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Abstract

This review discusses current clinical advancements in oncolytic viral therapy, with a focus on the 

viral platforms approved for clinical use and highlights the benefits each platform provides. Three 

oncolytic viruses (OVs), an echovirus, an adenovirus, and a herpes simplex-1 virus, have passed 

governmental regulatory approval in Latvia, China, and the USA and EU. Numerous other 

recombinant viruses from diverse families are in clinical testing in cancer patients and we 

highlight the design features of selected examples, including adenovirus, herpes simplex virus, 

measles virus, retrovirus, reovirus, vaccinia virus, vesicular stomatitis virus. Lastly, we provide 

thoughts on the path forward for this rapidly expanding field especially in combination with 

immune modulating drugs.
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Introduction

In recent years, there has been an explosion in the number of immune-oncology drugs 

approved or in development for cancer treatment, and some of these therapies have 

demonstrated objective responses not seen with small molecules (1–3). Clinical trials testing 

immune-oncology agents alone and in combinations are well underway and many of these 

combination drug trials have been shown to improve patient overall survival over 

monotherapies (4,5). In this review, we focus on a promising class of immune-oncology 

drugs, oncolytic viruses (OVs) which are replicating viruses engineered to have tumor 

selective killing activity. We will first overview cancer treatment from a historical 

perspective, followed by a brief history of oncolytic virotherapy, design of OV, and focus on 

some of the viruses currently in clinical testing. We apologize to our colleagues whose 

primary work we could not cite due to space constraints and instead have referred to 

excellent reviews published.
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Cancer treatment: a historical perspective

Seishu Hanaoka performed the first successful surgical partial mastectomy under general 

anesthesia for a patient with breast cancer in 1804 (6). To date, surgery remains one of the 

principle mainstay ways to treat localized cancer; complete tumor removal and potential 

cures are possible if the cancer is detected early and has not metastasized. Radiation therapy 

began to emerge as a new modality for cancer treatment with the discovery of X-ray by 

Wilhelm Roentgen in 1895, and the discovery of radioactive radium and polonium by Marie 

and Pierre Curie in 1898 (7). In 1903, S.W. Goldberg and Efim London successfully used 

radium to achieve complete responses (CR) in two patients with basal cell carcinoma of the 

skin (8). Since then, surgery and radiation therapy dominated the field of cancer treatment 

until the late 1940s where anti-metabolites (methotrexate) and alkylating agents (nitrogen 

mustard) were used as chemotherapy agents for cancer (9,10). By the 1950s, in spite of the 

powerful impact of combination chemotherapy in leukemia and lymphoma, physicians 

realized the limitations of chemotherapy to achieve the same success rates of complete 

remission of many advanced solid tumors (9). An earnest effort began thereafter with the 

research and development of preclinical tumor models to study the basic biology of 

carcinogenesis, develop novel drugs and drug combinations, and the use of adjuvant 

chemotherapy after surgery in 1970s to improve overall survival. In the following years, 

cancer treatment became more targeted, focusing on specific pathways, such as anti-

angiogenesis, signaling pathways, or specific mutations (11).

The history of oncolytic virotherapy

Oncolytic virotherapy is the use of a replication-competent virus for the treatment of cancer 

(12). There are more than 3,000 species of viruses but not all are suitable as oncolytic 

agents. The OV must be non-pathogenic, have intrinsic cancer selective killing activity, or 

can be engineered to express attenuating genes or arming genes (13). Tumor selectivity 

could be at the level of receptor-mediated cell entry, intracellular antiviral responses and/or 

restriction factors that determine how susceptible the infected cell is to support viral gene 

expression and replication (14,15). Historically, there have been anecdotal reports of 

temporary tumor regression and cancer remission after the patient contracted natural viral 

infection, including responses of lymphoma after wild type measles virus infection (16,17). 

