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Abstract

Background—Respiratory syncytial virus (RSV) infection in infants causes significant 

morbidity and is the strongest risk factor associated with asthma. Metabolites, which reflect the 

interactions between host cell and virus, provide an opportunity to identify the pathways that 

underlie severe infections and asthma development.

Objective—To study metabolic profile differences between infants with RSV infection, and 

human rhinovirus (HRV) infection, and healthy infants. To compare infant metabolic differences 

between children who do and do not wheeze.

Methods—In a term birth cohort, urine was collected while healthy and during acute viral 

respiratory infection with RSV and HRV. We used 1H-NMR to identify urinary metabolites. 

Multivariate and univariate statistics were used to discriminate metabolic profiles of infants with 

either RSV ARI, or HRV ARI, and healthy infants. Multivariable logistic regression was used to 

assess the association of urine metabolites with 1st-, 2nd-, and 3rd-year recurrent wheezing.
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Results—Several metabolites in nicotinate and nicotinamide metabolism pathways were down-

regulated in infants with RSV infection compared to healthy controls. There were no significant 

differences in metabolite profiles between infants with RSV infection and infants with HRV 

Infection. Alanine was strongly associated with reduced risk of 1st-year wheezing (OR 0.18[0.0, 

0.46]) and 2nd-year wheezing (OR 0.31[0.13, 0.73]), while 2-hydroxyisobutyric acid was 

associated with increased 3rd-year wheezing (OR 5.02[1.49, 16.93]) only among the RSV infected 

subset.

Conclusion—The metabolites associated with infant RSV infection and recurrent-wheezing are 

indicative of viral takeover of the cellular machinery and resources to enhance virulence, 

replication, and subversion of the host immune-response, highlighting metabolic pathways 

important in the pathogenesis of RSV infection and wheeze development.
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1 Background

RSV is the major cause of morbidity requiring hospitalization and the major contributor to 

infant deaths in children worldwide (Nair et al. 2010; Shi et al. 2017; Wright and Piedimonte 

2011). Moreover, substantial and consistent evidence links infant RSV acute respiratory 

infection (ARI) with increased risk of recurrent wheezing and long-term respiratory 

morbidity, including asthma (Bacharier et al. 2012; Beigelman and Bacharier 2013; Jartti et 

al. 2009; Sigurs et al. 2010; Stein et al. 1999; Wu et al. 2008).

Despite the significant contribution of RSV to acute and chronic respiratory morbidity and 

mortality, no effective vaccine or anti-viral treatment is available and treatment is currently 

limited to supportive care (Hurwitz 2011; Simoes et al. 2015). Progress in understanding the 

pathogenesis of RSV and host response using in vivo experiments in small animal models 

have not always translated to humans (Mestas and Hughes 2004). This coupled with the 

physiological differences between adult and pediatric populations (Papin et al. 2013) and the 

ethical and technical difficulty of studying infants and children are major obstacles to 

advancing our understanding of RSV pathogenesis, and the mechanisms through which RSV 

contributes to recurrent wheezing and asthma development.

Recent developments in high-throughput molecular techniques provide an opportunity for 

understanding pathogenesis of RSV infection, but a biomarker that accurately and 

consistently predicts susceptibility to RSV infection, infection severity, and association with 

subsequent development of persistent wheezing and asthma has yet to be developed (Larkin 

and Hartert 2015; Openshaw 2013; Rosas-Salazar et al. 2015). Metabolic pathways, as a 

mirror of the interactions between host cell and virus (Pearce and Pearce 2013; Peeples and 

Levine 1980), provide an opportunity to understand the mechanisms that underlie severe 

infections and pathways through which RSV ARI contributes to the development of asthma.

The objective of this study is to identify metabolic pathways associated with RSV ARI. A 

secondary objective is to assess the association between infant urine metabolites and 
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recurrent wheezing outcomes at 1st-year, 2nd-year, and 3rd-year of life. Urine-based 

biomarkers are especially appealing in infants, as urine collection is noninvasive, easy to 

collect, abundant, and comprehensive in metabolite composition. In addition, urine based 

biomarkers are most efficient in resource-constrained settings where blood drawing requires 

training and specialized equipment, which is especially important as 99% of RSV-

bronchiolitis related mortality occurs in developing countries (Nair et al. 2010; Shi et al. 

2017).

