-
lutionary, physicochemical properties and predicted structural
features. Detailed information on the software or databases we
used to extract these different types of features is listed in
Table 2, along with the feature category, annotations, dimen-
sion and references. Below we will first describe the differentT
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types of sequence encoding schemes in detail, and then de-
scribe the SVM learning algorithm that is used to train the pre-
diction models to predict y given x.

Sequence or sequence-derived features
With the avalanche of protein sequences generated in the post-
genomic era, one of the most challenging problems in computa-
tional biology is how to express a biological sequence with a dis-
crete model or a vector, yet still keep considerable sequence-
order information or key pattern characteristic. This is because
all the existing machine learning algorithms can only handle
vectors but not sequences, as elucidated in [65]. However, a vec-
tor defined in a discrete model may completely lose all the
sequence-pattern information. To avoid this for proteins, the
pseudo amino acid composition (AAC) [66] or PseAAC [67] was
proposed. Ever since the concept of PseAAC was proposed, it
has been widely used in nearly all the areas of computational
proteomics (see, e.g., [68–70] as well as a long list of references
cited in [71]). According to the concept of general PseAAC [41], a
protein sequence can be formulated as:

P ¼ ½W1 W2 � � � Wu � � � WX�T; (1)

where T is a transpose operator, while the subscript X is an inte-
ger and its value as well as the components Wu ðu ¼ 1; 2; � � � ; XÞ
depend on the way to extract the desired information from the
amino acid sequence of P, as done in a series of recent publica-
tions (see, e.g., [72–78]).

Encouraged by the success of using PseAAC to deal with pro-
tein/peptide sequences, the concept of PseKNC (pseudo K-tuple
nucleotide composition) [79, 80] was developed for generating
various feature vectors for DNA/RNA sequences [81, 82] that have
proved useful as well [83–90]. Particularly, recently a powerful
Web server called ‘Pse-in-One’ [91] and its updated version ‘Pse-
in-One2.0’ [92] have been established that can be used to gener-
ate any desired feature vectors for protein/peptide and DNA/RNA
sequences according to the need of users’ studies.

Here, we used a variety of sequence-derived features to gen-
erate various different modes of general PseAAC that have pro-
ven useful in our previous studies. These include:

1. Binary sequence profile feature (termed as BINARY),
which refers to the encoding of amino acid sequences using

the 21-bit (20 amino acid types plus a 21-th gap-filling resi-
due ‘X’) binary encoding method, as previously described
[37, 51]. For a local sliding window of 16 amino acids to en-
code a potential cleavage site, the dimensions of this feature
type are 21� 16 ¼ 336.

2. Composition of k-spaced amino acid pair (CKSAAP) [54, 56–
59], which was originally termed as collocated amino acid
pair encoding [56, 57, 93]. This encoding reflects the short-
range interactions of residues within the sequence sur-
rounding potential cleavage sites [59].
Taking k¼ 0 as an example, there are 400 distinct types of 0-
spaced amino acid pairs (i.e. AA, AC, AD, . . ., YY). Then, a
feature vector can be defined as:

NAA

Ntotal
;

NAC

Ntotal
;

NAD

Ntotal
; . . . ;

NYY

Ntotal

� �
400
: (2)

The value of each descriptor denotes the composition of the
corresponding amino acid pair in the protein or peptide se-
quence. For example, if the amino acid pair AA appears n
times in the sequence, the composition of the amino acid
pair AA is equal to n divided by the total number of 0-spaced
amino acid pairs (Ntotal) in the local sliding window. We
defined L to be the length of the local sliding window of
cleavage site. In this case, L¼ 16, and the value of Ntotal is L—
(kþ 1). In this study, the CKSAAP encoding was performed
over k¼ 0, 1, 2, 3, 4 and 5. Thus, the dimension of the
CKSAAP feature vector is 400� 6¼ 2400.

3. K-nearest neighbor (KNN) features, which describe the clus-
ter information of local sequences for predicting potential
sites [58, 60]. This feature type ranks the top K peptides by
computing the similarity scores between the query peptide
and all peptides in both the positive and negative sets [58].
The similarity score between two peptide sequences P1 and
P2 is defined as:

Score ¼
Xn

i¼1

SðP1;i; P2;iÞ; (3)

Sða; bÞ ¼
BLOSUM62ða; bÞ; if ðBLOSUM62Þ > 0

0; if ðBLOSUM62Þ � 0
;

(
(4)

Table 2. A complete list of sequence-derived structural, physicochemical and evolutionary features used

Number Category Feature type Annotation Dimension Tool/database Reference

1 Sequence-derived BINARY Binary sequence profile features 336 – [37, 51]
2 CKSAAP Composition of k-spaced amino acid pair 2400 – [54, 56–59]
3 KNN k-nearest neighbor features of local

sequences
5 – [58, 60]

4 AAC Composition of 20 amino acid types 20 – –
5 Evolutionary PSSM Position-specific scoring matrix 320 PSI-BLAST [61]
6 BLOSUM BLOSUM62 matrix 336 – [62]
7 Physicochemical

property
AAIndex Numerical indices representing various

physicochemical and biochemical prop-
erties of amino acids and pairs

1024 AAIndex [63]

8 CHR Charge/hydrophobicity ratio 9 AAIndex [63]
9 Structural SS Predicted secondary structure 48 SABLE [53]
10 SA Predicted solvent accessibility 32 SABLE [53]
11 DISO Predicted natively disordered region 32 DISOPRED2 [64]
Total 4562

Note: A local window size of 16 amino acid residues was used to extract the features. The last row shows the total number of features used.
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where P is the peptide with n amino acids, i is the amino
acid position in the sequence and BLOSUM62 a; bð Þ is the cor-
responding element value for amino acids a and b in the
BLOSUM62 matrix. Then, the ratio of positive samples in the
top K peptides will be calculated. In this study, we set K¼ 1,
3, 5, 7 and 9% of the total numbers of positive and negative
samples.

