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Abstract

A computationally inexpensive mathematical solution approach using orthogonal collocations for 

space discretization with temporal Fourier series is proposed to compute subject-specific blood 

flow in distensible vessels of large cerebral arterial networks. Several models of wall biomechanics 

were considered to assess their impact on hemodynamic predictions. Simulations were validated 

against in vivo blood flow measurements in six human subjects. The average root-mean-square 

relative differences were found to be less than 4.3% for all subjects with a linear elastic wall 

model. This discrepancy decreased further in a viscoelastic Kelvin-Voigt biomechanical wall. The 

results provide support for the use of collocation-Fourier series approach to predict clinically 

relevant blood flow distribution and collateral blood supply in large portions of the cerebral 

circulation at reasonable computational costs. It thus opens the possibility of performing 

computationally inexpensive subject-specific simulations that are robust and fast enough to predict 

clinical results in real time on the same day.
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1 Introduction

Quantitative magnetic resonance angiography has allowed non-invasive quantification of 

blood flow in the cerebral arteries. This in vivo imaging method, however, is limited to a few 

large cerebral arteries. More complete simulations of cerebral circulation would better 

inform about normal vascular status or blood flow distributions that occur in pathologies or 
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after endovascular interventions. Many studies have been devoted on performing 

hemodynamic analysis of the cerebral vasculature based on one-dimensional (Alastruey, et 

al., 2007; Huang & Muller, 2015; Liang, et al., 2011; Zagzoule & Marc-Vergnes, 1986) and 

three-dimensional formulations (Xiao, et al., 2014; Ghaffari, et al., 2017). Three-

dimensional formulations have been especially significant in determining hemodynamic 

risks in cerebrovascular diseases (Cebral, et al., 2005; Evju, et al., 2013; Ghaffari, et al., 

2018).

One-dimensional models with distensible vessel walls are the method of choice to quantify 

fluid-structure interactions between blood flow and wall biomechanics. Some examples of 

the work contributed in this field are (Hughes & Lubliner, 1973; Zagzoule & Marc-Vergnes, 

1986; Stergiopulos, et al., 1992; Olufsen, et al., 2000; Formaggia, et al., 2003; Sherwin, et 

al., 2003a; Müller & Toro, 2014). These studies differed in the respective formulations of the 

governing equations and numerical methods for time integration.

In a recent study, substantial gains in CPU time and mesh size reduction was achieved for 

large arterial tree simulations with a parametric structured meshing technique (Ghaffari, et 

al., 2018). However, the 3D study only considered rigid walls. For clinical translation, a 

robust computationally efficient with modest complexity would enable surgeons to perform 

same day blood flow predictions needed in interventional planning (Ghaffari, et al., 2017; 

Ghaffari, et al., 2018). The ability to perform simulations in real-time could inform 

clinicians even during the surgical procedure.

A computationally highly efficient method for time integration entails Fourier series. This 

choice has been previously considered to solve for blood flow (Womersley, 1955; Miekisz, 

1963) or wave propagation in distensible blood vessels (Park & Payne, 2011). Advantages of 

this approach include the speed of the computations and concise prediction of phase shifts 

between multiple wave propagation phenomena without the need for time step control. In 

this study, blood flow dynamics on large portions of cerebral arterial trees of six specific 

human subjects were simulated based on an area-averaged one-dimensional theory with 

several biomechanics wall models (tube laws). A method of weighted residuals with Fourier 

series in time is introduced and validated against an existing discontinuous spectral Galerkin 

approach with second-order time integration (Sherwin, et al., 2003a; Sherwin, et al., 2003b). 

Their scheme was previously compared with several other one-dimensional numerical 

schemes and three-dimensional simulations (Boileau, et al., 2015). In this paper, simulation 

results obtained from the two numerical schemes were compared and analyzed. Moreover, 

predictions were also compared with quantitative in vivo flow measurements. Different wall 

models with respective parameters were varied to quantify the flow, area and pressure 

dynamics for subject-specific arterial trees. The methodology shown here provides total 

discretization in space and time suitable to predict wave propagation phenomena stemming 

from pulsatile flow with dynamic blood vessel wall mechanics.
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2 Method

2.1 Data acquisition and cerebral vasculature reconstruction

MR imaging was used to acquire in vivo data of the cerebral arterial tree morphology as well 

as blood flow in the arteries around the circle of Willis and its main branching arteries. 