2 Methods

2.1 Ethics statement

The Institutional Review Board at Vanderbilt University Medical Center approved the cohort 

study protocol and informed consent documents. A parent of each infant provided written 

informed consent for participation in this study.

2.2 Study population

The study was conducted on a subsample of a birth cohort of healthy term infants enrolled in 

the Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure 

Study (INSPIRE) cohort. The infants were enrolled in the southeastern United States from 

2012 to 2014. The cohort was specifically designed to capture each infant’s first RSV 

infection by enrolling infants born during June through December and facing their first 

winter virus season in the northern hemisphere. Survey questions about demographic 

characteristics, exposures, and health were administered in person and biospecimens were 

collected at enrollment. We conducted biweekly surveillance during winter virus season and 

infant in-person acute respiratory illness visits with assessment of illness severity, and 

biospecimen collection at each acute viral illness visit with respiratory virus identification by 

PCR, as has been previously described (Larkin et al. 2015). A total of 140 urine sample 

analyses were conducted: 70 urine samples from infants with RSV infection, 60 urine 

samples from healthy (non-infected) infants, and 10 urine samples from infants with HRV 

infection.

2.3 Urine collection

The urine samples were collected using an external bag, and were immediately transferred to 

a specimen cup and stored at 4 °C until processing by the laboratory. The urine was then 

aliquoted into 2 mL aliquots and stored at − 80 °C until shipment for NMR spectroscopy 

without interim freeze-thaw cycle.

2.4 Study design

Analysis of a total of 140 urine samples was conducted in two phases (Fig. 1). In Phase 1, 

we matched 60 urine samples from infants with RSV ARI with 60 urine samples from 

healthy (no infection) infants. The samples were matched based on the infant age (in 

months) at urine collection, sex, race, and mode of feeding (exclusively breast fed, formula, 

or combination). In phase 2, we matched 10 urine samples from infants with RSV ARI with 

10 urine samples from infants with HRV ARI to determine whether urine metabolites 

between healthy and RSV ARI samples were specific to RSV ARI or a global response to 
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respiratory viral illness. In addition to matched analysis, we combined samples from phase 1 

and 2 to compare unmatched samples for healthy controls (n = 60), RSV infection (n = 70) 

and HRV infection (n = 10).

2.5 Sample preparation

Urine samples were thawed, centrifuged (at 2000×gn for 5 min at 4 °C), filtered (at 

12,000×gn for 60 min at 4 °C), and adjusted to pH 7.3 (± 0.05) using BTpH titration unit. 

The NMR sample was prepared combining 300 µL of urine filtrate with 300 µL of NMR 

buffer containing 100 mM phosphate buffer in D2O, pH 7.3, and 1.0 mM TMSP (3-

Trimethylsilyl 2,2,3,3-d4 propionate). The final TMSP concentration was 0.5 mM in NMR 

sample.

2.6 Data acquisition and processing

We used a Bruker Avance II 600 MHz spectrometer to acquire one-dimensional (1D) 1H 

NMR spectra data, two-dimensional (2D) 1H–1H total correlation spectroscopy (TOCSY), 

and 2D 1H–13C heteronuclear single quantum coherence (HSQC) data. We subjected all free 

induction decays (FIDs) to an exponential line-broadening of 0.3 Hz. Upon Fourier 

transformation, we manually phased, baseline corrected, and referenced to the internal 

standard TMSP at 0.0 ppm for polar samples each spectrum using Topspin 3.5 software 

(Bruker Analytik, Rheinstetten, Germany). We assigned metabolites to the peak we found in 

the urine based on 1D 1H, 2D TOCSY, and 2D HSQC NMR experiments and by comparing 

the chemical shifts and spin–spin couplings with reference spectra found in databases, such 

as the Human Metabolome Database (HMDB) (Wishart et al. 2017), the biological magnetic 

resonance data bank (BMRB) (Ulrich et al. 2008), and Chenomx® NMR Suite profiling 

software (Chenomx Inc. version 8.1). The reference spectra database contains observed peak 

locations and ratios of heights of spectra from pure chemical compounds or their simulated 

counterparts, which was used to identify metabolites by matching the observed spectra to the 

reference spectra in the database. The area of the peaks from a metabolite is directly related 

to the abundance/quantity of the metabolite.