4. AAC, which is based on the calculation of the occurrence
frequency of each of the 20 amino acid types in a local win-
dow. The frequencies of all 20 natural amino acids
(i.e. ‘ACDEFGHIKLMNPQRSTVWY’) can be calculated as:

f ðaÞ ¼ NðaÞ
L

; a 2 fA;C;D; . . . ;Yg; (5)

where NðaÞ is the number of occurrences of amino acid a, while
L is the local window length. The dimension of the AAC feature
vector is 20.

Physicochemical property features
These include: (i) charge/hydrophobicity ratio (termed as CHR)
[59], which describes the charge and hydrophobicity ratio of the
sequences surrounding cleavage sites; (ii) AAIndex features.
AAindex [63] is a database of amino acid indices and amino acid
mutation matrices. In the current version of the AAindex data-
base (Version 9.2), 566 amino acid indices can be retrieved.
Using the AAindex database, we extracted AAindex features
that reflected the physicochemical properties of the sequences
surrounding potential cleavage sites.

Evolutionary features
These include: (i) position-specific scoring matrix (PSSM) [61],
which reflects the evolutionary information of the amino acids
surrounding the cleavage sites; (ii) BLOSUM62. The BLOSUM62
matrix [62] is used to represent the sequence information sur-
rounding a potential cleavage site, which reflects the similarity
of two sequence fragments.

Structural features
In addition to the above features, we also incorporated struc-
tural information predicted from protein sequences, which in-
clude: (i) protein secondary structures predicted by SABLE [53];
(ii) solvent accessibility predicted by SABLE [53]; and (ii) natively
disordered region predicted by DISOPRED2 [64].

Altogether, using a sliding window of 16 amino acids to en-
code and represent each potential cleavage site, we generated a
4562-dimensional feature vector based on the 11 types of fea-
tures described above. Accordingly, each candidate cleavage
site was represented by a feature vector x with 4562 feature
components {x1, . . ., x4562}.

Feature selection

To improve the feature representation ability and identify a
subset of optimal features that contribute the most to the pre-
diction of substrate cleavage sites, we used a two-step feature
selection strategy, which combined mRMR [42] with forward
feature selection (FFS) as described in our previous work [30, 44,
45, 94].

In this two-step feature selection strategy, the first step is to
characterize the relative importance and contribution of each
initial feature in the extracted feature set using the mRMR algo-
rithm, which is able to rank all the initial features according
to both their relevance to the response variables and the

redundancy between the features themselves. Features that
were assigned with higher ranking by mRMR were considered
as having a better trade-off between their maximum relevance
and minimum redundancy. After the first step, we selected the
top 100 features as the optimal feature candidates (OFCs).

The second step is to apply the FFS method to sequentially
select the most representative subset of optimal features from
the 100 OFCs identified above. FFS adds a feature each time
(usually starting with the feature that had the highest index as-
signed by mRMR, all the way to the feature that had the lowest
index) and reconstruct the SVM model by performing the 5-fold
cross-validation test. As a consequence, FFS resulted in a fea-
ture subset that led to the best predictive performance [meas-
ured by the area under the receiver operating characteristic
(ROC) curve, AUC] of SVM models. The feature subset that re-
sulted was then recognized as the optimal feature set. Finally,
we obtained 38 protease-specific SVM models optimized by this
two-feature selection strategy based on the benchmark training
substrate data set for each protease.

Machine learning methods

SVM is an efficient machine learning algorithm suitable for
solving binary classification, multiple classification or regres-
sion problems. The version of SVM best suited to predicting
numerical outcomes is support vector regression (SVR). In this
application, we used SVR to construct the prediction model to
estimate the cleavage probability of substrate cleavage sites for
a given protease. Owing to its excellent generalization capabil-
ities, SVR has recently been applied in a growing number of ap-
plications in bioinformatics and computational biology,
including cleavage site prediction [15, 29, 30], residue accessible
surface area [95], protein B-factor [96, 97], half sphere exposure
[98], disulfide connectivity [99], residue depth [54], torsion
angles [29] and protein expression-level prediction [100]. It dem-
onstrates competitive performance compared with other ma-
chine learning approaches, especially when dealing with real-
valued prediction tasks.