Details of the imaging protocol, flow measurements, and vascular skeletonization can be 

found in the appendix (section A). Figure 1 shows a sample image of the cerebral arterial 

network for subject I.

2.2 Full space-time discretization (FSTD) with method of weighted residuals and Fourier 
series (Method-1)

An area-averaged linearized one-dimensional form of blood flow in a deformable arterial 

network was solved using a method of weighted residuals to discretize the spatial domain 

along the vessel centerlines with Fourier series for time. Figure 1 shows the full 

discretization scheme with collocation of Lagrange polynomials along the vessel axis and 

Fourier series. The dynamic cross-sectional area of the lumen, A(x, t), volumetric flow rate, 

Q(x, t), and pressure, p(x, t), along the axial co-ordinate of the vessel, x, for each point in 

time, t, are shown in the form of equations (1)-(3).

A(x, t) =
k = − N

N

m = 1

M
amklm(x)e i kωt (1)

Q(x, t) =
k = − N

N

m = 1

M
qmklm(x)e i kωt (2)

p(x, t) =
k = − N

N

m = 1

M
pmklm(x)e i kωt (3)

where amk are the area coefficients, lm(x) are suitable Lagrange polynomials, i is the 

imaginary number, ω is the angular frequency, qmk is the coefficient of the volumetric flow 

rate and pmk is the coefficient of the pressure. M determines the number of collocation nodes 

considered along the vessel centerline and N stands for the order of the Fourier series 

frequency. Our approach (1D model) has the advantage over lumped models (0D model) of 

requiring only a single spline for the entire vessel segment. Note that our assumptions imply 

periodic flow and pressure distributions. Figure 1 shows a sample cerebral arterial network 

with cylindrical blood vessels with deformable walls. A fully discretized space-time grid is 

shown with the unknown coefficients and the location of the spatial nodes on a cylindrical 

blood vessel with deformable walls.
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The area-averaged one-dimensional form of the continuity and momentum equation can be 

derived from the two-dimensional cylindrical form (Payne, 2004; Smith, et al., 2002). For an 

incompressible fluid, the continuity equation can be expressed in terms of the area and 

volumetric flow rate.

∂A
∂t + ∂Q

∂x = 0 (4)

The momentum equation can be written in linearized form as in equation (5).

∂Q
∂t + 2αQ

A
∂Q
∂x − α Q

A

2∂A
∂x + A

ρ
∂ p
∂x + f

A
Q − Q

A
(A − A) = 0 (5)

where α is the momentum correction factor, Q and A are the mean flow and area, 

respectively, ρ is the density of blood and f = 2π(ζ + 2)μ/ρ is the frictional term dependent 

on the velocity profile parameter, ζ, the dynamic viscosity, μ and ρ. The pressure-area 

relationship required for problem closure with viscoelastic wall properties (Alastruey, et al., 

2011; Alastruey, 2011) can be written in linearized form as in equation (6).

p = p + G(A − A) + Γ ∂A
∂t (6)

where p is the mean pressure, G = 2 πEh/(3A1.5) is related to wall elasticity, E, and 

Γ = 2 πφh/(3A1.5) is the wall damping term. E is the Young’s modulus, h is the wall 

thickness and φ is the wall viscosity. More details on the linearization procedure can be 

found in the appendix (section B).

Harmonic analysis with Fourier series has the advantage of time step size independence of 

the solution and the possibility of computing phase differences consistently. It has the 

additional benefit that there are no interactions between the different harmonics such that the 

individual harmonic coefficients can be computed separately, thus substantially reducing the 

computational burden. This is a critical benefit for large-scale arterial network simulations.