2.7 Data imputation, transformation, and scaling

We imputed missing metabolites using singular value decomposition (SVD) imputation 

method (Hastie et al. 1999; Stacklies et al. 2007) and normalized metabolite concentrations 

to urine creatinine levels. Creatinine concentrations (in millimolar, mM) for healthy control, 

RSV ARI, and HRV ARI are provided in Fig. E1. We transformed the data using generalized 

logarithm (glog) transformation method (with a constant of 1 added to all) and scaled using 

pareto scale before performing all analyses (van den Berg et al. 2006).

2.8 Statistical analysis

Continuous variables were described using medians and interquartile ranges (IQR, 25th and 

75th) and categorical variables were summarized using frequencies and percent. We used 

principal component analysis (PCA) to identify patterns of the urine metabolites and for 

visual inspection of outliers, and none were detected.
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2.8.1 Exploratory analysis: metabolites discriminate between RSV ARI, HRV 
ARI, and healthy controls—In exploratory analysis, we used Partial least square 

discriminant analysis (PLS-DA) (Barker and Rayens 2003) and its orthogonal extension 

(OPLS-DA) (Bylesjo et al. 2006; Trygg and Wold 2002; Wiklund et al. 2008) to discriminate 

between RSV ARI, HRV ARI and healthy control samples and to identify metabolites that 

are important for discrimination. To ensure model reliability PLS-DA models were 

internally validated using 10-fold cross validation. The predictive ability assessment (Q2) 

statistic was reported as a result of cross-validation to provide a qualitative measure of 

consistency between the predicted and original data. We used permutation (n = 2000) to test 

the significance of Q2 statistics (Westerhuis et al. 2008). A permutation test evaluates 

whether the specific classification of the individuals in the a priori comparison groups is 

significantly better than any other random classification in arbitrary groups by reshuffling 

the group label (Golland et al. 2005).

2.8.2 Exploratory analysis: statistically different metabolic profiles between 
RSV ARI, HRV ARI, and healthy controls—Although multivariate analysis helps us 

discriminate between groups (RSV ARI, HRV ARI and healthy control samples), it does not 

provide a profile of metabolites significantly different between these groups. Therefore, we 

used univariate statistics such as: Kruskal Wallis followed by Dunn’s post-hoc test for three 

factors comparisons (healthy control, RSV ARI, and HRV ARI), and Wilcoxon matched-

pairs signed rank test to test for significant differences in metabolite profiles between two 

matched groups (healthy vs. RSV ARI, and HRV ARI vs. RSV ARI). To determine 

statistical significance, p values were evaluated at 0.05 after adjusting for multiple testing 

using Benjamini–Hochberg (BH) false discovery rate (FDR).

2.8.3 Differentially enriched metabolic pathways in infants with RSV 
infection compared to healthy infants—Further, pathway databases were queried with 

MetScape-3 (Karnovsky et al. 2012) and metaboanalyst (Xia and Wishart 2016) to identify 

metabolic pathways of significantly altered sets of metabolites in infants with RSV ARI 

versus healthy. We used the list of metabolites identified using univariate analyses that 

compared healthy controls versus RSV ARI to query the pathway databases. We used hyper-

geometric test to determine the significantly enriched metabolic pathways.

2.8.4 RSV biomarker discovery and performance evaluation—To select 

biomarkers that distinguish between infants with RSV ARI and healthy controls, we 

evaluated models with metabolites and their ratios to each other (all possible pairwise ratios 

were calculated). We manually selected metabolites and their pairwise ratios (features) in the 

final model based on the prior knowledge about the metabolites, univariate prediction 

performance (using area under curve [AUC]) (Xia et al. 2015), and prediction performance 

(frequency of being select into the model using the least absolute shrinkage and selection 

operator [LASSO]) in multivariable logistic regression. During the selection of metabolites 

and their ratios using univariate statistics, p values were adjusted for multiple testing with 

FDR correction. Similarly, LASSO was applied in the context of sparse regression model 

including all metabolites and their ratios, where metabolites with non-zero regression 

coefficients from LASSO were considered to be “significant” in the sense that they are 
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associated with the outcome (RSV vs. healthy). However, the “significance” criteria for 

LASSO should not be confused with significance for hypothesis testing (Xia et al. 2015). 