The SVR classifier is able to find a linear discriminative func-
tion of the form:

f ðxÞ ¼WTUðxÞ þw0; (6)

where U is a basis function that maps the D-dimensional fea-
ture vector to a higher dimension. It is noteworthy that al-
though f xð Þ is a linear function of U xð Þ, it can itself be a
nonlinear function of x, which reflects an attractive advantage
of using kernel methods [101]. SVR assumes that the best dis-
criminative function is the one that represents the largest sep-
aration or margin between the two classes of samples.

For implementation of the SVR algorithm, we used the
LibSVM software package [102] with the regression mode. The
model performance was fully evaluated by using 5-fold cross-
validation and independent tests. The model parameters were
optimized using the benchmark training data set, and the pre-
dictive performance of the SVR models for each protease was
evaluated by performing 5-fold cross-validation using the
benchmark data set and independent tests using the independ-
ent test data set. In particular, for each major sequence encod-
ing scheme, we trained a corresponding SVR model. In addition,
we have also concatenated all the initial features and generated
an all feature-based model (referred to as ALL-Fea). We also per-
formed feature selection experiments to identify a subset of op-
timal features for the cleavage site prediction of each protease,
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and accordingly trained a selected feature-based model
(denoted mRMR-FS).

Performance evaluation

To quantitatively evaluate the performance of a model, a set of
four metrics is usually used in the literature. They include: (1)
overall accuracy (Acc), (2) Mathew’s correlation coefficient
(MCC), (3) sensitivity (Sn) and (4) specificity (Sp), as given below
(see, e.g., [103]):

Sn ¼ TP
TPþ FN

ð7Þ

Sp ¼ TN
TNþ FP

ð8Þ

Acc ¼ TPþ TN
TPþ TNþ FPþ FN

ð9Þ

MCC ¼ TP� TNð Þ � FP� FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p ð10Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

where TP, TN, FP and FN denote the numbers of true positives,
true negatives, false positives and false negatives, respectively.

However, the above four metrics copied from math books lack
intuitiveness and are not easy-to-understand for biologists, par-
ticularly the MCC, which is an important metric used for describ-
ing the stability of a predictor. Further, based on the Chou’s
symbols introduced in the study of protein signal peptides [104,
105], a set of four intuitive metrics was derived [106, 107], which
are given below:

Sn¼ 1�Nþ�
Nþ

0 � Sn � 1 ð11Þ

Sp¼ 1�
N�þ
N�

0 � Sp � 1 ð12Þ

Acc¼ K¼ 1�
Nþ� þN�þ
Nþ þN�

0 � Acc � 1 ð13Þ

MCC¼
1� Nþ�

Nþ
þ

N�þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N�þ �Nþ�

Nþ

� �
1þ

Nþ� �N�þ
N�

� �s �1 � MCC � 1 ð14Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

where Nþ represents the total number of positive samples being
investigated, while Nþ� is the number of positive samples incor-
rectly predicted to be negatives; N� denotes the total number of
negative samples being investigated, while N�þ denotes the
number of the negative samples incorrectly predicted to be
positives.

According to Equations (11)–(14), we can easily see the fol-
lowing: when Nþ� ¼ 0, Sn ¼ 1; while when Nþ� ¼ Nþ, we have
Sn ¼ 0. Likewise, when N�þ ¼ 0, Sp ¼ 1; while when N�þ ¼ N�,
Sp ¼ 0. When Nþ� ¼ N�þ ¼ 0, we have Acc ¼MCC ¼ 1; while when
Nþ� ¼ Nþ and N�þ ¼ N�, Acc ¼ 1 and MCC ¼ �1; when Nþ� ¼ Nþ=2
and N�þ ¼ N�=2, MCC ¼ 0.

As we can see, based on the definition of Equations (11)–(14),
the meanings of Sn, Sp, Acc and MCC have become much more
intuitive and easier to understand, as concurred in a series of
recent publications (see, e.g., [80, 84, 86, 88, 90, 106, 108–113]). It
is instructive to point out that the performance metrics as
defined in Equations (7)–(10) or Equations (11)–(14) are valid only
for single label systems; whereas for multi-label systems (see,
e.g., [114–117]), a set of more complicated metrics should be
used as discussed in [118].

In addition, the value of AUC (under ROC curve) [119] was
also used to quantitatively measure the quality of the predictors
in this package via the 5-fold cross-validations and independent
data set tests.

Results and discussion
Performance evaluation based on different sequence
encoding schemes

In this section, we investigate the predictive performance of
SVR models using different sequence encoding schemes and
their combinations for cleavage site prediction of multiple pro-
teases, by performing 5-fold cross-validation. The compared se-
quence encoding schemes include ‘BINARY’, ‘PSSM’, ‘BLOSUM’,
‘KNN’, ‘CKSAAP’ and ‘AAIndex’. In addition, we also compared
the performance of SVR models that were trained using all the
initial features (referred to as ‘ALL-Fea’) and optimal selected
features (termed ‘mRMR-FS’) after the two-step mRMR-FS fea-
ture selection. The ROC curves of these SVR models for cleavage
site prediction of eight proteases [caspase-3, -6, -7, -8, MMP-2, -
3, granzyme-B (human) and granzyme-B (mouse)] on the 5-fold
cross-validation are shown in Figure 2.