The first step of the numerical implementation was to solve for time-averaged flow, Q, and 

area, A, which were computed using steady-state flow conditions. These values were needed 

to compute the higher harmonic coefficients by substituting equations (1)–(3) into equations 

(4)–(6) and equating matching harmonic coefficients at each node m. The continuity and 

linearized momentum equations for each vessel element can be expressed as equations (7) 

and (8), respectively.

inω
m = 1

M
amnlm j +

m = 1

M
qmnl′m j = 0 (7)
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inω + f
A m = 1

M
qmnlm j + 2αQ

A m = 1

M
qmnl′m j − α Q

A

2

m = 1

M
amnl′m j

+ A
ρ m = 1

M
pmnl′m j − f Q

A2
m = 1

M
amnlm j = − f Q

A

(8)

where lmj = lm(xj), l′m j, is the spatial derivative of the Lagrange polynomials at xj. The 

linearized pressure-area relationship can be expressed as equation (9).

m = 1

M
pmnlm j − (G + inωΓ)

m = 1

M
amnlm j = p − GA (9)

2.3 Discontinuous spectral Galerkin method (Method 2)

Next, we assessed whether the relatively simpler FSTD could achieve results comparable to 

rigorous algorithms. Although there were several excellent numerical methods available 

(Boileau, et al., 2015; Müller & Toro, 2014; Steele, et al., 2011), a discontinuous Galerkin 

scheme with a spectral spatial discretization with second-order Adams-Bashforth time 

integration scheme was chosen. The reader is directed to (Sherwin, et al., 2003a; Sherwin, et 

al., 2003b; Alastruey, et al., 2011) for its derivation.

2.4 Initial and boundary conditions

Pulsatile flows were imposed at the network inlets using a mass flow corrected MR flow 

measurements. A discrete Fourier series with a truncation order of N was considered to 

exactly encode the measured volumetric flow rates. The Fourier series for blood flow at the 

carotid and basilar arteries of subject I is provided in the appendix (section C). At the 

junctions where arterial branches bifurcate or merge, conservation of mass and total pressure 

were considered (in linearized form). Total pressure consists of the sum of static pressure 

and dynamic pressure. Conservation of total pressure originates from Bernoulli’s principle, 

which is an expression of the conservation of the total energy.

i
Qi = 0 (10)

pi + ρ
2

Qi

Ai
2 2Qi +

Qi
Ai

(Ai − 2Ai = constant (11)

where the subscript i denote the nodes of the vessels at the junctions. Note that some studies 

conserved static pressure (Steele, et al., 2011) rather than total pressure; this alternative can 
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be implemented by suitable modification of equation (11). At the network outlets, pressure 

distributions were specified with values inferred from flow measurements as outlined in the 

subsection 2.6.

2.5 Properties of blood and wall biomechanics

Table 1 shows the baseline parameters considered for the simulations throughout this paper. 

Vessel wall elasticity was set according to an empirical relation (Olufsen, 1999) shown in 

equation (12),

Eh
R0

= k1e
k2R0 + k3 (12)

where k1, k2 and k3 are empirical coefficients, listed in Table 1, and R0 is the vessel radius. 

Values for viscous wall property were based on an in vivo study on the carotid artery of the 

human (Valdez-Jasso, et al., 2011).

2.6 Parameter estimation and inference of boundary conditions

In this study, clinically measured volumetric flow rate waveform were set at the inlet vessels; 

an inversion problem was solved to optimally determine boundary conditions that best align 

the measured volumetric flow rates with simulated flows. Details of the inversion problem 

can be found in the Appendix (section D).

2.7 Space/time mesh choices

The number of nodes prescribed for each vessel segment were chosen as function of arc 

length. Eight harmonic terms were adequate for fitting the quantitative MR flow 

measurements. Specific choices are listed in the Appendix (section E).

3 Results

Global large-scale simulations were conducted on six subject-specific cerebral arterial 

networks, using the collocation/Fourier series approach, and compared with the quantitative 

magnetic resonance flow measurements. In all cases, the inlet flows were set at the basilar 

artery (BA) and left and right internal carotid arteries (LICA and RICA), and the outlet 

pressures were set at the outlet vessels of the territories supplied by the anterior (LACA and 

RACA), middle (LMCA and RMCA) and posterior cerebral arteries (LPCA and RPCA). For 

each territory, equal outlet vessel pressures were considered following a previously 

considered method (Ghaffari, et al., 2018). The difference between the results was estimated 

using the root-mean-square and maximum relative difference, εRMS and εMAX respectively. 