We randomly divided the sample into training (80%) and holdout (20%) sets. We built the 

model on the training set and tested the model on the holdout set of the data. The holdout 

data was not used during the model building process. The final model was evaluated based 

on AUC and a permutation test (n = 1000) conducted for accuracy of prediction and 

significance of AUC.

2.8.5 Analysis of association between infant urine metabolites and recurrent 
wheezing—For our secondary analysis we used multivariable logistic regression to 

estimate relative odds of urine metabolite unit increases with the 1st-, 2nd-, and 3rd-year 

recurrent wheezing outcomes adjusted for covariates: sex, race and ethnicity, maternal 

asthma, and second hand smoke exposure. The result of the p values from logistic regression 

were FDR corrected for multiple testing. A wheeze is a high-pitched, musical, adventitious 

lung sound produced by airflow through an abnormally narrowed or compressed airway(s) 

(Gong 1990). The outcome of recurrent wheeze was defined as three or more wheezing 

events in the last 12 months, or wheeze with use of asthma medications in the last 12 months 

based on parental report.

3 Results

3.1 Population characteristics

A total of 140 individual infant samples (60 healthy control, 70 RSV infection, 10 HRV 

infection) were analyzed for this study. The infants were 62.7% (89) female, 68.6% (97) 

white, 12.9% (18) black, and 11.4% (16) Hispanic (Table 1). The median age at time of 

urine collection was 120 days (IQR, 66–163) for all samples, 119 days (IQR = 66–158) for 

RSV ARI samples, and 104 days (IQR, 65–148) for healthy control samples.

3.2 Multivariate exploratory analysis of urine metabolomics data

Exploratory analysis of the combined and unmatched data (healthy control [n = 60], RSV 

ARI [n = 70], and HRV ARI [n = 10]) with PCA shows that 48.6% of the variation in the 

data was explained by five principal components. We did not observe a clustering pattern in 

the data. The first, second and third principal components represent 13.9%, 9.8%, and 9.2% 

of the variation in the data. PLS-DA analysis shown in the score plot shows slight separation 

between the groups (RSV vs. healthy, and HRV vs. healthy) (Fig. 2). The internal validation 

of the PLS-DA models using 10-fold cross validation shows the variation in the data can be 

represented by the first two components with prediction ability of Q2 = 0.18. The 

permutation analysis model performance (n = 2000) shows significant separation distance 

between groups (RSV vs. healthy, HRV vs. healthy, and RSV vs. HRV) groups (empirical p 

value < 0.002) and accuracy of predicting the groups in the training set (empirical p < 

0.0035). The five most important metabolites that discriminated between healthy controls, 

RSV ARI, and HRV ARI were 1-methylnicotinamide, creatine, 4-deoxythreonic acid, 

citrate, 2-aminobutyrate, ordered as listed.
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For matched RSV ARI and healthy control urine samples, the internal validation of the PLS-

DA models using 10-fold cross validation shows Q2 statistic (Q2 = 0.24) for two component 

based predictive ability. The permutation analysis (n = 2000) for model performance shows 

significant separation distance between RSV ARI and healthy control urine samples 

(empirical p value = 0.002) and accuracy of predicting the group membership during the 

training (empirical p value = 0.0005). 1-methylnicotinamide, creatine, citrate, 4-

deoxythreonic acid, and 2-aminobutyrate, in the order listed, were the five most important 

metabolites in separating the healthy controls and RSV ARI groups.

For matched RSV and HRV urine samples, both 10-fold cross validation and permutation 

analysis of PLS-DA models, non-statistically-significant separation between the RSV and 

HRV urine samples or predictive accuracy of the groups was observed. OPLS-DA analysis 

for matched RSV and HRV ARI samples attributed 5.3% of the variation to the viruses, but 

the permutation analysis was not statistically significant (Q2 = 0.15, permutation p value = 

0.38).

3.3 Differential metabolomics profiles of infants with RSV ARI compared to healthy 
controls

Multivariate analysis was helpful in showing visual separation between groups (RSV ARI, 

HRV ARI, and healthy control) and providing the rank of metabolites important in group 

separation. We also wanted to identify metabolites that were significantly different between 

these groups using univariate statistics. Results from univariate statistical comparisons were 

used in downstream analysis, such as metabolic pathways differentially affected. We 

combined the two-phase sample data for unmatched non-parametric one-way ANOVA 

analysis (Kruskal Wallis test followed by Dunn’s test comparisons) with a total of 140 

samples (10 HRV, 70 RSV, and 60 controls). We found 11 metabolites that were significantly 

different between RSV ARI, HRV ARI, and healthy control infant groups: 1-

methylnicotinamide, 4-deoxythreonic acid, citrate, creatine, hypoxanthine, alanine, 

succinate, 3-hydroxyisovalerate, acetone, valine, and 2-aminobutyrate (Table 2 and Fig. E2). 

