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Abstract

Tetrathiatriarylmethyl (TAM) radicals represent soluble paramagnetic probes for biomedical 

electron paramagnetic resonance (EPR)-based spectroscopy and imaging. There is an increasing 

demand in the development of multifunctional, biocompatible and targeted trityl probes hampered 

by the difficulties in derivatization of the TAM structure. We proposed a new straightforward 

synthetic strategy using click chemistry for the covalent conjugation of the TAM radical with a 

water-soluble biocompatible carrier exemplified here by dextran. A set of dextran-grafted probes 

varied in the degrees of Finland trityl radical loading and dextran modification by polyethelene 

glycol has been synthesized. The EPR spectrum of the optimized macromolecular probe exhibits a 

single narrow line with high sensitivity to oxygen and has advantages over the unbound Finland 

trityl of being insensitive to interactions with albumin. In vivo EPR imaging of tissue oxygenation 

performed in breast tumor-bearing mouse using dextran-grafted probe demonstrates its utility for 

preclinical oximetric applications.

Synthesis of the first organic free radical, triphenylmethyl, was reported by Gomberg in 

19001. By the late 1990s, these compounds with sterically protected trivalent carbon 

regained attention as the core structural fragment for the synthesis of stable organic radicals. 

Nycomed Innovation designed the sterically crowded trityl radicals, TAMs 

(tetrathiatriarylmethyl), in order to avoid hydrogen hyperfine coupling and enhance radical 

stability and water solubility2–3. Currently TAMs represent one of the major classes of 

soluble paramagnetic probes characterized by extraordinary stability toward tissue redox 

processes, long relaxation time and narrow line width making them particularly attractive for 

electron paramagnetic resonance (EPR)-based spectroscopy and imaging applications3–7. 

Figure 1 shows the most popular structures of TAM oximetric probes, Finland trityl (FTr)8–9 

and OX0634, their deuterated derivatives5, 10–12, and the recently synthesized 

multifunctional monophosphonated probe, HOPE13–14 (sensor for pH, Oxygen and 
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Phosphate in Extracellular microenvironment). Wide application of the highly hydrophilic 

TAM probes, Ox0634 and its deuterated analog, Ox07112, is hampered by the lack of 

affordable large-scale syntheses and difficulties in functional derivatization of the core 

structure for extended multifunctional applications.

The recent progress in the development of multifunctional6, 15–17 (e.g., HOPE, Figure 1) and 

targeted trityl probes18–21 is mostly associated with the use of the Finland trityl core 

structure allowing for a large range of synthetic modifications. However, the relatively 

lipophilic nature of the aryl core of the Finland trityl is responsible for its hydrophobic 

interaction with bio-macromolecules such as albumin22, resulting in a signal loss and 

preventing systemic delivery of the corresponding spin probes.

Here we report a proof-of-concept of a new strategy for the development of multifunctional, 

biocompatible and targeted TAM structures based on covalent conjugation of the deuterated 

Finland radical core (dFTr) with a water-soluble biocompatible carrier. Scheme 1 illustrates 

this strategy utilized in the current work for the dextran polymer grafted with dFTr and 

polyethelene glycol (PEG), the latter allowing for the enhancing aqueous solubility of the 

probe. Previously, dextran has been widely explored as biocompatible carrier for probe and 

drug conjugation23.

The dextran biopolymer with an average molecular weight of 20 kDa was functionalized 

through the etherification of the alcohol groups of the polysaccharide with 1-azido-2,3-

epoxypropane (see Scheme 1)24. According to quantitative 13C NMR spectral analysis 

illustrated in Figure 2, about 8% of 125 sugar units of 20 kDa dextran chain were modified 

with 1-azido-2-hydroxypropyl chains, therefore resulting in total in 10 azide groups per 

dextran molecule.