In the 1950s–1970s, live viruses were deliberately injected into cancer patients and showed 

promising activity, particularly notable were Egypt 101 West Nile virus (4/34 transient 

regressions), adenovirus lysates (26/40 showing localized tumor necrosis), and Urabe strain 

mumps virus [37/90 complete remission or partial responses (PR)] (16). However, toxicity 

was also noted in these early studies using viral isolates that were not engineered for tumor 

selectivity, especially in immune suppressed patients with leukemia or lymphoma whereby 5 

of 8 patients experienced severe encephalitis after receiving Egypt 101 isolate of West Nile 

virus (16,18).

Present day: commercially available OVs

With genetic engineering, we can now design live replicating viruses to not only be highly 

tumor selective through cell entry and transcription targeting but also armed with reporter 
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genes for noninvasive monitoring of the pharmacokinetics of virotherapy, and for enhancing 

cytotoxic activity or immunogenic cell death, or immune modulators. To date, three OVs are 

available commercially for the treatment of cancer. These include Rigvir, approved in 

Latvia, Georgia, and Armenia, Oncorine H101 approved in China, and talimogene 

laherparepvec (T-VEC) approved in the USA.

Rigvir

Rigvir (Riga virus) is an unmodified Enteric Cytopathogenic Human Orphan type 7 

(ECHO-7) picornavirus approved for the treatment of melanoma in Latvia since 2004, 

Georgia as of 2015, and Armenia as of 2016 (19). Its 2004 approval made it the first 

oncolytic virus to gain regulatory approval anywhere in the world (19). However, while it 

was granted regulatory approval, limited data has been published to describe its efficacy. 

Three English language articles relating to Rigvir are publicly available, including one 

review article, one case study on 3 patients, and one retrospective analysis of early stage 

melanoma patients (19–21). The retrospective study found that early stage Latvian 

melanoma patients (IB, IIA, IIB, and IIC) who received surgical resection and Rigvir (n=52) 

survived significantly longer than patients who received surgical resection alone (n=27), 

though all patients were pronounced disease-free following surgery, and Rigvir was 

administered post-surgery only after the surgical wounds had healed. Rigvir administration 

was performed by locoregional intramuscular injection at a minimum TCID50 dose level of 

106/mL in a volume of 2 mL, but dose level was not precisely quantified for any patient (19), 

and each patient received approximately 33 doses. The administration schedule involved 

decreasing frequency of Rigvir doses over 3 years: Rigvir was administered on 3 

consecutive days every 4 weeks for 3 cycles, then a single dose every 4 weeks for the 

remainder of year 1, every 6 weeks for the following 6 months, every 8 weeks for the next 6 

months, and every 12 weeks for the third year (19). Rigvir appeared to have an effect on 

tumor recurrence following surgical resection of low-grade melanomas, however, the 

potential of Rigvir to treat high-grade melanoma patients remains unclear, as English 

language reports include only case studies with no larger trials yet reported (20). Future 

studies on both the mechanism of action of Rigvir and its efficacy in treating non-resectable 

melanoma patients would improve our understanding of the virus and its potential for 

oncolytic therapy.

Oncorine (H101)

Oncorine became the first approved oncolytic virus for clinical use in China, and the world’s 

first recombinant oncolytic virus to gain regulatory approval (22). Oncorine was approved 

by the Chinese State Food and Drug Administration (SFDA) in 2005 for patients with head 

and neck cancer in combination with chemotherapy (22). Oncorine (formerly Onyx-015) is 

an attenuated serotype 5 adenoviral vector deleted for viral E1B-55k and with four deletions 

in viral E3 (23). It has been hypothesized that Oncorine selectively replicates in p53 

deficient tumors, as E1B-55k is a strong p53 repressor. E1B-55k inhibits infection-induced 

apoptosis and allows viral replication in p53-normal cells (23), however, E1B-55k deleted 

adenoviruses have been shown to infect and replicate in p53 positive tumors indicating that 

an alternate mechanism of tumor selectivity may be involved (24–26). It has now been 

hypothesized that p14ARF plays a role in this circumvention, as well as YB-1 in an RNA 
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export-dependent mechanism of tumor selectivity (27). Oncorine was patient-approved 

following a large, multi-center, open, randomized trial of Oncorine plus chemotherapy 

versus chemotherapy alone in patients with squamous cell carcinoma of the head and neck 

or esophageal cancer (28). Patients received combination cisplatin and 5-fluorouracil (5-FU) 

with or without Oncorine at 5e11 to 1.5e12 vp/day for 5 consecutive days in between 2-and 