There was notable consistency in the results from univariate and PLS-DA analysis, as these 

metabolites were also among the top metabolites discriminating between RSV ARI, HRV 

ARI, and healthy control infant groups using PLS-DA analysis. The post-hoc analysis using 

Dunn’s test showed that 1-methylnicotinimide, succinate, 3-hydroxyisovalerate, acetone, 

alanine, and 2-aminobutyrate were significantly different only between healthy control 

infants and RSV ARI infants, while 4-deoxythreonic acid, citrate, creatine, and 

hypoxanthine were significantly different between both viruses (HRV ARI and RSV ARI) 

and healthy control infant urine samples. None of the metabolites were significantly 

different between HRV and healthy controls and between infants with RSV ARI and HRV 

ARI after adjusting FDR for multiple testing.

We next analyzed matched data comparing infants with RSV ARI with matched healthy 

controls (n = 120, 60 matched pairs). 1-methylnicotinamide, citrate, 4-deoxythreonic acid, 2-

aminobutyrate, creatine, alanine, succinate, cis-aconitate, 3-acetone, hypoxanthine, tyrosine, 

3-hydroxyisovalerate, and pantothenate were significantly different among the groups at p 

value < 0.05 with FDR correction (Table 3 and Fig. E3). While most of these metabolites 
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were decreased in urine of infants with RSV ARI compared to healthy control infants, 2-

aminobutyrate, acetone, cis-aconitate, and hypoxanthine were increased. The fold change 

(FC) for citrate, 1-methylnicotinamide, 4-deoxythreonic acid, creatine, 2-aminobutyrate, and 

succinate was greater than 1.5. The largest fold change of 2.03 was observed with acetone 

(FDR adjusted p value = 0.04 and AUC = 0.63). 1-methylnicotinamide and citrate were 

fairly good predictors of infants with RSV ARI, with AUC of 0.78 (CI 0.69, 0.86) and 0.77 

( CI 0.68, 0.84).

3.4 Metabolic pathways distinguishing infants with RSV ARI from healthy controls

We conducted pathway analysis of the set of significantly altered metabolites (in infants with 

RSV ARI compared to healthy controls) to understand the biological context of the 

significantly different metabolite profiles between healthy controls and acute RSV 

respiratory infection infant urine samples. We used the list of metabolites we identified with 

univariate statistical analysis that differentiated between healthy control and ARI RSV 

subjects. The significantly enriched pathways were determined with hyper-geometric test. 

As shown in Fig. 3 and Table 4, the following metabolic pathways were the most 

differentially affected during RSV ARI: nicotinate and nicotinamide metabolism; glycine, 

serine and threonine metabolism; selenoamino acid metabolism; alanine metabolism; 

glucose-alanine cycle; citric acid cycle; glutamate metabolism; arginine and proline 

metabolism; and catecholamine biosynthesis.

3.5 Biomarker discovery for RSV ARI

To identify biomarkers that distinguish between infants with RSV ARI and healthy controls, 

we evaluated models with metabolites and their ratio to each other (all possible ratios were 

calculated). With a total of 60 matched pairs, we randomly divided into 80% for training (n 

= 96, 48 pairs) and 20% for evaluation (n = 24, 12 pairs) holdout data. Holdout data was not 

used to build the model. We selected a model with two variables to distinguish between 

infants with RSV ARI and healthy controls: citrate/cis-aconitate ratio based on the highest 

univariate AUC performance (AUC = 0.84) and 1-methylnicotinamide/acetone (AUC = 

0.79) which also had the highest frequency of being selected into multivariate logistic model 

using LASSO. The two variable model as classifier using logistic regression consistently 

yielded average AUC of 0.85 (95% CI 0.76–0.95) on 100-fold cross validation on training 

samples and AUC of 0.83 on the holdout samples (Fig. 4). The accuracy of the prediction of 

this model is 0.75 for training samples and 0.83 for holdout samples. The permutation test (n 

= 1000) for accuracy of prediction and AUC were statistically significant (empirical p value 

< 0.001). A p value < 0.05 means that given a randomly permuted outcome variable there is 

less than a 5% chance that a model of similar performance to the “true” non-permuted model 

will be produced (Bijlsma et al. 2006). This model is not modeling method dependent in that 

it yields similar performance results using SVM and PLS-DA. Moreover, as shown in Table 

3, each of these metabolites was significantly different between infants with RSV ARI and 

matched healthy controls.