Several important observations can be made. First, we can
see that the ‘ALL-Fea’ model and ‘mRMR-FS’ model generally
outperformed the other six models trained based on individual
encoding schemes, with the AUC values ranging between 0.89
and 1.0. Second, the ‘mRMR-FS’ model achieved the overall
best performance, after the two-step feature selection, com-
pared with the other models for the MMP cleavage site predic-
tion. For example, the ‘mRMR-FS’ model achieved an AUC of
0.968 for MMP-2 cleavage site prediction, while the second best
‘ALL-Fea’ model achieved an AUC of 0.892. Third, the accuracy
of protease-specific cleavage site prediction varies substan-
tially between different proteases and different protease fami-
lies. The difficult cases include cleavage site prediction of the
MMP family and other proteases (e.g. thrombin) whose activ-
ities are also regulated by confounding factors such as the
presence of exosites (sites that are located outside the active
sites) [120–122]. Compared with the caspases and granzyme B,
the performance of cleavage site prediction with the MMP fam-
ily achieved by a model using the same encoding scheme is
much worse in terms of the AUC score. For example, the
CKSAAP model only achieved an AUC of 0.502 and 0.581 for the
cleavage site predictions of MMP-2 and MMP-3, respectively,
compared with that of 0.914 and 0.922 for the cleavage site pre-
diction of caspase-3 and caspase-7, respectively (Figure 2).
Future studies should investigate incorporation of other
relevant features that might prove useful for improving the
predictive performance of cleavage sites for proteases with a
requirement for allosteric regulation to cleave their target
substrates.

Amino acid distributions in substrate cleavage site

To better understand informative features surrounding a cleav-
age site that may define protease-specific substrate cleavage,
we examined the flanking sequences of protease-specific sub-
strate cleavages with the pLogo program [123], a probabilistic
approach to identifying the presence and visualization of se-
quence motifs. The generated sequence logo diagrams for
caspase-3, -7, -6, -8, MMP-2, MMP-3, granzyme B (human) and
granzyme B (mouse) are shown in Figure 3. To perform the
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Figure 2. ROC curves of iProt-Sub models trained using different encoding schemes and their combinations for cleavage site prediction of eight proteases on the 5-fold

cross-validation test.
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sequence logo analysis, we examined the P8–P80 sites according
to the Schechter–Berger nomenclature [124]).

Indeed, the sequence logos in Figure 3 show that there exist
conserved sequence motifs or distinctive sequence patterns sur-
rounding protease-specific substrate cleavage sites that may po-
tentially be used to differentiate between different proteases.
Notably, it can be seen that a predominant characteristic of sub-
strate cleavage sites of caspases (caspase-3, -6, -7 and -8) is the
requirement of Asp residue at the P1 position [125]. For certain
caspases (e.g. caspase-3 and -7), there is also a lesser selectivity

for Asp residue at the P4 position, thereby constituting the ca-
nonical DXXD motif [125]. A commonality of the cleavage select-
ivity of granzyme B, compared with that of caspases, is that they
primarily recognize and cleave after the Asp at the P1 position as
well. On a closer look, we can see that there exist subtle differ-
ences in the substrate cleavage selectivity between granzyme
B (human) and granzyme B (mouse) [126]. Apparently, granzyme
B (mouse) has a more complicated preference favoring a number
of residue types across different positions surrounding the cleav-
age sites, including Val, Pro and Gly at the P1 position; Ser at the

Figure 3. Sequence logo representations of experimentally verified cleavage sites (P8–P80) of eight proteases caspase-3, -6, -7, -8, MMP-2, 3, granzyme-B (human) and

granzyme-B (mouse). Sequence logos were generated using pLogo and scaled to the height of the largest column within the sequence visualization. The red horizontal

lines on the pLogo graph denote the threshold of P¼ 0.05.
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P10 position; and Gly at the P20 position, respectively, while gran-
zyme B (human) has much less selectivity at these positions.

However, different from caspases, matrix metallopeptidases
(e.g. MMP-2 and MMP-3) have distinctive substrate specificities
(Figure 3). Specifically, Gly was significantly overrepresented at the
P7, P4, P2, P1, P30 and P60 positions surrounding the cleavage sites
(P< 0.05, Figure 3). Owing to the intriguing selectivity of multiple
residue types across different positions, it is much more difficult to
clearly define distinctive sequence motifs for the MMPs. These re-
sults highlight the importance and need to improve the substrate
cleavage site prediction by developing more accurate machine
learning-based predictors, especially for proteases for which ca-
nonical sequence motif-based methods fail to perform well.

Feature contribution analysis

We used a two-step feature selection strategy by combining the
mRMR algorithm [36] with FFS to characterize a subset of opti-
mal features that contributed the most to the the prediction of
substrate cleavage sites of each protease. Figure 4 shows the
performance change (in terms of the AUC value) of the trained
SVR models by gradually adding the selected features in a step-
wise manner. As can be seen, all the feature selection curves
started with quickly increasing the AUC value and then settled
into the plateau after reaching their maximum at the peak,
while in some cases, adding more features will lead to a drop in
the AUC value (Figure 4).