43-week cycles. Patients in the Oncorine plus chemotherapy arm had a 78.8% response rate 

compared with a 39.6% response rate for patients receiving chemotherapy alone (28). A new 

phase III study in patients with non-small cell lung cancer in combination with 

chemotherapy has been planned to open (NCT02579564), however, since the trial was 

initially listed on clinicaltrials.gov in 2015, patient accrual has yet to begin. High 

seroprevalence against several adenovirus serotypes (including the backbone of Oncorine, 

serotype 5) limits the ability to deliver Oncorine intravenously to treat highly metastatic 

disease (29,30). However, strategies to circumvent this employ adenoviral vectors with lower 

seroprevalence or modified knob proteins which are now in clinical trials to test their safety 

and efficacy following intravenous delivery (VCN-01 NCT02045602, Enadenotucirev 

NCT02028442). While oncolytic adenoviruses have been in development for over 20 years 

(31), Oncorine remains the only approved adenovirus for cancer therapy, and only when 

given in combination with chemotherapy.

T-VEC

T-VEC (Imlygic™) was approved by the US Food and Drug Administration (FDA) in 2015 

for the treatment of non-resectable metastatic melanoma, and later in the EU for locally 

advanced or metastatic cutaneous melanoma, making it the most recent oncolytic virus to 

gain national regulatory approval, and the first to gain approval in the USA (https://

www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/

ApprovedProducts/UCM469670.pdf). T-VEC is a recombinant human herpes simplex virus 

type 1 (HSV1) deleted for both copies of the HSV1 gamma34.5 and viral ICP47, which 

accelerates the expression of US11, and encodes 2 copies of human granulocyte-macrophage 

colony stimulating factor (GM-CSF) under cytomegalovirus (CMV) promoters (32). 

Currently, T-VEC is approved for intratumoral injection into cutaneous high-grade 

melanoma lesions, and shows single-agent efficacy in this indication (33). Single-agent 

efficacy is also being evaluated in patients with liver, pancreatic, and advanced non-central 

nervous system solid tumors, and as of February 2018, ClinicalTrials.gov lists 23 ongoing 

clinical trials evaluating the safety and efficacy of T-VEC alone or in combination with 

checkpoint inhibitors, chemotherapy, or radiation therapy in melanoma and other 

indications. Promising results from a phase II trial in late-stage melanoma patients treated 

with combination T-VEC and PD-1 inhibitor pembrolizumab were published in 2017 (34). 

This combination resulted in enhanced efficacy with limited adverse events and showed 

particularly evident efficacy in uninjected visceral metastases which had a 7% response rate 

with T-VEC alone (33). Patients receiving combination anti-CTLA4 antibody ipilimumab 

with T-VEC versus ipilimumab alone showed improved progression-free survival (PFS) of 

visceral metastases from 0% PFS with ipilimumab to 23% with T-VEC plus ipilimumab 

(35).
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OVs in clinical development

