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Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder of the central nervous system with a 

clinically heterogeneous presentation that includes progressive loss of dopaminergic (DA) neurons 

in the substantia nigra. A minority of PD cases are familial and are caused by mutations in single 

genes. Most cases, however, are idiopathic PD, a complex multifactorial disorder with 

environmental and genetic contributors to etiology. Here, we first briefly summarize published 

evidence that among environmental contributors is dietary deficiency of magnesium. We then 

review genetic data suggesting that mutations in genes encoding two proteins contributing to 

cellular magnesium homeostasis confer risk for PD or other Parkinsonian conditions. First, the 

gene encoding magnesium transporter SLC41A1 is, among others, a candidate for the causative 

gene in the PARK16 locus where variation is associated with risk for idiopathic Parkinsonian 

disease. Studies of the function of SLC41A1 in animal models are needed to test whether this 

protein has a role in maintenance of dopaminergic neurons. Second, in a small study, a 

hypomorphic variant of TRPM7, a magnesium-permeable channel, was over-represented in cases 

of amyotrophic lateral sclerosis/ Parkinson dementia complex versus controls from the same 

ethnic group. Although this association was not detected in a second study, in zebrafish Trpm7 is 

necessary for terminal differentiation and reduction of toxin-sensitivity in dopaminergic neurons. 

Overall, epidemiological results support the possibility that mutations in genes relevant to 

magnesium homeostasis would alter PD risk, but deeper genetic analyses of PD patients are 

necessary to confirm whether SLC41A1 and TRPM7 are among such genes.

Magnesium levels are lower than normal in brains of PD patients and 

animal models of PD

Several studies have used spectroscopic methods to measure magnesium levels in 

postmortem brain tissue from PD patients, or in serum and CSF of living patients (Table 1). 

In one, using inductively coupled plasma atomic emission spectrometry, magnesium levels 

were found to be lower in the cortex, white matter, basal ganglia, and brainstem of PD brains 

in comparison to control brains1. In another, phosphorus magnetic resonance spectroscopy 
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showed that average cytosolic free magnesium was lower in the occipital lobes of 13 PD 

patients than in those of 16 healthy age-matched controls2. Atomic absorption and atomic 

emission spectroscopy was applied to four brain regions from 9 PD patients and 12 controls; 

lower concentrations of magnesium were present specifically in the caudate nucleus of 

Parkinsonian brains3. A further study found that magnesium levels in the CSF correlated 

inversely with duration and severity of PD, whereas levels of magnesium in the blood of PD 

patients were slightly higher than normal4. The authors noted that blood magnesium levels 

may be more sensitive to short term variation affected by diet than the levels in the CSF. 

However, in two other studies of similar scale magnesium levels were not significantly lower 

in the CSF5 or brain tissue6 of PD patients versus controls, consistent with variable 

pathogenic mechanisms among cases of PD.

Deficiencies of dietary magnesium have also been noted in patients with PD. A case-control 

study in Japan found that higher iron, magnesium, and zinc intake was associated with 

reduced risk of PD and that the inverse association remained after adjustment for intake of 

other elements7. Another found that lower intake of protein, folate, magnesium, and 

phosphorus was associated with lower olfactory acuity – an early symptom of both PD and 

Alzheimer’s – in both PD patients and controls8. Amyotrophic lateral sclerosis/Parkinsonian 

dementia complex (ALS/PDC), observed at high incidence among the Chamorro population 

on Guam especially in the 1950s, has been attributed to nutritional deficiencies in calcium 

and magnesium9. In the Kii Peninsula of Japan, as on Guam, an increased risk for ALS/PDC 

was associated with significantly lower levels of manganese in food and magnesium in 

drinking water10. Moreover, declining incidence of the disease in Guam coincided with a 

shift towards a more Western diet richer in magnesium and calcium11. However, despite the 

correlation of low dietary magnesium and risk for ALS/PDC, a study in 1995 did not detect 

significantly different levels of free magnesium in urine and blood of 12 ALS/PDC patients 

and 12 Chamorro controls12. We conclude that the etiology of most Parkinsonian disorders 

is complex, and nutritional deficiency may contribute to it in some cases.