3.6 Differentiating RSV from other respiratory virus (HRV)

To see if the altered metabolites are specific to a virus, first we compared unmatched urine 

samples from infants with RSV ARI (n = 70) to urine samples from infants with HRV ARI 
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(n = 10) using Wilcoxon signed-rank test. Glycine (p value = 0.03) and betaine (p value = 

0.048) were significantly different between urine samples from infants with RSV and HRV 

ARI, however, none of the metabolites were significantly different after adjusting for FDR. 

The RSV ARI samples were combined from phase-1 (n = 60) and phase-2 (n = 10) to 

enhance the power, however, we should note that the sample sizes are unbalanced between 

the two comparison groups (RSV ARI vs. HRV ARI). As an additional conservative 

approach, we compared matched urine samples from infants with RSV ARI and HRV ARI 

(N = 20, 10 pairs). There were no significant differences in metabolite profiles even before 

FDR adjustment. See online supplement for details.

3.7 Metabolite associations with clinical wheezing outcomes

For our secondary objective, we evaluated the effect of infant urine metabolites on the 

outcomes of 1st-, 2nd-, and 3rdyear recurrent wheezing using logistic regression adjusted for 

covariates including sex, race and ethnicity, maternal asthma, and second hand smoke 

exposure. Several metabolites were significantly associated with 1st-, 2nd-, and 3rdyear 

recurrent wheezing, however, only alanine remained significantly associated with reduced 

risk for 1st-year recurrent wheezing after FDR adjustment (FDR adjusted p value < 0.001). 

Alanine and tyrosine were consistently associated with reduced 1st- and 2nd-year recurrent 

wheezing although not significant after adjusting for multiple testing for second year. 

Among infants with RSV ARI, alanine, tyrosine, and 4-deoxythreonic acid were associated 

with 1st-year recurrent wheezing; acetate was associated with 2nd-year recurrent wheezing, 

and 2-hydroxyisobutyrate was associated with 3rd-year recurrent wheezing. However, except 

for the association between alanine and 1styear recurrent wheezing using combined sample 

(n = 140) analysis, none of the results were significant after adjusting for multiple testing. 

See online supplement for details.

4 Discussion

RSV infection in infants may cause life-threatening disease and is a strongly and 

consistently associated risk factor for the development of asthma. However, our 

understanding of the mechanisms through which RSV causes asthma is limited largely to 

animal models or human association studies. Thus our study aimed to fill gaps in our 

knowledge that may contribute to the development of targeted preventive or therapeutic 

interventions by: (1) determining metabolic profiles that distinguish infants with RSV ARI 

from healthy infants and from those with HRV ARI, and (2) assessing the association of 

urinary metabolites with childhood recurrent wheezing outcomes.

We find that urine metabolites clearly distinguish between infants with acute RSV ARI or 

HRV ARI respiratory viral infection from healthy controls. Not surprisingly, however, the 

metabolite profiles of infants with RSV ARI and HRV ARI were largely overlapping. 

Betaine was the only significantly different metabolite after FDR correction, that 

distinguished between RSV ARI (n = 70) and HRV ARI (n = 10). We did not find any 

significantly different metabolites in matched infants (n = 10 paired infants with RSV ARI 

and HRV ARI) also after FDR correction. The identified metabolite patterns seen during 

infant viral infection are consistent with and indicative of active viral infection (Delgado et 
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al. 2012; Milner et al. 2014; Munger et al. 2006; Ritter et al. 2010; Sanchez and Lagunoff 

2015; Yu et al. 2011), but were not specific to RSV ARI. The only other study comparing 

children with RSV, non-RSV virus, and bacterial infection also found similar metabolic 

profile differences (Adamko et al. 2016). For example, similar to our study, Adamko et al. 

found that betaine was elevated in children with RSV infection compared to both non-

infected children and children with non-RSV infection. However the Adamko et al. study 

differs from ours in that the children were hospitalized, nonRSV virus comparators were 

diverse (adenovirus, influenza, and parainfluenza), and age ranges of children during RSV 

ARI were large with median age about 8 (range 6.2–9.9) months, whereas our study 

prospectively followed infants from near birth to first RSV ARI and the median age at ARI 

was about 3 (interquartile range, 2–5) months.