Measles virus

Measles virus is a negative strand RNA paramyxovirus which is highly fusogenic and 

induces extensive cytopathic effects of syncytial formation (36). Intercellular fusion (F) 

increases bystander killing of tumor cells, and induces immunogenic danger signals which 

can elicit host mediated cellular antitumor activity (37,38). Recombinant Edmonston strain 

measles virus encoding the sodium iodide symporter (MV-NIS) or soluble carcinoembryonic 

antigen (MV-CEA) are in Phase I/II clinical testing in patients with relapsed or recurrent 

cancers including multiple myeloma, ovarian cancer, glioma, breast cancer and 

mesothelioma (39,40). Intratumoral injections of Edmonston-Zagreb vaccine strain was also 

tested in 5 patients with cutaneous T cell lymphoma (41). Overall, no drug related dose 

limiting toxicities were observed in the trials even with high intravenous dosing, and in one 

study, MV-NIS induced complete remission of disseminated multiple myeloma after one 

systemic administration of 1011 infectious virus (42). Immunological analysis of peripheral 

blood T cells in ovarian cancer patients who received MV-NIS showed induction of tumor 

antigen specific cytotoxic T cells after measles virus therapy (43). A unique feature of MV-

NIS is that it permits serial monitoring of the pharmacokinetics of viral replication in the 

infected tumors through noninvasive SPECT or PET imaging, enabling validation of virus 

delivery and infection of tumor metastases. Other MV engineering strategies include 

retargeting the H attachment glycoprotein (G) to obtain highly tumor selective viruses (44), 

encoding the wild type P accessory protein to enhance viral spread by antagonizing the host 

cellular antiviral immunity (45), potency enhancing cytotoxic genes to pair with a prodrug 

for chemovirotherapy (46), radiotracer enhancing transgene for imaging and 

radiosensitization (radiovirotherapy) (47), and immune modulatory transgenes such as anti-

CTLA-4 and PDL-1 antibodies (48).

Newcastle disease virus (NDV)

NDV is an avian paramyxovirus and has been tested as an oncolytic or oncolysate cancer 

vaccine, for more than 50 years (49,50). NDV strains, MTH-68/H (veterinary vaccine 

strain), HUJ, a nonvirulent lentogenic strain, and PV701, have been tested clinically. In the 

United States, PV701 has been given intravenously to 113 patients with advanced cancers in 

3 Phase 1 trials (51). In a trial of 79 patients, a CR was observed for 1 patient, and a PR in 1 

patient (50). It was also shown that higher doses of PV701 can be better tolerated with less 

infusion reactions if the patients first received a 5–10-fold lower dose for desensitization 

(52). Clinical development of a mesogenic strain (intermediate virulence) of NDV as an 

oncolytic agent for cancer therapy has been hampered by its select agent status due to its 

pathogenicity in avian species (53). As such, a recombinant NDV based on the mesogenic 

NDV-73T strain with compromised infection of avian cells but not mammalian cells and 

encoding GM-CSF (Medimmune, MEDI5395) was generated and is in preclinical testing 

(54).

Rhabdoviruses

Rhabdoviruses are negative sense RNA viruses with rapid, ~12-hour lytic replication cycles 

in permissive cells (55,56). The best studied oncolytic rhabdovirus Vesicular Stomatitis 
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Virus (VSV) uses the low-density lipoprotein (LDL) receptor for cell entry, allowing VSV to 

infect nearly all cell types and cause lytic infection in a wide variety of permissive cells (57). 

Oncolytic VSV cell entry has been made tumor selective through retargeting strategies, 

involving replacing the VSV G with a more selective entry G as the measles F and H 

(hemagglutinin) proteins (58), receptor targeted measles H and F proteins (59,60), the 

lymphocytic choriomeningitis virus WE54-strain glycoprotein (LCMV-GP) (61) and Lassa 

virus G (62).