Because 11 different types of features were originally ex-
tracted and used for training the models, it is of particular inter-
est to characterize their relative importance and contribution to
cleavage site prediction performance. In the ‘ALL-Fea’ sequence
encoding scheme that encoded all the initial features, 11 differ-
ent types of features were included. After the two-step feature
selection based on mRMR and FFS, seven types of features re-
mained in the final optimal feature subset of cleavage site pre-
diction for eight proteases. To evaluate the contribution of
these seven different feature types to the classification perform-
ance for individual proteases, the performance difference can
be measured using the AUC value when a particular feature
type is removed from the classifier. This measure thus repre-
sents the additional value of such feature type in cleavage site
prediction, accounting for both interaction and compensatory
effects between features [127]. Here, we define this measure as
the ‘contribution percentage’ for a feature type by calculating
the percentage of AUC decrease relative to other feature types
after removing the feature from the classifier.

From Figure 5, we can see that the three most important
types of features are KNN features with a contribution percent-
age ranging from 6.67% (for caspase-8) to 98.55% (for caspase-7),
AAC features with a contribution percentage ranging from
1.45% (for caspase-7) to 54.54% (for caspase-6) and BINARY fea-
tures with a contribution percentage ranging from 1.45%
(for caspase-7) to 54.54% (for caspase-6). Among these three fea-
ture types, KNN features appear to be essential and thus most
important for the predictive performance, as it was included in

Figure 4. The feature selection curve in stepwise feature selection describes the performance change (in terms of AUC) as a function of the number of gradually

increased OFCs.
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the feature sets of all proteases under investigation. In addition,
the feature importance also varies depending on the protease,
for example KNN features made an exclusive contribution to
caspase-7 cleavage site prediction, but only made a moderate
contribution to caspase-3 cleavage site prediction, secondary to
BINARY and PSSM features. This is also the case for AAC fea-
tures, which made a predominant contribution to caspase-8
cleavage site prediction (with a contribution percentage of
91.79%), but a marginal contribution to granzyme B (human and
mouse) (with contribution percentages of 11.89 and 13.86%, re-
spectively) cleavage site predictions, and completely dropped
out of the final optimal feature subsets in the case of caspase-3
and -7 (Figure 5).

Performance comparison between iProt-Sub and other
general prediction tools

In this section, we performed an independent test and com-
pared the performance of iProt-Sub with three state-of-the-art
general prediction tools that can be used to predict the sub-
strate cleavage sites for multiple proteases: PoPS [33],
SitePrediction [34] and Cascleave [15]. As a number of other
tools were developed for specific proteases per se, they were not
included in this comparative analysis. In addition, as the com-
pared tools use different training data and algorithms to de-
velop their respective prediction rules/models, the predictive

capability of these tools differs from each other. Thus, to avoid
any potential bias, for a protease, we only compared with tools
that could provide valid prediction results after submitting the
sequences of the independent test data set to each of the online
Web servers. As a result, the ROC curves and calculated AUC
values of cleavage site prediction for caspase-3, -6, -7, -8, MMP-
2, MMP-3, granzyme B (human) and granzyme B (mouse) are
shown in Figure 6.

It is of particular interest to compare the performance of
iProt-Sub with Cascleave, which also uses the SVR algorithm
and sequence-derived features (such as BINARY, predicted
secondary structure and native disorder information) to train
the prediction models. The online Web server of Cascleave
provides three model options: Cascleave-BEAA, Cascleave-
BEAAþBPBAA and Cascleave-BEAAþBPBAAþBPBDISO,
which were trained using three different sequence encoding
schemes [15]. PoPS is one of the most popular bioinformatics
tools for modeling and predicting substrate specificity. It cre-
ates a simple matrix-based specificity model with different
weights for amino acid residues at different positions, built
from experimental data or expert knowledge and available to
the user [33]. The specificity model can be used to score, pre-
dict and rank likely cleavage sites within a given substrate se-
quence for the designated protease of interest. SitePrediction
is also a general prediction tool for predicting cleavage sites
in candidate substrates. To make an accurate prediction,

Figure 5. Importance of different feature types to the improvement of cleavage site prediction performance for eight proteases. The height of each bar for a feature

type represents the proportional ‘contribution percentage’ that represents the AUC value of the feature selection model for one protease, and the uniformed AUC drop

rate for each type of feature is represented with different colors. The AUC drop rate was obtained by comparing with the model after removing this feature from the

input.
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Figure 6. Performance comparison between iProt-Sub and other existing methods for cleavage site prediction for different proteases based on the independent test

data sets, evaluated using ROC curves.
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SitePrediction also considers other additional features that
describe the environment of potential cleavage sites (includ-
ing solvent accessibility, secondary structure and sequence
similarity to the known cleavage sites) in conjunction with
the amino acid frequency scores [34]. Both PoPS and
SitePrediction are regarded as statistical scoring function-
based tools, while Cascleave and iProt-Sub are considered as
machine learning-based tools.

As can be seen from Figure 6, iProt-Sub achieved the overall
best predictive performance compared with the other three
tools PoPS, SitePrediction and Cascleave (with three models) for
six proteases [including caspase-3, 6, MMP-2, MMP-3, granzyme
B (human) and granzyme B (mouse)], with the only exception of
caspase-7 and -8, for which iProt-Sub performed the second
best, with an AUC of 0.989 and 0.990, respectively, in contrast to
the best-performing tool Cascleave, which achieved an AUC of
0.994 and 0.997, respectively. For those proteases that iProt-Sub
achieved the best performance, its performance gains over the
other compared tools are apparent, which is particularly the
case for MMP-2, MMP-3, granzyme B (human) and granzyme B
(mouse) (Figure 6).