Dextran grafting by the dFTr radical was achieved by a copper-catalyzed azide-alkyne 

cycloaddition (CuAAC) of a TAM mono propargyl ester 1 followed by addition of excess of 

commercially available alkyne-PEG (1 kDa, see Scheme 1 and SI). The reaction crude was 

easily purified by dialysis, and the completion of the reaction was confirmed by the 

disappearance of the azide peak on the IR spectrum (2110 cm−1). The TAM mono propargyl 

ester 1 was synthesized by esterification of dFTr using a deuterated propargyl tosylate 2 as 

depicted in Scheme 2 (see SI for the details).

Taking into account that all ten azide groups of azidified dextran were modified with 1 kDa 

dFTr or by 1 kDa PEG, the resulting grafted dextran has a molecular weight of 

approximately 30 kDa and its composition is described by the general formula Dextran-

TAMxPEG10-x. To study the structure-function relationship of new macromolecular spin 

probes, we synthesized a set of the Dextran-TAMxPEG10-x that range from low to high trityl 

radical loading (see Table 1 and SI for the details).

An average number of TAM radicals bound to one dextran molecule, x, was measured using 

UV absorbance of Dextran-TAMxPEG10-x at 490 nm (characteristic for trityl radical, 16000 

cm−1M−1) and supposing molecular weight of the grafted dextran equal to 30 kDa based on 

the initial molecular weight of 20 kDa and additional 10 azide sites modified by 1 kDa 

substitutes, dFTr or PEG. Figure 3 shows reverse phase HPLC chromatograms and UV 
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spectra of the integrated peak of TAM mono-propargyl ester 1 and Dextran-TAM3.6PEG6.4 

sample (low TAM loading).

Figure 4 shows the L-band EPR spectra of two Dextran-TAMxPEG10-x probes with low and 

intermediate TAM loading. An increase in spin density from x=3.6 (Figure 4A) to x=6.5 

(Figure. 4B) did not significantly affect linewidth but resulted in an increase of signal 

intensity of about 1.6 times. Further increase in spin density in the Dextran-TAM8.1PEG1.9 

probe resulted in the strong broadening effect of its L-band EPR spectrum apparently due to 

intramolecular spin-spin interaction, therefore we excluded this probe from the following 

studies. EPR spectra of both Dextran-TAM3.6PEG6.4 and Dextran-TAM6.5PEG3.5 

demonstrated similar linear dependences on oxygen concentration (Figure 4C and 4D) 

making them useful oxygen-sensitive spin probes. Dextran-TAM3.6PEG6.4 demonstrated an 

important advantage of lacking an interaction with albumin (cf. red and black EPR spectra in 

Figures 4A) compared with significant albumin-induced line broadening for TAM6.5PEG3.5 

(Figure 4B) apparently due to a larger number of hydrophilic PEG chains. Therefore, 

Dextran-TAM3.6PEG6.4 probe has been selected for testing its ability for tissue oxygen 

mapping, in vivo.

Figure 5A shows the oxygen distribution in a breast cancer tumor measured in PyMT tumor-

bearing mouse using rapid scan 800 MHz EPR imager after intratissue injection of the 

Dextran-TAM3.6PEG6.4 probe. The histogram of pO2 distribution (Figure 5B) clearly shows 

the presence of normoxic and hypoxic areas characteristic for highly heterogeneous tumor 

microenvironment5, 25–26. Interestingly, the intensity of the EPR signal was not significantly 

decreased over more than 1 hour, suggesting comparatively slow probe clearance from the 

tumor tissue of the anesthetized animal.