Several animal- and cell-based experiments support a neuroprotective effect of magnesium. 

Rats treated with 6-hydroxydopamine (a common PD animal model) had lower levels of 

magnesium and other elements compared to control13. Rats that were fed a low magnesium 

diet continuously for one year (including during the prenatal period) displayed a marked 

reduction in both levels of serum magnesium and numbers of dopaminergic neurons of the 

substantia nigra at one year of age14. In another study, mice fed a low magnesium diet for 

six weeks developed catalepsy and had a reduction in the amount of tyrosine hydroxylase-

positive neurons in the substantia nigra compared to controls15.

The link between reduced magnesium levels and elevated risk for PD may be oxidative 

stress, a long-suspected culprit PD-related neurodegeneration (recently reviewed16). Low 

magnesium levels have been linked to oxidative stress in traumatic brain injury17. 

Magnesium supplementation in a canine model of cardiac infarction lowered ascorbate free 

radical levels18. The dopaminergic toxin MPTP specifically inhibits complex I of the 

electron transfer chain and greatly increases the production of free radicals19. Work from the 

Oka group showed that a reduction in magnesium levels elevates ROS and sensitizes PC12 

cells to MPTP20, and that overexpression of the magnesium transporter SLC41A2 can 
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protect against MPTP-induced death21. In summary, results from epidemiology, animal 

studies, and cell lines all implicate magnesium as a contributing factor in at least some forms 

of Parkinsonism.

Mutations in genes encoding proteins involved in magnesium homeostasis

Given the evidence connecting lower-than-normal magnesium levels to elevated risk for PD, 

it might be expected that mutations in genes encoding regulators of magnesium homeostasis 

would predispose individuals to PD. The levels of intracellular and extracellular free 

magnesium are nearly identical (roughly 0.5–1.2 mM)22, although levels of total 

cytoplasmic magnesium are considerably higher than those of free magnesium (around 5 

mM), with the majority complexed with ATP22. Although numerous ion channels and 

transporters have been implicated in control of magnesium homeostasis in eukaryotic cells, 

including TRPM7, MAGT1, CNNM2, SLC41 paralogs, ACDP paralogs, NIPA paralogs, 

and HIP14 paralogs23, to our knowledge, only two are implicated in inherited risk for any 

parkinsonian disorder, i.e., SLC41A1 and TRPM7.

SLC41A1

The PARK16 locus was initially identified in a pair of GWAS of PD disease patients of 

European and Japanese descent24,25. This locus harbors 6 genes, three of which – NUCKS1, 
SLC41A1, and RAB7L1 – are considered candidates for the causative gene. SLC41A1 
encodes a protein distantly related to the bacterial MgtE magnesium transporters26. Because 

of the connections between magnesium homeostasis and PD risk, SLC41A1 is good 

candidate for the causative gene. Supporting SLC41A1 as the causative gene, a SNP within 

SLC41A1 (rs11230569) was associated with a lower risk of PD in independent studies of 

Iranian and Chinese cohorts27,28. Interestingly, although this SNP is synonymous, the GTex 

study of expression quantitative trait loci (eQTL) shows that it is associated with altered 

expression of SLC41A1 (but not of RAB7L1 or NUCKS1) in several tissues29. The 

SLC41A1 coding variant p.A350V was identified in one of a cohort of 454 PD cases, but 

absent in 483 controls30. It is also missing among 60,706 individuals in the ExAc database, 

strengthening the case that SLC41A1 is the causative gene in the PARK16 locus31. Patch 

clamp recordings of HEK293 cells forced to express SLC41A1 A350V indicated that this 

variant is over-active, resulting in a reduction of cellular magnesium levels32. In a separate 

study, a variant in SLC41A1 (R244H) was identified in one case of early onset PD, but not 

in 479 PD patients with age of onset over 50 or in 525 normal controls33 (a frequency of less 

than 1 in 10,000 alleles currently represented in the ExAc study31). When this variant was 

cloned and expressed in HEK293-derived cells, it was still able to correctly localize to the 

plasma membrane but was less effective at magnesium efflux than the wildtype protein33. A 

final study found one noncoding and two coding variants in SLC41A1, but not in RAB7L1, 

that were found amongst 205 PD patients yet not in 210 controls34.