In addition, we note that although the strategy incorporating
additional features generally improved the cleavage site predic-
tion performance for some proteases [e.g. caspase-7, MMP-3,
granzyme B (human),] in combination with feature selection, it
decreased the performance for other proteases [e.g. caspase-3, -
6, -8 and granzyme B (mouse)]. This can be observed by compar-
ing the ROC curves and AUC values between the iProt-Sub mod-
els and iProt-Sub-ALL-Fea models in Figure 6. The underlying
reason for this outcome is not entirely clear but might be associ-
ated with the size of the cleavage site data sets and the pres-
ence of other confounding factors that influence the cleavage
outcome.

Overall, the results of the independent test indicate that by
integrating heterogeneous informative features selected by an
effective two-step feature selection strategy coupled with the
SVR algorithm, iProt-Sub is able to provide a competitive pre-
dictive performance of substrate cleavage site prediction when
compared with three existing prediction tools.

The implementation of iProt-Sub Web server

To facilitate high-throughput prediction and analyses of novel
protease-specific substrates and cleavage sites, we have imple-
mented an online Web server of iProt-Sub for the wider research
community to use. The Web server was designed with a user-
friendly interface and modern data visualization functionality
and is freely available at http://iProt-Sub.erc.monash.edu/. It
was implemented using Java Server Pages running Tomcat7 and
configured in the Linux environment on a 16-core server ma-
chine with 50 GB memory and a 4 TB hard disk. To submit a pre-
diction job, the server requires protein amino acid sequences
(the submission of up to 50 sequences is permitted simultan-
eously) in FASTA format as the input. Users are also required to
provide their e-mail addresses to receive a notification e-mail
that contains a link to the prediction output Web page after the
submitted job is completed. For a protein sequence with 500
amino acid residues, the prediction task will generally take ap-
proximately 3 min to calculate the features and return the final
prediction results. A step-by-step guideline of how to use the
iProt-Sub Web server can be found at http://iProt-Sub.erc.mon
ash.edu.au/help.html.

Figure 7 provides an example output of the Web server. As
can be seen, there are two main sections of the prediction

output involving graphical visualization output (Figure 7A) and
ranking output (Figure 7B) of the predicted cleavage sites in a
protease family-specific manner. In terms of the graphical out-
put, all the predicted cleavage sites are indicated by vertical
lines with different colors (different colors indicate a different
protease family, such as aspartic, cysteine, metallo, and serine).
When hovering the mouse cursor over each differentially col-
ored vertical line, a window pops up displaying detailed infor-
mation associated with the predicted cleavage site/outcome,
including the P4–P40 sequence segment, cleavage site P1 pos-
ition and the estimated sizes of N- and C-fragment cleavage
products (Figure 7A). This graphical visualization function can
greatly facilitate the quick identification of the predicted cleav-
age site(s) of interest by scanning from the N-terminus to C-ter-
minus and visually comparing the cleavage profiling within the
same substrate sequence across different proteases. The rank-
ing output provides a tab-style view of the predicted cleavage
sites according to the protease family (Figure 7B). Each tab con-
tains the residue position of the predicted cleavage P1 site, the
sequence ID, P4–P40 sequence segment (with the predicted
cleavage site indicated by ‘j’), the estimated N- and C-fragment
sizes and the cleavage probability score.

Features used by the Web server for predicting cleavage sites
include 11 previously mentioned feature encoding schemes,
such as BINARY, AAC, PSSM, AAIndex, BLOSUM, CHR, CKSAAP,
SS, SA, DISO and KNN. Based on the functionalities mentioned
above, iProt-Sub offers important advantages over existing pre-
diction servers in its ability to identify potential substrates and
achieves a greater coverage and accuracy than previous pre-
dictors. To our knowledge, iProt-Sub is the most comprehensive
server that is capable of predicting substrate cleavage sites of
multiple proteases within a single substrate sequence using
machine learning techniques. It is anticipated to be a valuable
tool for cost-effective in silico identification of novel protease-
specific substrates and cleavage sites.

Proteome-wide prediction and Gene Ontology
enrichment analysis of protease-specific substrates at
the proteome level

We applied the developed iProt-Sub tool to scan the human
proteome (149 730 proteins) with a high stringency at the 100%
specificity level in an effort to provide an overview of the sub-
strate repertoire of several important proteases and gain in-
sights into the significantly enriched Gene Ontology (GO) [128]
terms and biological pathways of these ‘computational’ sub-
strates at the entire human proteome level. Seven protease-
specific models [caspase-3, -6, -7, -8, MMP-2, -3 and granzyme B
(human)] were used to conduct the human proteome-wide
scan, and >20 200 reviewed human protein sequences down-
loaded from the UniProt database were involved in this ana-
lysis. Note that to generate highly accurate mapping, we
applied the prediction models that were trained using the final
optimal features based on the complete training data sets to
perform the proteome-wide substrate scanning. The statistics
for the predicted substrate proteins and cleavage sites are
shown in Table 3. A complete list of the predicted substrates for
each protease and their corresponding substrate cleavage sites
is available from the iProt-Sub website.