In summary, we synthesized a series of new dextran-conjugated trityl probes varied in the 

degree of Finland trityl radical loading and dextran modification by polyethylene glycol 

using a straightforward click chemistry approach. An optimized dextran-conjugated trityl 

probe demonstrated advantage over free Finland trityl in biocompatibility being more 

hydrophilic and lacking interaction with albumin. The probe exhibits an oxygen-sensitive 

narrow EPR spectral line allowing for in vivo oxygen mapping. The proposed strategy based 

on easy covalent conjugation of the deuterated Finland radical core with water-soluble 

biocompatible carriers such as dextran or chitosan, may result in the development of 

multifunctional6, biocompatible and targeted TAM structures with potentially favorable/

tunable pharmacokinetics. It can be easily extended toward incorporation into the 

biopolymer structure of multifunctional trityls6, targeting moieties19 and/or therapeutic 

agents for the synthesis of theranostic probes.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative structures of TAM radicals.
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Figure 2. 
13C NMR spectrum of azidified dextran. Ratio of integrals of the peaks 9 and 1 gives the 

fraction of modification of sugar units by azide groups. Acquisition parameters: 100 MHz, 

D2O, time delay=15 s, 8000 scans. Insert: schematic structure of azidified dextran showing 

α−1,6 glycosidic linkages between glucose monomers with branches from α−1,3 linkages. 

The numbering of the carbon in the dextran structure corresponds to the corresponding peak 

numbering in the NMR spectrum.
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Figure 3. 
HPLC chromatograms of (A) TAM mono-propargyl ester radical and (B) dextran grafted 

with TAM radicals and PEG chains. Inserts: the UV spectrum of the main peak for each 

chromatogram (See SI for details).
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Figure 4. 
L-band (1.2 GHz) EPR spectra of Dextran-TAM3.6PEG6.4 (A) and Dextran-TAM6.5PEG3.5 

(B) spin probes, and the corresponding dependences of their linewidth on oxygen 

concentration, (C) and (D). The spectra were measured for 0.5 ml samples of 65 µM 

solutions of the probes in deoxygenated 100 mM phosphate buffer in the absence (red lines) 

and presence (black lines) of 500 µM bovine serum albumin. The values of the peak-to-peak 

linewidth, ΔHpp, are shown near the spectra. The linear fits of the linewidth dependences on 

oxygen yield the spectral sensitivities to oxygen being equal to 2.7 mG/(% O2) (C) and 2.6 

mG/(% O2) (D). The spectrometer settings were as follows: sweep time, 30 sec, sweep 

width, 480 mG; modulation amplitude, 30 mG; modulation frequency, 100 kHz; power 

attenuation, 15 dB.
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Figure 5. 
In vivo 4D (1-spectral-3-spatial) rapid scan 800 MHz EPR image of oxygen distribution in a 

breast tumor of a PyMT tumor-bearing mouse. An image acquisition was started 25 minutes 

after intratissue injection of 20 µl solution of 0.75 mM probe in 10 mM phosphate buffered 

saline; tumor volume, 214 mm3. Data acquisition parameters were as follows: acquisition 

time, 16.5 minutes; number of projections, 2546; rapid scan frequency, 9.4 kHz; and 

maximum gradient, 3G/cm. An integral intensity threshold of 30% was implemented to 

remove low signal-to-noise data. A. A two-dimensional slice (xz-plane) of the image is 

shown. B. A histogram of pO2 distribution within the entire image.
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Scheme 1. 
Schematic representation of the synthesis of dextran-conjugated TAM radicals using a click 

chemistry approach. The dextran grafting by the dFTr radical was achieved by copper-

catalyzed azide-alkyne cycloaddition (CuAAC) of a TAM mono-propargyl ester followed by 

addition of excess of alkyne-PEG. Varying the trityl radical/dextran ratio allows for the 

tuning of the radical loading onto the polymer. Incorporation of PEG chains enhances the 

solubility of the grafted dextran and prevents spin-spin interactions between trityl radicals.
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Scheme 2. 
Synthesis of TAM mono propargyl ester (See SI for details).
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Table 1.

Experimental conditions and final trityl radical loading, x, for a series of grafted dextran probes, Dextran-

TAMxPEG10-x
*.

Loading TAM Dextran-N3 PEG x

Low 3 mg 20 mg 60 mg 3.6

Medium 6 mg 20 mg 60 mg 6.5

High 12 mg 20 mg 60 mg 8.1

*
synthesized according to the Scheme 1 (see SI for details).
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