VSV and other rhabdoviruses are exquisitely sensitive to type 1 interferon (63) which can be 

exploited in cancer cells that commonly lack a robust interferon response (56,64). To this 

end, two major modifications have been made to oncolytic rhabdoviruses to ensure their 

interferon sensitivity and therefore tumor selectivity. The first is an amino acid modification 

or deletion in the viral matrix (M) protein at the 51 position. The M protein methionine at 

position 51 is essential for the virus’s ability to inhibit a host interferon response (65), and 

its loss allows infected cells to produce and release interferon in response to infection. The 

two commonly exploited M51 mutations are M51R (methionine to arginine), and deltaM51 

(deletion of methionine 51) (65–67). The alternative modification used to exploit VSV’s 

exquisite interferon sensitivity is the inclusion of an interferon beta transgene in the virus 

construct (68). Both the M51 mutation and interferon beta transgene inhibit viral spread by 

allowing an interferon-induced antiviral state in neighboring uninfected non-neoplastic cells 

but allows for VSV infection of cancer cells which lack an interferon response and thus 

remain permissive to virus replication (66,69).

Due to the low seroprevalence of VSV-neutralizing antibodies in human patients, these 

viruses can be delivered systemically through intravenous injection (70). Intravenous 

delivery can lead to infection and lytic destruction of metastatic tumors, with the virus able 

to infect multiple tumor lesions simultaneously. While a primary mechanism of oncolysis for 

rhabdoviruses is lytic tumor destruction, some engineered viruses expressing immune 

modulators can also initiate adaptive immune response against tumor (neo) antigens, 

potentially enhancing antitumor responses (71–74).

Ongoing Phase 1 clinical trials are evaluating safety of intratumorally and intravenously 

delivered VSV-IFNβ, VSV-IFNβ-NIS, and Maraba MG1 virus encoding the tumor-

associated antigen MAGEA3. MAGEA3 is found on non-small cell lung cancer cells (75), 

and infection of MAGEA3 positive tumors with an oncolytic virus expressing this antigen 

can increase the chances of developing adaptive, MAGEA3-specific T-cell responses (76). 

VSV-IFNβ and VSV-IFNβ-NIS express human IFNβ which acts both to attenuate virus 

infection of non-neoplastic cells and to enhance an innate immune response to virus 

infection which can lead to increased adaptive immune cell recruitment and activation 

against both the virus and tumor cells (77,78). VSV-IFNβ-NIS also encodes human NIS, 

which can be harnessed for non-invasive virus tracking and/or enhanced oncolysis through 

the use of iodine radioisotopes (77).

Adenovirus

Adenoviruses are non-enveloped icosahedral double-stranded DNA viruses with long fiber 

knobs protruding from each capsid vertex (79,80). At least 70 serotypes of human 
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adenovirus exist, with serotype 5 being the most commonly used; 6 of 7 oncolytic 

adenoviruses in clinical testing use a serotype 5 backbone. Clinical data has been published 

for telomelysin in solid tumors (81), CG0070 in bladder cancer (82), DNX-2401 in 

malignant brain tumors (83). A list of these viruses is shown in Table 1.

Adenovirus receptor binding occurs at both at RGD motifs of penton base proteins and at 

fiber knobs that extend from them (84). Receptor specificity is dependent on virus subgroup 

and serotype and to date at least 11 receptors have been shown to facilitate adenovirus 

binding (85). Many adenoviruses bind integrins via penton RGD motifs, facilitating entry 

and infection of permissive cells (86). Ad5, a subgroup C virus, also infects cells through 

coxsackie adenovirus receptor (CAR), heparan sulfate glycosaminoglycans (HS-GAG), and 

through other receptors such as MHC-I, VCAM-1, and DPPC, while Ad3, a subgroup B 

virus, binds CD46, CD80, and CD86 (85). Efforts to modify tissue tropism include 

modifications to the penton base RGD binding domain and serotype switching or 

modifications of fiber knob proteins (87). Examples include the RGD-4C motif used in 

DNX-2401 which binds cell adhesion molecules and allows entry through any fibronectin-

binding integrin receptor (88), the chimeric ONCOS-102 and LOAd703 viruses which 

respectively incorporate CD46-tropic serotype 3 and 35 fiber knobs into serotype 5 

backbones (89), and inclusion of an RGDK motif in the HS-GAG binding domain of the 

fiber shaft of VCN-01 (90) which detargets the virus from the liver and enhances tumor 

selectivity in vivo (91).