These were obtained using the following metrics (Boileau, et al., 2015)

εA
RMS = 1

T 0

T A(x, t) − A(x, t)
A(x, t)

2
dt, εA

MAX = max A(x, t) − A(x, t)
A(x, t)

(13)

Park et al. Page 6

J Biomech. Author manuscript; available in PMC 2020 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



εQ
RMS = 1

T 0

T Q(x, t) − Q(x, t)
maxQ(x, t)

2
dt, εQ

MAX = max Q(x, t) − Q(x, t)
maxQ(x, t)

(14)

εp
RMS = 1

T 0

T p(x, t) − p(x, t)
p(x, t)

2
dt, εp

MAX = max p(x, t) − p(x, t)
p(x, t) (15)

where the hat over the variables represent either the measured values or the predicted values 

using method-2. Note that the metric εRMS accounts for mean integral errors in both the 

space-time domain.

3.1 Comparison between method-1 and method-2

Comparison between methods-1 and 2 were performed on reduced networks comprising of 

the circle of Willis and its immediate branching spline. In method-2, the momentum 

correction factor, α, was set to unity to simplify the treatment of the boundary conditions. 

Thus, α of unity was also prescribed for method-1 for comparison with method-2. This 

setting was relaxed when method-1 was compared with the clinical measurements. Figure 2 

and Figure 3 show area, flow and pressure trajectories at the middle of the vessel length for 

sample vessels located in the circle of Willis for subjects I and IV, respectively. The blue 

lines correspond to the trajectories for method-1 and the red lines to method-2. Visual 

inspection of several segments showed good quantitative and qualitative agreement between 

the simulations obtained by the two different algorithms. Both solutions showed a decrease 

in the time-averaged area and pressure along the blood flow direction throughout the 

cerebral arterial network. An increase in area corresponded to a pressure rise. A phase 

difference in area, flow and pressure were observed between the two methods that increased 

in time. Modulation of the periodic waveform was observed in some of the segments in 

method 2. This effect was due to wave reflections at the outlet of outflow terminal branches, 

which could have possibly been remedied by more dissipative boundary choices. In this 

study, the boundary conditions were inferred from in vivo flow measurements, so that 

resulting boundary conditions could not be fine-tuned to avoid wave reflections. The reader 

is referred to the original studies for more insight into wave reflections (Sherwin, et al., 

2003a; Sherwin, et al., 2003b).

Figure 2 also shows area, flow and pressure trajectories at the inlet of inflow vessels (BA 

and ICA) and at the outlet of outflow vessels (ACA, MCA and PCA) for subject I. Flow inlet 

and pressure outlet assignments were identical, but the implementation of method-2 requires 

conversion of pressures to area information. Moreover, method-2 enforces boundary 

conditions merely at phantom nodes and computes trajectories for the physical boundary 

using a Riemann problem. These implementation differences explain the deviations 

observed in Figure 2-(bottom rows) at the physical inlet and outlet nodes for results with 

method-1 versus method-2.
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Table 2 provides data of the number of splines, the number of nodes (which is equal to the 

number of equations for each frequency) and the simulation time for methods-1 and 2 in the 

circle of Willis. Method-2 was simulated with time step size, Δt = 10−5, and the simulation 

time represents the CPU time to obtain results for a single cardiac cycle. All simulations 

were performed with MATLAB using an Intel Core i7, 3.00 GHz CPU. Table 2 shows the 

average root-mean-square relative difference across all vessels in the solution obtained by 

method-1 from method-2, respectively. Mesh information for the circle of Willis considered 

for the simulations and the CPU times are also provided. The value range of the root-mean 

square relative difference for the vessel lumen area, volumetric flow rate and pressure for the 

six subjects were 0.10–0.69%, 1.4–5.5% and 1.1–5.4%, respectively. The largest average 

root-mean square relative difference in all subjects considered was observed in the 

volumetric flow rate, followed by the pressure and the vessel lumen area.