Based on the proteome-wide scanning results, we further
conducted an enrichment analysis using the DAVID online ser-
ver [129], including GO analysis and KEGG pathway analysis.
The top five significantly overrepresented biological process
(BP), cellular component (CC), and molecular function (MF)
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terms, and KEGG pathways of the predicted substrate proteins
for caspase-3, caspase-6, MMP-2 and MMP-3 at the proteome
scale are highlighted in Figures 8 and 9, respectively. The sector-
ial area for a GO term represents the number of proteins with
this term, while the different colors of the sectorial area indicate
the statistical significance of the enrichment for the corres-
ponding GO term. In general, substrate proteins targeted by dif-
ferent protease families tend to be associated with different GO
terms, but substrate proteins within the same family share
similar GO terms. For example, both caspase-3 and caspase-6
substrates were found to be enriched with the GO BP terms ‘Cell
adhesion’ and ‘Biological adhesion’ and with the GO MF terms
‘ATP binding’ and ‘adenyl ribonucleotide binding’. Similar ten-
dencies can also be observed between the MMP-2 and MMP-3

substrates. With regard to the CC terms, many of the predicted
substrates were found to be located in different components,
including ‘Nuclear lumen’, ‘Intracellular organelle lumen’,
‘Organelle lumen’ and ‘Cytoskeleton’, where many apoptotic
morphological changes and cellular signaling activities often
occur [130].

In terms of pathway enrichment analysis, we observed that
caspase and MMP substrates were highly enriched in several
KEGG pathways that involve ‘Focal adhesion’, ‘ECM-receptor
interaction’, different types of signaling pathways and
‘Pathways in cancer’ (Figure 9), highlighting the functional roles
of these protease–substrate interactions in cancer-related biolo-
gical processes. In addition, there also exist specific signaling
pathways and cancer-related pathways that were specifically

Figure 7. Example output of the iProt-Sub Web server.
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enriched for caspase-3 substrates (small cell lung cancer),
caspase-6 substrates (hypertrophic cardiomyopathy), MMP-3
substrates (both small and non-small cell lung cancer) and
MMP-6 substrates (endometrial cancer and chronic myeloid
leukemia). These results highlight the functional roles of these
protease–substrate interactions in cancer-related biological
processes [1, 4, 5].

Case study

To illustrate the predictive power of iProt-Sub, we performed a
case study where the targeted cleavage of the protein calpastatin
by caspase-3 [131] and MMP-2 [132] was examined in detail.
Calpastatin (UniProt ID: P20810) is an endogenous calpain (cal-
cium-dependent cysteine protease) inhibitor, which is encoded
by the CAST gene in humans. It consists of an N-terminal domain

Table 3. Statistical summary of the predicted substrates and cleav-
age sites with the 100% specificity at the proteome scale

MEROPS ID Protease
name

Number of
predicted
substrates

Number of
predicted
cleavage
sites

C14.003 Caspase-3 10 645 26 929
C14.004 Caspase-7 12 288 34 355
C14.005 Caspase-6 5936 10 156
C14.009 Caspase-8 18 532 152 609
M10.003 MMP-2 9805 22 985
M01.005 MMP-3 402 425
S01.010 Granzyme B

(human-type)
13 995 47 092

Figure 8. Functional enrichment analysis of the predicted substrates for caspase-3, -6, MMP-2 and -3 at the proteome scale, according to the BP, CC and MF classifica-

tions of GO terms. The statistical enrichment analyses of GO terms for predicted substrates were performed with the hypergeometric distribution.
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and four repetitive calpain-inhibitory domains (Inhibitory
Domains 1–4). It has been suggested that calpastatin is involved
in the control of proteolysis of amyloid precursor protein and
also in muscle protein degradation in living tissue [133].

Applying iProt-Sub to perform the substrate sequence scan-
ning to calpastatin, we correctly identified all the three experi-
mentally verified cleavage sites for caspase-3 [131]: ALDDjLIDT,
DAIDjALSS and LSSDjFTGG (Figure 10). In terms of MMP-2 cleav-
age sites, we also identified an additional cleavage site for MMP-
2: SVAGjITAI [132]. Note that all these experimentally verified
cleavage sites were on the top-ranking list of hits according to
the predicted probability score generated by iProt-Sub, and all
were above the threshold of 0.95. Moreover, iProt-Sub-based
substrate sequence scanning also led to the prediction of sev-
eral other high-confidence novel potential cleavage sites for
both caspase-3 and MMP-2 (Figure 10). These predicted cleavage

sites may represent novel sites targeted for cleavage under dif-
ferent conditions, and require follow-up experimental valid-
ation and hypothesis-driven studies. All the results above
highlight the usefulness and value of using iProt-Sub as an in sil-
ico tool for identifying novel putative cleavage targets and un-
raveling the protease–substrate interaction relationship.