Attenuation strategies for oncolytic adenoviral vectors have revolved around 2 central 

mechanisms: targeting Rb deficient tumors through E1A modifications and, in theory, 

targeting p53 deficient tumors through E1B modifications. Of these, E1A modifications are 

more common in the clinical landscape. CG0070 places E1A under the tumor specific E2F-1 

promoter (92), while DNX-2401 and ONCOS-102 incorporate a 24-bp deletion within E1A 

that deletes the Rb binding function from E1A (93). LOAd703 combines these strategies, 

driving an E1A deleted for its Rb binding region via an E2F promoter (89). Telomelysin 

uses a separate tumor-specific promoter, hTERT, to drive both E1A and E1B (94). ColoAd1, 

a serotype 3/11p chimeric virus, was uniquely designed through directed evolution and 

replicates and kills colorectal cancer cells more efficiently than normal human epithelial 

cells, but contains no obviously attenuating mutations (95).

Several oncolytic adenoviruses incorporate payloads to enhance antitumor activity. These 

payloads include GM-CSF, expressed by CG0070 and ONCOS-102, which activates antigen 

presenting cells (APCs) and may enhance the uptake and presentation of both viral and 

tumor associated antigens following oncolysis (89). LOAd703 expresses CD40 and 4–1BB 

ligands, activating APCs and T-cells respectively through co-stimulation (96), VCN-01 

expresses soluble hyaluronidase which degrades extracellular M hyaluronic acid and may 

enhance virus spread in solid tumors (97).

Vaccinia viruses

Vaccinia, closely related to cowpox virus, is a large, enveloped, double-stranded DNA virus 

with a linear genome approximately 190 kb in length and is the namesake virus for 

vaccination following its widespread use in the eradication of smallpox (98). To date, 3 
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oncolytic vaccinia viruses are being used clinically, derived from the Wyeth (Sillajen, 

JX-594, Pexastimogene devacirepvec/PexaVec), Western Reserve (Transgene, TG6002), and 

Lister (GeneLux, GL-ONC1/GLV-1h68) vaccinia strains (99–101).

Attenuation or tumor-specific targeting of these viruses has been accomplished using a 

variety of deletions and insertional mutations, with loss of thymidine kinase function being a 

common denominator among the clinical oncolytic vaccinia viruses. JX-594 is deleted for 

viral thymidine kinase (99), TG6002 is doubly deleted for thymidine kinase and viral 

ribonucleotide reductase (101), and GL-ONC1 has insertional mutations in its thymidine 

kinase (J2R), hemagglutinin HA (A56R), and F14.5L genes (100). The TK loss of function 

limits the virus’ ability to replicate in non-dividing cells, and the deletion of viral 

ribonucleotide reductase further limits this ability.

Strategies to enhance oncolytic efficacy of vaccinia vectors center around transgene 

incorporation. To this end, two clinical vectors include transgenes designed to improve 

tumor cell killing: JX-594, like T-VEC, includes GM-CSF (99), and TG6002 incorporates a 

nucleoside analog converting enzyme FCU1, which converts 5-fluorocytosine (5-FC) to 5-

FU in infected cells (101). Combination treatment with 5-FC should result in lytic tumor 

destruction along with 5-FU conversion, from where 5-FU can be disseminated to uninfected 

tumor cells and inhibit DNA elongation during mitosis. The rationale for GM-CSF 

incorporation was solidified in 1993 (102), and provided evidence that the combination of 

dead or dying tumor cells along with high levels of locally secreted GM-CSF could enhance 

anti-tumor immunity in tumor-bearing mice.