3.2 Comparison of quantitative magnetic resonance flow measurements with predicted 
flow of full network simulations using method-1

Figure 4 shows area, flow and pressure trajectories (blue) with time at the middle of the 

vessel length for sample vessels for subject I. The results were compared with in vivo blood 

flow measurements (red). Visual inspection showed that there was reasonable quantitative 

and qualitative agreement between simulated and measured flows. Table 3 summarizes the 

differences between flow measurements and flow simulations with elastic vessels for three 

subjects. The value range of the root-mean square relative difference for the volumetric flow 

rate for subjects I, II and IV were 2.7–5.5%, 1.5–5.7% and 2.8–7.6%, respectively. The 

average root-mean-square relative difference for all vessels in each subject was found to be 

less than 3.6%, which falls within experimental error bounds of the MR flow measurements.

3.3 Wall mechanics and full network visualization

Parametric variations in fluid and wall properties were considered next. Uncertainty in 

diameter information was explored. For a set pressure drop, a 1% increase in diameter 

caused the flow to increase by 4% (data not shown). An increase in the fluid viscosity 

resulted in a larger decrease in the time-averaged area and pressure drop along the axial 

length of each vessel as expected. Making the vessel walls more rigid by increasing Ḡ, 

reduced the amplitude of the area deformations, but maintained its principal waveform. The 

specific waveform of the area, flow and pressure followed the waveform set at the terminal 

nodes underscoring the significance of boundary choices. Figure 5 shows the diameter, flow 

and pressure distribution at the end of diastole and how it varies across various time points in 

a cardiac cycle for subjects I and IV using an elastic wall model. Peak diameters, flows and 

pressures are observed at around 40% of a cardiac cycle. Figure 6 summarizes the area, flow 

and pressure distribution for elastic and viscoelastic wall models. The linear elastic wall 

model exhibits no phase difference between the area and the pressure distribution leading to 

a straight line in the pressure-area plot. The introduction of the wall damping term 

introduces a phase shift between the area and the pressure trajectories, leading to the 

hysteresis loop observed in the pressure-area plots, which is proportional to dissipated work 

by the vascular wall. The phase difference increases and the peak pressure amplitudes 

decreases with more dissipative wall damping. Table 4 summarizes the differences between 

flow measurements and flow simulations with viscoelastic vessel wall properties (Γ = 0.1G)
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for three subjects. The average root-mean-square relative difference for all vessels in each 

subject was found to be less than 3.1%, which is slightly better than the linear elastic case.

Table 5 shows the total baseline volume of the cerebral arterial trees and maximum volume 

expansion and contraction. Absolute values and percentages of baseline are listed for 

different elastic and viscoelastic (Γ = 0.1G) wall models. In general, peak volume expansion 

was found to be greater than the peak contraction. The subject-averaged stroke volume 

displacement was found to be 1.6% and 1.1% of the baseline volume for the elastic and 

viscoelastic wall model, respectively. Simulations for the entire visible portion of the 

cerebral arterial network showed stroke volumes of up to 0.047–0.154 ml for the elastic wall 

model (and 0.030–0.101 ml for the viscoelastic wall model). The total volumetric strain was 

equal to approximately 0.9–2.3% for the elastic wall model (and 0.6–1.8% for the 

viscoelastic wall model). Quantification of the total vasculature volume and its periodic 

expansion is relevant for explaining CSF motion in the spinal and cranial subarachnoid 

spaces.

4 Discussion

This study introduced an efficient full space-time discretization (FSTD) method for 

predicting subject-specific blood flow for large portions of the arterial circulation 

(method-1). The new FSTD algorithm was also validated against a previously developed 

spectral method with explicit time integration (method-2). Predicted flow, area and pressure 

obtained from methods-1 and 2 showed some quantitative differences. The largest average 

root-mean-square relative difference occurred in volumetric flow rate, followed by the 

pressure and the vessel lumen area. This finding, which agrees with observations of a 

previous comparative study (Boileau, et al., 2015), we believe to be due to the flow 

resistance sensitivity, which is inversely proportional to the square of the vessel lumen area, 

thus magnifying its effects. A further cause for the deviations is attributable to the use of 

linearized equations in method-1, as well as the effect caused by the penalty term necessary 

for boundary assignments in method-2.