Nicotinate and nicotinamide metabolic pathways were specifically decreased in infants with 

RSV ARI compared to healthy controls. 1-Methylnicotinamide, the amide form of niacin or 

vitamin B3, is a precursor in the synthesis of NAD + and NADP +, which plays a role in 

numerous metabolic pathways including energy production, regulation of cellular redox, 

circadian rhythm, and longevity (Musfeld et al. 2001). Anti-inflammatory properties of 1-

methylnicotinamide have also been recently described, including as a potential scavenger of 

reactive forms of oxygen, in particular superoxide radical anions and hydroxyl radicals, as 

well as reducers of adherence of pro-inflammatory cells and molecules to the surface of 

vascular endothelium (Gebicki et al. 2003). Thus, infants’ ability to fend off inflammation is 

likely decreased during RSV infection as infants with RSV acute respiratory infection have 

lower 1-methylnicotinamide compared to healthy infants.

In exploring urine metabolites as a biomarker for RSV, the model composed of citrate/cis-

aconitate ratio and 1-methylnicotinamide/acetone ratio consistently yielded average AUC of 

0.85 (95% CI 0.76–0.95) on 100-fold cross validation on training samples and AUC of 0.83 

on the holdout samples. In citrate/cis-aconitate ratio, both metabolites are in the citric acid 

cycle pathway; cis-aconitate is an intermediate metabolite during conversion of citrate to 

isocitrate. In addition to energy production, citrate is used for production of the pro-

inflammatory molecule prostaglandin E2 (PGE2) and oxaloacetate to make nicotinamide 

adenine dinucleotide phosphate (NADPH) needed for NO and ROS via Acetyl-CoA 

(Infantino et al. 2013, 2014). On the other hand, citrate is a substrate for production 

itaconate via cisaconitate, which acts as a negative regulator of inflammation by modulating 

the synthesis of the inflammatory mediators (Lampropoulou et al. 2016). Decreased levels of 

citrate and increased levels of cis-aconitate during RSV ARI compared to healthy controls 

may indicate that citrate is depleted to supply pro-inflammatory and anti-inflammatory 

molecule needs of immune cells to counter viral replication. Both metabolites in 1-

methylnicotinamide/acetone ratio are precursors to NADP + production. As discussed 

above, 1-methylnicotinamide plays a role in several metabolic pathways including energy 

production. Acetone plays a role in energy supply to vital organs during metabolic 

catastrophe (Kalapos 1999). The exact relationship between 1-methylnicotinamide and 

acetone has not been described in the literature, however, it is possible that the increase in 

acetone and decrease in 1-methylnicotinamide levels in infants with RSV ARI compared to 

healthy infants are indicators of a cellular switch in energy production to survival mode and 

a tendency toward higher inflammatory metabolism due to stress from viral infection. 
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Nonetheless, what is clear from the literature is that all metabolic markers discussed are 

involved in energy production and inflammation pathways critical during infections. This 

study is the first attempt to define metabolic biomarkers differentiating infants with RSV 

ARI and healthy infants. These promising results need next to be validated in a larger 

sample.

Lastly, we also identified metabolites associated with wheezing outcomes following RSV. 

Only the association of alanine with 1st-year recurrent wheezing remained significant after 

FDR correction at 0.05. Alanine has been previously identified as a metabolite 

discriminating healthy and chronic obstructive pulmonary disease in older adults (Wang et 

al. 2013). Alanine and tyrosine (a metabolite with neurotransmitter properties) metabolic 

pathways were the most consistently associated pathways with recurrent wheezing at 1- and 

2-years following RSV infection. 2-hydroxyisobutyrate, which is mainly eliminated through 

exhaled air (Benson et al. 2001), was the strongest predictor of 3rd year recurrent wheezing 

after RSV infection. Previous studies show that 2-hydroxyisobutyrate and 4-deoxythreonic 

acid (which was associated with 1st-year wheezing following RSV) are organic acids 

subsequent to l-threonine and are elevated in urine of juvenile-onset (Type 1) diabetes 

mellitus patients (Kassel et al. 1986). While RSV ARI has long been associated with 

markedly increased risk of future asthma, the majority of infants with RSV ARI do not in 

fact develop asthma. Identifying metabolic pathways associated with increased wheezing 

and asthma risk enhances our understanding of the key pathways that may underlie this 

association.