PexaVec and GL-ONC1 have been proven safe and tolerable in humans across a multitude of 

indications through phase I and I/II clinical trials (103,104), and a phase I/II trial for brain 

cancer patients receiving TG6002 with 5-FC began enrolling in late September 2017 

(NCT03294486). PexaVec is now enrolling in a phase III registration trial in combination 

with Sorafenib for patients with hepatocellular carcinoma (HCC) (NCT02562755). Results 

of the phase II trial for the same indication and treatment regimen revealed improved Choi 

tumor responses, disease control, and tolerable adverse events in patients receiving 

combination PexaVec and Sorafenib versus PexaVec (105).

Herpes viruses

HSV1 is a large double stranded DNA virus approximately 152 kb in length (106). Herpes 

was the first virus backbone to be genetically engineered to combat cancer with the 

demonstration in 1991 that HSV-dlspTK, a thymidine kinase-deleted HSV-1, enhanced 

overall survival in a murine model of glioblastoma (107). Further development led to the 

generation, preclinical and clinical testing of novel HSV gamma34.5-deficient viruses which 

lack both neurovirulence and the ability to inhibit the antiviral PKR response (108). 

Clinically evaluated gamma34.5-deficient viruses include the now FDA-approved T-VEC 

(109), HSV1716 (Seprehvir) (110), G207 (111), and RP1 which was announced in clinical 

trials as of November 2017. NV1020, which retains a single copy of gamma34.5 but also 

includes additional attenuating mutations to TK, UL24, UL55 and UL56 has also been tested 

in human patients (112). Separately, a naturally occurring HSV mutant HF-10 which retains 

Russell and Peng Page 8

Chin Clin Oncol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



both copies of gamma34.5 has been clinically evaluated in patients with breast, head and 

neck, and pancreatic cancers (113).

High seroprevalence of HSV-1 neutralizing antibodies in US population remains a barrier to 

systemic delivery of oncolytic HSV vectors (114). HSV-based OVs are therefore delivered 

locoregionally or intratumorally, avoiding intravenous administration. Attempts to boost the 

anticancer effects of HSV in metastatic diseases involve the inclusion of therapeutic 

transgenes used to simultaneously boost anti-cancer and antiviral immunity, with the goal of 

developing an adaptive anti-tumor response in treated patients. To this end, constitutively 

active GM-CSF is incorporated in T-VEC and RP1 viruses, and combinations with immune-

stimulating therapies are ongoing (34).

Coxsackievirus

Coxsackievirus is a single stranded positive RNA picornavirus of approximately 7.4 kb, 

enclosed in an icosahedral capsid. Oncolytic CVA21 (Viralytics, CAVATAK) is derived from 

the Kuykendall strain and uses ICAM-1 as the primary receptor for cell entry (115). It has 

been tested in intratumoral or intravenous administration, a single agent or in combination 

with immune checkpoint blockade, in a number of Phase I/ II clinical trials in patients with 

breast cancer, prostate cancer, bladder cancer, multiple myeloma, melanoma and non-small 

cell lung cancer (114). Phase I testing of intratumoral CVA21 virus injection in combination 

with pembrolizumab or ipilimumab is ongoing to enhance the overall efficacy of these drugs 

(116). Early analysis of the combination trial with pembrolizumab met its primary statistical 

futility endpoint of ≥2 confirmed objective responses (CR or PR) in the first 12 patients 

enrolled, and will be expanded to recruit up to 50 patients (116).

Reovirus

Reovirus is a double stranded RNA virus, non-enveloped and has an icosahedral capsid 

composed of an outer and inner protein shell. It naturally infects the gastrointestinal tract but 

does not cause serious disease and it is estimated that up to 100% of the healthy adult 

population has pre-existing antibodies to reovirus (117). Cells with an activated Ras 

pathway, such as cancer cells, are highly susceptible to reovirus infection (118). Reovirus as 

a monotherapy was investigated in several Phase I trials (Oncolytics Biotech, Reolysin™) as 

an intratumoral or intravenous administration but recently, the team has focused 

predominantly in combining reovirus with standard chemotherapy or radiation therapy. In a 

Phase I/II trial of reovirus with carboplatin and paclitaxel in patients with solid tumors, out 

of 26 patients, the best overall response was CR in 1 patient (3.8%), PR in 6 patients 

(23.1%) (119). A number of clinical trials testing reovirus with other chemotherapy or 

immune modulators are ongoing or planned (120).