Limitations and future work

Despite the strong performance of our developed computational
approach for predicting the substrate cleavage sites of multiple
proteases, it has the following limitations:

The first limitation is that iProt-Sub is a machine learning-
based approach and as such, its predictive power derives from
the machine learning models that are trained based on different
forms of sequence encoding schemes. The performance of

Figure 9. The KEGG pathway enrichment analysis of the predicted substrates for caspase-3, -6, MMP-2 and -3 at the human proteome scale. The statistical enrichment

analyses of GO terms for predicted substrates were performed with the hypergeometric distribution.
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machine learning-based models primarily depends on the ef-
fective representation of such feature encoding schemes.
Accordingly, it remains a significant challenge in the future to
identify further useful encoding schemes. There is much prom-
ise in this aspect from the availability of some recently de-
veloped powerful toolkits and Web servers for extracting a wide
range of features, including Pse-Analysis [87], Bio-Seq Analysis
[85], Pse-in-One [91], repDNA [81] and iFeature [134]. These tool-
kits could enable us to consider a much greater combination of
different types of feature encoding schemes and explore the
possibility of evolving iProt-Sub to a more robust framework
while preserving or enhancing its model accuracy.

The second limitation is that the cleavage site prediction
performance of iProt-Sub varies greatly between proteases. Its
accuracy is lowest for matrix metalloproteases, including MMP-
2 and MMP-3. The current study and several previous studies
[29, 52, 135] confirmed the prediction of cleavage sites for these
proteases to be an especially challenging problem and high-
lighted the need to develop specialized methods for improved
MMP cleavage site prediction.

The third limitation is that most of the substrate cleavage
sites used for training the prediction models of iProt-Sub were
identified by high-throughput mass spectrometry methods,
which might introduce a potential bias in terms of representing
the global proteolytic events [9] and hence might impact on the

predictive performance of the trained models [136]. Therefore,
when sufficient heterogeneous cleavage site data sets identified
by other different experimental approaches are available in the
future, it will be important to characterize their potential influ-
ence on the predictive performance of cleavage sites.

The fourth limitation is that iProt-Sub only used the SVR al-
gorithm to build the probabilistic cleavage site prediction mod-
els. In the future work, we plan to consider using other
advanced machine learning techniques such as deep learning
(DL), which can model high-level abstraction in the data [137],
using significantly enlarged benchmark data sets (the next
MEROPS release) to evaluate the performance of the DL models
against other popular machine learning classifiers.

Conclusions

We have developed the iProt-Sub tool and constructed protease-
specific prediction models for 38 proteases. iProt-Sub substan-
tially upgrades the PROSPER Web server, includes a user-friendly
interface and provides users with easy-to-understand data visu-
alization techniques to better serve the wider research commu-
nity. We have conducted a comprehensive set of experiments to
benchmark the performance of different sequence encoding
schemes and compare the models with other previously

Figure 10. Full-length sequence scanning of calpastatin by iProt-Sub for caspase-3 (above) and MMP-2 cleavage sites (below). The horizontal axis denotes the amino

acid residue position, while the vertical axis denotes the cleavage probability score generated by iProt-Sub. A higher threshold value of 0.95 is applied to identify the

high-confidence cleavage site predictions, denoted by the dashed line. P4–P40 sites surrounding the predicted cleavage P1 position are given.
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proposed state-of-the-art methods. Our experimental evalu-
ations indicate that the proposed iProt-Sub method outperforms
those previously developed methods. iProt-Sub’s improved per-
formance can be attributed to several important aspects. First,
we have compiled a comprehensive experimentally verified
cleavage site data set in this work. Second, protease-specific
models have been constructed, optimized and validated to
achieve a better performance than other available tools using the
powerful SVR algorithm coupled with a two-step feature selec-
tion procedure. Third, iProt-Sub allows high-throughput predic-
tion of potential substrate cleavage sites for follow-up
experimental validation and hypothesis-driven functional stud-
ies. A unique feature of iProt-Sub is that, unlike previously de-
veloped tools that require users to designate the protease of
interest to make the prediction, iProt-Sub for a given substrate se-
quence will identify which, if any, of its 38 proteases will cleave
that substrate. This unique feature makes iProt-Sub an attractive
tool for proteomic research, especially in cases where there is in-
sufficient knowledge about the protease(s) responsible for such
cleavage to occur. We expect that iProt-Sub will be used as a valu-
able and powerful tool by the protease community and can de-
liver vital functional clues regarding the protease–substrate
interactivity relationship in a cost-effective manner.

Key Points

• In this work, we present iProt-Sub, a powerful bioinfor-
matics tool for the accurate prediction of protease-
specific substrates and their cleavage sites.

• It provides optimized cleavage site prediction models
with better predictive performance and coverage for
four major protease families and 38 proteases.

• iProt-Sub integrates heterogeneous sequence and struc-
tural features derived from multiple levels in combin-
ation with an effective two-step feature selection
procedure.

• Benchmarking experiments using cross-validation and
independent tests showed that iProt-Sub was able to
achieve a better performance than several existing gen-
eric tools. It is publicly accessible at http://iProt-Sub.erc.
monash.edu.au/.

• Application of iProt-Sub to scan the entire human
proteome provides an insightful overview of the sub-
strate repertoire of several important proteases and sig-
nificantly enriched GO terms and biological pathways
of the ‘computational’ substrates at the proteome level.
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