Comparison between the simulated flow using FSTD and the quantitative magnetic 

resonance flow measurements showed reasonable quantitative and qualitative agreement. For 

simulations with elastic wall properties, the average root-mean-square relative difference 

was found to be less than 3.6% for all subjects. The introduction of the viscoelastic term 

slightly improved the average root-mean-square relative difference (by around 0.5%) in all 

six cases. These differences were within previously reported differences between the spectral 

Galerkin with explicit time integration (method-2) and experiments, which were 4% for 

pressure and 19% for the volumetric flow rate (Matthys, et al., 2007). These observed 

deviations also need to be assessed with respect to experimental uncertainties. For example, 

quantitative flow measurements performed on phantom models have reported inaccuracies 

of 5–10% (Zhao, et al., 2000). Reported in vivo quantitative MR flow measurements errors 

were up to 27% (Hofman, et al., 1995). Moreover, considerable uncertainties pertain to the 

elastic and viscoelastic wall properties. Few data are available for arteries of different wall 

thickness and diameters that have been determined in vivo for human (Valdez-Jasso, et al., 

2011). Therefore, observed differences between simulations with FSTD method-1 and 
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method-2 or method-1 and in vivo experiments seem reasonable given the significant 

uncertainties in flow quantification, anatomical centerline and diameter information and 

biomechanical properties (for example wall thickness, Young’s modulus and viscous 

coefficients).

A change in the viscoelastic term led to a phase shift between area and pressure peaks. 

Previous studies have shown that the inclusion of the viscoelastic in the biomechanics of 

vessel walls improved the ability to predict realistic blood pressure and area dynamics 

(Steele, et al., 2011; Alastruey, et al., 2012; Alastruey, et al., 2011). We demonstrated that 

the wall viscosity term can be introduced into method-1 at little extra effort and marginally 

higher computational cost.

Subject-specific cerebral arterial network simulations allowed the computation of the total 

volume displacement, which is of great interest for explaining oscillatory CSF motion in the 

cranial and spinal subarachnoid space. One hypothesis attributes pulsatile CSF motion to 

periodic expansion and contractions of the cerebral vasculature during the cardiac cycle 

(Enzmann & Pelc, 1993). The CSF stroke volume in the cervical region was previously 

found to be around 0.5–2 ml (Tangen, et al., 2017; Tangen, et al., 2015). Here, the total 

peak-to-peak volumetric expansion of the cerebral arterial network amounted to merely 

0.154 ml (with the linear elastic model). These predictions seem to suggest that arterial 

expansion only accounts for a minor portion of the observed CSF displacement in the 

cervical region (with a stroke volume 1–2 ml per heart beat). More analysis is required to 

correlate vascular expansion to induced CSF motion.

The computational cost to perform the FSTD simulations for the circle of Willis and its 

immediate branches was around 10 seconds, and took only 70 seconds for full arterial 

networks with about 100 segments. On average, the computational time for the FSTD with 

method-1 was less than 1% of the cost for a single cardiac cycle in method-2. Considering 

that it may take up to one period for method-2 to reach a stable cycle, the computational 

time savings would be even higher. The computational cost depends on the number of 

collocation nodes and harmonic terms considered. The area, flow and pressure distributions 

with changing number of collocation nodes (results not shown) showed that the number of 

nodes chosen was sufficient to accurately predict the blood flow distributions.

The main computational advantage stems from the use of Fourier series which enable 

dynamic flow computations by solving linear algebraic sub-problems for each harmonic 

separately. The required number of harmonics in the simulations should be set equal to the 

highest coefficient count needed to perform discrete Fourier transforms of blood flow 

measurements. Fortunately, each harmonic can be separated, such that the additional 

frequencies only affect the number of linear algebraic sub-problems. Moreover, FSTD time 

integration requires no time step control.

The proposed FSTD is also suited for use inside an inversion method than can infer 

unknown boundary conditions from incomplete and noisy in vivo blood flow measurements 

at the main arteries of the circle of Willis and branching vessels (interior boundary 

conditions). The computational efficiency opens the possibility of using FSTD to solve 
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fluid-structure interaction problems for the entire arterial circulation. Its efficiency may be 

critical in applications where simulation results are needed in real time.