Retrovirus

Retroviral replicating vector (Tocagen, Toca-511, vocimagene amiretrorepvec) encodes 

yeast cytosine deaminase (CD) that converts the prodrug 5-FC to the anticancer drug, 5-FU, 

thereby enhancing local concentration of 5-FU in tumor, and decreasing overall systemic 

toxicity of the drug (121,122). In contrast to the OVs discussed above, these vectors are 

nonlytic, but instead, selectively replicate in dividing cells with defective innate immunity 

Russell and Peng Page 9

Chin Clin Oncol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and interferon responsiveness (122). A phase 1 trial of Toca-511 in patients with recurrent 

high-grade glioma resulted in overall survival of 13.6 months (95% confidence interval, 10.8 

to 20.0) and was statistically improved relative to an external control (hazard ratio, 0.45; 

P=0.003) (123). In 2015, Toca-511 received orphan drug status from the US FDA and is in 

Phase II/III clinical testing for patients with glioblastoma (NCT02414165).

Future directions

The single-agent approval of T-VEC by the US FDA in 2015 was a watershed moment for 

the OV field, however, T-VEC delivered intralesionally to cutaneous melanoma failed to 

provide a significant benefit to patients with visceral metastases (33). To enhance overall 

response rates, OVs are increasingly being combined with anticancer drugs including 

standard of care chemotherapy, checkpoint inhibitors, and radiation therapy. Notable 

chemotherapy combinations include Phase III trials of PexaVec plus Sorafenib for 

hepatocellular carcinoma patients, Reolysin plus carboplatin and paclitaxel for head and 

neck cancer patients (120), and Toca-511 plus Toca-FC (a modified 5-FC) for high grade 

glioma patients.

The effect of oncolytic virotherapy on CD8+ T-cell recruitment is well documented and 

supports the rationale to enhance the efficacy of therapy using strategies to enhance adaptive 

immune cell activation (124,125). Promising results are emerging from clinical trials; T-

VEC given intralesionally in combination with a standard regimen of pembrolizumab gave a 

response rate of 38% versus 16% with pembrolizumab or T-VEC alone (34), and this has led 

to the pursuit of combinations with checkpoint inhibitors for a wide array of viruses 

currently being explored in the clinic. Preclinical studies have shown that viruses encoding 

transgenes that activate host cell-mediated immune responses have greater efficacy in tumor 

models, including viruses encoding anti PDL1 scFv fragments, bi-specific T-cell engager 

antibodies that recognize T-cells and a tumor-associated antigen, both activating T-cells and 

bringing them into close proximity with tumor targets (126,127).

Systemic delivery of oncolytic therapies can allow viruses to disseminate throughout a 

patient’s body and target metastatic cancers more effectively than other delivery methods. A 

major barrier to effective systemic therapy has been the presence of preexisting antiviral 

antibodies in vaccinated or seropositive patients (12). Strategies to evade neutralization are 

being actively explored, including the use of cell carriers for delivery of measles virus in 

patients with ovarian cancer (128). Intact innate responses of tumor cells or immune cells in 

the tumor microenvironment pose a barrier to viral replication. As such, incorporation of 

inhibitors of the innate immune response into the virus construct aim to prolong productive 

infection in the target tumor (129).

OVs are poised to play an important part in the future of cancer therapy, and while there is 

intense activity with combination trials of virus with standard therapies, we must not lose 

sight to also develop OV as monotherapies that could have a meaningful impact on overall 

survival of cancer patients. As the pace of OV development increases and we learn more 

from current clinical trials about the benefits and shortcomings of OVs, we hope to see a 
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future generation of viruses able to combat cancer as single agents, delivered systemically 

and with minimal repeat dosing necessary to achieve efficacy.
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