Nonetheless, it is by no means certain that SLC41A1 is the causative gene in PARK16. For 

instance, RAB7L1 encodes a protein that can bind and alter the activity of the strongly-PD 

associated LRKK2 protein35. Moreover, the GTex study found that, in contrast to some other 

SNPs in PARK17, rs947211 (associated with PD in GWAS of both European and Asian 
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populations36) is an eQTL for RAB7L1 and NUCKS1 in many tissues, and for SLC41A1 in 

just one29. It has been discussed that there may be more than one pathogenic gene in this 

locus30. Animal model studies of SLC41A1 function in vivo – for instance in mouse or 

zebrafish mutants or in cell line models of dopaminergic neurons – would help to assess the 

likelihood that SLC41A1 is indeed a causative gene for PD.

TRPM7

Transient receptor potential melastatin-like 7 (TRPM7) encodes an ion channel with a C-

terminal kinase domain. The channel is permeable to magnesium, calcium, zinc, and other 

trace metals. Channel activity is inhibited by intracellular magnesium, and is stimulated by 

PIP2 and perhaps by stretch (reviewed in 37). Early studies in tissue culture showed that 

TRPM7 is essential for cell proliferation and viability38,39. Cells depleted of TRPM7 had 

lower-than-normal levels of intracellular magnesium, and supplementation of the culture 

media with magnesium rescued cell growth and viability38, indicating that TRPM7 regulates 

cellular magnesium homeostasis. Later loss-of-function studies, through targeted mutation 

or morpholinomediated knockdown, reveal that TRPM7 is essential for morphogenesis of 

mice and frogs40,41. Overexpression of SLC41A2, a magnesium transporter closely related 

to SLC41A1 discussed above, rescued morphogenesis in frog embryos depleted of TRPM7, 

indicating that the essential function of TRPM7 during morphogenesis is also regulation of 

cellular magnesium homeostasis41. Tissue specific knockout in mice reveals that TRPM7 is 

also necessary for differentiation of thymocytes40, sensory neurons, melanocytes, and 

potentially other cell types42. Interestingly, cellular magnesium homeostasis was not grossly 

perturbed in thymocytes or T-lymphocytes lacking TRPM740. Because TRPM7 is permeable 

to ions other than magnesium, and because it has a kinase domain that can be cleaved and 

migrate to the nucleus43 the role of TRPM7 in some developmental or physiological 

contexts may be independent of its function as a magnesium channel. For instance, studies in 

cultured neurons and rats indicate that excessive flow of calcium and possibly zinc through 

TRPM7 is toxic to neurons44,45. In summary, TRPM7 is a combined channel and kinase that 

is necessary for cell migration, proliferation, survival, and differentiation, but which also 

mediates a toxic influx of divalent cations in certain physiologic conditions.

A missense variant of TRPM7, T1482I, was reported to be present in 5 of 22 Guamanian 

ALS/PDC patients and absent from 23 age-matched controls from the same ethnic group, 

i.e., the indigenous Chamorros46. The TRPM7 T1482I variant was shown to have a lower 

peak current and to be more sensitive to inhibition by intracellular magnesium than the 

reference variant46. However, a separate study on a similar scale (25 patients and 27 age-

matched regional controls) in the Kii peninsula, where this disease is also prevalent, detected 

no association between the disease and the mutation causing the T1482I variant47. 