Several assumptions were made in this study; linearization of the equations for simulating 

dynamic blood flow in distensible vessels allowed global time discretization in the frequency 

domain. Blood was assumed to be an incompressible Newtonian fluid, which is generally 

valid for the size of the vessels considered. All MR flow measurement data were 

synchronized to ensure that inlet flow data (at the basilar and internal carotid arteries) had no 

phase differences. Moreover, total inlet and outlet flow of in vivo MR measurements did not 

balance. This discrepancy is expected because the imaging modality does not detect smaller 

branching arteries. To compensate for flows through undetected blood vessels, simulations 

were performed based on mass-balance corrected fluxes such that the volumetric flow rate 

values at the three inlet vessels matched the total outflows.

More than fifty dynamic blood flow wave forms acquired over large portions of the cerebral 

arterial networks in six human subjects were used to validate subject-specific blood flow 

simulations. Since the emphasis was on validating predictions for a specific subject, 

increasing the experimental cohort would not strengthen the predictive power for an 

individual simulation run. We acknowledge that more subjects would consolidate confidence 

in the routine use of the method, but not improve subject specificity. Thus, the data for six 

volunteers was deemed reasonable.

5 Conclusions

The computational cost to perform the FSTD simulations was about one hundred times 

faster than the rigorous spectral method with multistep time integration. Low computation 

time might be useful for solving multi-scale networks comprising of arterial and 

microvascular networks. Large-scale computations performed over massive brain-wide 

networks including the microcirculation (Park & Payne, 2013; Gould & Linninger, 2015; 

Gould, et al., 2017) would provide insight to organ-wide blood flow dynamics and 

regulation. Efficient computational methods are necessary for simulation of the whole 

cerebral circulation (Hartung, et al., 2018), which couple arterial networks with 

microcirculation and venous drainage.
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Figure 1. 
A sample representation of the cerebral arterial network for subject I (left). One-dimensional 

discretization of vascular segments (splines) using M collocation nodes for the Lagrange 

polynomials (middle). The full space-time discretization grid for the FSTD method with N 
Fourier coefficients (right).
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Figure 2. 
Hemodynamic prediction for interior and boundary segments with method-1 and method-2. 

Area, flow and pressure trajectories at the middle section of the vessel length (x = L/2) for 

the main vessels located in or branching from the circle of Willis for subject I. The blue and 

red lines represent methods-1 and 2, respectively. Note that some segments show modulation 

of the periodic waveform with method-2. The bottom row, show trajectories at inflow and 

outflow boundary nodes that were used for methods-1 and 2. Flow inlet and pressure outlet 

assignments were identical, but the implementation of method-2 requires conversion of 

pressures to area information, and it also enforces boundary conditions at phantom nodes 

(not shown). These implementation differences explain the observed deviations at the 

physical inlet and outlet nodes.
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Figure 3. 
Comparison of blood blow simulation results with method-1 and method-2. Area, A, flow, 

Q, and pressure, p, trajectories at the middle section of the vessel length (x = L/2) for the 

main vessels located in or branching from the circle of Willis for subject II. The blue and red 

lines represent methods-1 and 2 respectively. Modulation of the periodic waveform occur in 

method-2 simulations, probably due to reflections at the boundaries.
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Figure 4. 
In vivo blood flow measurements in comparison to FSTD (method-1) simulation results. 

Two sample images of subject-specific cerebral arterial trees considered in this study and 

comparison of simulated versus measured volumetric blood flow rates. The simulation 

(blue) and the in vivo blood flow measurement (red) at the different locations.
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Figure 5. 
Simulated hemodynamics in distensible blood vessels for human subjects I and IV for one 

cardiac cycle. The first row, for each subject, shows the diameter, flow and pressure 

distribution at the end of diastole with an elastic wall model. The second and third row 

shows the change in flow and pressure distribution, respectively, in each vessel from its 

respective baseline value at the different time points within a cardiac cycle represents the 

cardiac period.
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Figure 6. 
Area, flow and pressure trajectories with time at the left and right ACA, MCA and PCA with 

varying wall viscoelastic properties for subject I. The viscoelastic wall parameter value was 

set at 2.5%, 5% and 10% of the wall elastic stiffness. Three cerebral arterial networks are 

also shown with the location of the vessels and snapshot of the flow and pressure 

distribution at 40% cardiac cycle for with viscoelastic wall properties (Γ = 0.1G).