The main strength of this study is that it was conducted on a population-based birth cohort 

of infants specifically designed to capture the first infant RSV ARI, and understand the 

metabolic patterns associated with RSV ARI. This design allowed for tremendous accuracy 

in phenotyping the infants. Because urine samples tested from healthy infants and from 

infants during RSV infection were matched on infant age, race and ethnicity, and sex, the 

variation in metabolite concentrations due to these factors were minimized. Despite the 

strengths in study design there are several limitations that must be considered. Even though 

our sample is well matched, there are genetic and environmental factors that we can neither 

measure nor control for, as well as residual confounding. Although this is a relatively large 

human metabolomics study, it is not adequately powered to discern the combined effects of 

metabolites, and the mediating effects of environmental exposures. The urine was collected 

only once a day, typically during the morning hours, which may not represent the variation 

in the urinary metabolome throughout the day, although morning is preferable if serial or 24-

h collection is not possible, and infant diet is not as variable throughout the day as it is for 

older children and adults (Bernini et al. 2011). Lastly, even though our results are based on 

internal validation techniques we did not perform external validation on an independent 

sample.

5 Conclusions

We identified urinary metabolites that are involved in RSV ARI compared to healthy control 

infants and infants with HRV ARI. We also identified metabolites predictive of recurrent 

wheezing. We demonstrated that altered metabolic pathways provide insight into the 
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pathogenesis of RSV ARI and development of recurrent wheezing in children, although the 

involvement of these pathways and predictive metabolite biomarkers has to be confirmed in 

larger sample sizes and replicated in independent samples. These findings together enhance 

our understanding of RSV pathogenesis and pathways dominant in asthma development and 

will hopefully lead to the establishment of novel urine based biomarkers for asthma that are 

easy to collect in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic representation of analysis workflow
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Fig. 2. 
Partial least square discriminant analysis (PLS-DA) score plot showing the first two 

components of the urine sample projection based on the 31 metabolites identified in the 

unmatched data. The red, orange, and blue shaded ovals show the classification of the 

samples into healthy controls, human rhinovirus (HRV) ARI, and respiratory syncytial virus 

(RSV) ARI, respectively, based on the first two components of PLS-DA
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Fig. 3. 
Differentially enriched metabolic pathways in infants with RSV acute respiratory infection 

compared to matched healthy control infants
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Fig. 4. 
Model comprised of citrate/cis-aconitate and 1-methylnicotinamide/acetone ratios 

distinguishing infants with RSV acute respiratory infections from healthy controls
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Table 3

Comparison of urinary metabolites that discriminate between infants with RSV acute respiratory infection (n = 

60) and matched healthy controls (n = 60) using Wilcoxon rank-sum test

Metabolites
a Fold change (RSV/healthy) Wilcoxon rank-sum test, FDR adjusted p value AUC

1-Methylnicotinamide 0.55 3.62 × 10−6 0.78

Citrate 0.65 3.62 × 10−6 0.77

4-Deoxythreonic acid 0.59 0.0002 0.73

2-Aminobutyrate 1.99 0.002 0.67

Creatine 0.52 0.003 0.68

Alanine 0.77 0.003 0.68

Succinate 0.59 0.003 0.67

Cis-aconitate 1.27 0.02 0.62

Acetone 2.03 0.04 0.63

Hypoxanthine 1.79 0.04 0.68

Tyrosine 0.79 0.04 0.63

3-Hydroxyisovalerate 0.82 0.04 0.64

Pantothenate 0.85 0.04 0.62

Significance was cut off at p value of 0.05 after adjusting for multiple testing using Benjamini–Hochberg false discovery rates (FDR)

FDR false discovery rate, AUC area under the curve, RSV respiratory syncytial virus. Samples matched on age, sex, race and ethnicity, and feeding 
(breast vs. formula or combination)

a
Metabolites were normalized to creatinine
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