Moreover, in the ExAc study, this variant represented 8.7% of TRPM7 alleles sequenced, 

and many homozygotes were detected31. Importantly, the frequency of the T1482I variant 

among the Chamorros and among individuals in the Kii peninsula is unknown. Nonetheless, 

the genetic evidence that this predisposes people to Parkinsonian conditions, except perhaps 

in conditions of low dietary magnesium, is weak.
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In this context it is interesting that the phenotype of zebrafish trpm7 loss-of-function 

mutants, identified in several chemical mutagenesis screens, support a role for TRPM7 in the 

differentiation, and possibly survival, of dopaminergic neurons. Unlike mouse and Xenopus 

embryos deficient in TRPM7, zebrafish trpm7 mutants undergo early morphogenesis 

normally48,49. However, at 5 days post fertilization, loss-of-function mutants exhibit 

significantly less spontaneous swimming than their wildtype and heterozygous siblings50. 

Motility is elevated by application of L-DOPA (a dopamine precursor), implicating a 

dysfunctional DA system50. Indeed, histology revealed that whereas the number of 

precursors expressing Dopamine transporter (dat) is normal in trpm7 mutants, only about 

half of the normal number of TH-positive neurons are present in mutants50. These results 

indicate that in zebrafish Trpm7 is necessary for terminal differentiation of at least a subset 

of dopaminergic neurons. In addition, residual TH-positive neurons in trpm7 mutant 

zebrafish larvae are hypersensitive to the toxic effects of MPTP and MPP+ 50, consistent 

with the possibility that Trpm7 is necessary for the maintenance of dopaminergic neurons, 

not just their differentiation. Supporting this possibility, overexpression of a channel dead 

variant of TRPM7 in SHSY5Y cells – which are dopaminergic – blocks proliferation and 

survival50.

Outstanding questions for future research

Ever increasing sample sizes and sequencing depth of PD patients and controls – including 

whole genome sequences – will yield increasing power and resolution of genetic studies, 

strengthening or weakening the case for SLC41A1, TRPM7, and potentially other 

magnesium transporters and channels as causative genes for PD. Meanwhile, efforts to 

illuminate the roles of SLC41A1 and TRPM7 in the development, function, and 

maintenance of dopaminergic neurons will benefit from studies in cell lines and in animal 

models, including zebrafish. Cell lines are more tractable than in vivo models for physiology 

and some pharmacology experiments. However, animal models offer the ability to study 

dopaminergic neurons in their normal context; for studies of Trpm7 in vivo, the zebrafish 

mutant is particularly useful as the mouse mutant is embryonic lethal. Future studies in 

animal models may answer questions including: Why are dopaminergic neurons 

compromised to a greater degree than other cell types by a given variant of SLC41A1 or 

TRPM7? Do both loss and gain-of-function variants of SLC41A1 disrupt the dopaminergic 

system, as indicated by human genetic studies? What is the connection between TRPM7 

function, magnesium homeostasis, and the physiology and development of dopamine 

neurons? In this context, does TRPM7’s kinase domain contribute, beyond modulating the 

sensitivity of the channel to inhibition by internal magnesium37? TRPM7 may contribute to 

maintaining ion homeostasis in intracellular vesicles, including synaptic vesicles 51, and 

defects in vesicle trafficking are proposed to play a major role in PD 52. Another possibility 

is that, by maintaining correct magnesium levels, Trpm7 protects against buildup of ROS, 

particularly in the context of the oxidative chemistry of dopamine synthesis20. And finally, 

in which cell type is SLC41A1 (or TRPM7) required to maintain healthy dopaminergic 

neurons?
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Conclusion

To date there is little evidence that sequence variants near genes encoding magnesium 

transporters contribute a large portion of heritable risk for idiopathic PD, although they may 

contribute a measure of such risk. By contrast the evidence that magnesium homeostasis is 

relevant to the survival and function of dopaminergic neurons is relatively strong. Therefore, 

regulatory pathways governing magnesium homeostasis are worth investigating as 

therapeutic targets for PD.
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Abbreviations

PD Parkinson’s Disease

CSF cerebrospinal fluid

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MPP+ 1-methyl-4-phenylpyridinium

DA dopaminergic

ALS/PDC Amyotrophic lateral sclerosis/Parkinsonian dementia complex
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