Park et al. Page 20

J Biomech. Author manuscript; available in PMC 2020 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Park et al. Page 21

Table 1.

Model parameters considered for the simulations.

Property Value Units Reference

Blood

 Density, ρ 1055 kg m−3 Ghaffari et al., 2018

 Dynamic viscosity, μ 4.0 mPa s Pedley 1980

 Velocity profile order, ζ 2 -

 Momentum correction factor, α 4/3 -

Wall biomechanics

 Empirical coefficient, k1 2.0 MPa Olufsen 1999

 Empirical coefficient, k2 −2253 m−1 Olufsen 1999

 Empirical coefficient, k3 86.5 kPa Olufsen 1999

 Ratio of damping term, Γ, to elasticity term, G 10 % Valdez-Jasso et al., 2011
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Table 2.

Average root-mean-square relative deviation (in per cent) of method-1 with respect to method-2 and the mesh 

information for the circle of Willis considered for the simulations. Simulation results were compared at the 

midpoint of each vessel.

Subject εA
RMS εQ

RMS εp
RMS

# of splines # of nodes
Simulation time (s)

Method 1 Method 2

I 0.13 3.4 2.2 14 94 9.8 842

II 0.31 4.2 5.6 16 104 10.4 1314

III 0.10 3.9 1.1 14 94 8.4 820

IV 0.18 4.6 3.1 12 92 8.5 899

V 0.14 2.3 1.1 13 93 8.2 1000

VI 0.20 3.6 1.7 10 72 6.8 639
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Table 3.

Relative differences (in per cent) with respect to clinical measurements for elastic wall mechanics. Simulation 

values were taken at the midpoint of each vessel.

Vessel

Subject I Subject II Subject IV

εQ
RMS εQ

MAX εQ
RMS εQ

MAX εQ
RMS εQ

MAX

LACA 5.5 10.5 2.9 6.7 7.6 13.9

RACA 2.7 4.1 5.7 9.2 6.2 10.0

LMCA 3.1 5.2 1.5 2.5 2.7 4.3

RMCA 3.4 6.5 2.8 6.9 2.8 6.0

LPCA 5.0 9.9 4.5 7.7 3.2 7.2

RPCA 4.7 9.3 2.3 4.2 3.7 6.6
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Table 4.

Relative differences (in per cent) with respect to clinical measurements for viscoelastic wall mechanics 

(Γ = 0.1G). Simulation values were taken at the midpoint of each vessel.

Vessel

Subject I Subject II Subject IV

εQ
RMS εQ

MAX εQ
RMS εQ

MAX εQ
RMS εQ

MAX

LACA 5.6 9.9 2.7 6.2 7.5 13.6

RACA 2.8 3.9 5.7 9.2 5.5 9.1

LMCA 3.4 5.4 1.2 2.3 2.0 3.6

RMCA 3.5 6.6 3.2 6.8 2.0 4.6

LPCA 5.0 10.1 4.2 6.8 3.2 7.7

RPCA 5.1 9.0 2.4 4.6 3.7 7.0
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Table 5.

Total baseline volume and the maximum volume expansion and contraction in the cerebral arterial tree with 

elastic and viscoelastic (Γ = 0.1G) wall models.

Subject Baseline volume (ml)
Elastic wall Viscoelastic wall

ΔV+ ΔV− ΔV ΔV+ ΔV− ΔV

I 5.0 0.038 −0.010 0.047 0.026 −0.004 0.030

II 4.5 0.050 −0.054 0.104 0.037 −0.044 0.081

III 6.4 0.036 −0.028 0.064 0.022 −0.019 0.041

IV 6.9 0.073 −0.064 0.137 0.052 −0.050 0.101

V 10.6 0.077 −0.039 0.115 0.050 −0.027 0.077

VI 6.9 0.103 −0.050 0.154 0.054 −0.033 0.087
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