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Abstract

Neural networks promise to bring robust, quantitative analysis to medical fields. However, their 

adoption is limited by the technicalities of training these networks and the required volume and 

quality of human-generated annotations. To address this gap in the field of pathology, we have 

created an intuitive interface for data annotation and the display of neural network predictions 

within a commonly used digital pathology whole-slide viewer. This strategy used a ‘human-in-the-

loop’ to reduce the annotation burden. We demonstrate that segmentation of human and mouse 

renal micro compartments is repeatedly improved when humans interact with automatically 

generated annotations throughout the training process. Finally, to show the adaptability of this 

technique to other medical imaging fields, we demonstrate its ability to iteratively segment human 

prostate glands from radiology imaging data.
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In the current era of artificial intelligence, robust automated image analysis is attained using 

supervised machine-learning algorithms. This approach has been gaining considerable 

ground in virtually every domain of data analysis, mainly since the advent of neural 

networks1–4. Neural networks are a broad range of graphical models, whose nodes are 

variably activated by a nonlinear operation on the sum of their inputs3,5. The connections 

between nodes are modulated by weights, which are adjusted to alter the contribution of that 

node to the network output. These weights are iteratively tuned via backpropagation so that 

the input of data leads to a desired output (usually a classification of the data)6. Particularly 

useful for image analysis are convolutional neural networks (CNNs)2,3, a specialized subset 

of neural networks. CNNs leverage convolutional filters to learn spatially invariant 

representations of image regions specific to the desired image classification. This allows 

high-dimensional filtering operations to be learned automatically, a task that has traditionally 

been performed through hand-engineering. The potential of neural networks exceeds that of 

other machine-learning techniques7, but they are problematic in certain applications. 

Namely, they require significant amounts of annotated data to provide generalized high 

performance.

Easing the burden of data annotation is arguably as important as generating state-of-the-art 

network architectures, which without sufficient data are unusable8,9. Many large-scale 

modern machine-learning applications are based on cleverly designed crowd-sourced active-

learning pipelines. In an era of constant firmware updates, this advancement comes in the 

form of human-in-the-loop training10–12. Initiated by low classification probabilities, 

machine-learning applications, such as automated teller machine character recognition, self-

driving cars and Facebook’s automatic tagging, all rely on user-refined training sets for fine-

tuning neural network applications post deployment3. These ‘active learning’ techniques 

require users to ‘correct’ the predictions of a network, identifying gaps in network 

performance13.

Although computational strategies for image analysis are increasingly being translated to 

biological research, the application of neural networks to biological datasets has lagged their 

implementation in computer science14,15. This late adoption of CNN-based methods is 

largely due to the lack of centrally curated and annotated biological training sets16. Due to 

the specialized nature of medical datasets, the expert annotation needed to generate training 

sets is less feasible than for traditional datasets17. This issue creates challenges when trying 

to apply CNNs to medical imaging databases, where domain-expert knowledge is required 

to perform image annotation. This annotation is expensive, time-consuming and labour-

intensive, and there are no technical media that enable easy transference of this information 

from clinical practice to training sets18.

Despite the challenges, using neural networks to segment and classify tissue slides can aid 

clinical diagnosis and help create improved diagnostic guidelines based on quantitative 

computational metrics. Moreover, neural networks can generate searchable data 

repositories19, providing practicing clinicians and students access to previously unavailable 

collections of domain knowledge20–22, such as labelled images and associated clinical 

outcomes. Achieving such access on a large scale will require a combination of curated 

pathological datasets, machine-learning classifiers3, automatic anomaly detection23,24 and 

Lutnick et al. Page 2

Nat Mach Intell. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efficiently searchable data hierarchies21. Finally, pipelines will be needed for creating easily 

viewable annotations on pathology images. Towards this aim, we have developed an iterative 

interface between the successful semantic segmentation network DeepLab v225 and the 

widely used whole-slide image (WSI) viewing software Aperio ImageScope26, which we 

have termed Human AI Loop (H-AI-L) (Fig. 1). Put simply, the algorithm converts 

annotated regions stored in XML format (provided in ImageScope) into image region masks. 

These masks are used to train the semantic segmentation network, whose predictions are 

converted back to XML format for display in ImageScope. This graphical display of the 

network output is an ideal visualization tool for making segmentation predictions on WSIs. 

It allows the entire tissue slide to be viewed, with panning and zooming, and it uses the 

efficient JPG2000 decompression27 of WSI files provided by ImageScope. Note that while 

the current code works only in ImageScope, the proposed system can easily be adapted for 

other WSI viewers, such as the universal viewer Pathcore Sedeen28, as well as ImageJ. Note 

also that ImageScope and the DeepLab architecture are not currently approved for diagnostic 

procedures. Therefore, for any potential application of our system in a clinical workflow, our 

pipeline needs to be adopted using annotation and machine-learning tools that are currently 

approved for clinical diagnosis.

Using this open-sourced pipeline, a supervising domain expert can correct the network 

predictions (deleting false positives and annotating false-negative regions) before initiating 

further training using the newly annotated data. Thus, networks can be trained either ‘on 

demand’ or as the data become available. Using H-AI-L, we are able to significantly reduce 

the annotation effort required to learn robust segmentations of large microscopy images28. 

Adapting this technique to other modes of medical imaging is highly feasible, which we 

demonstrate using magnetic resonance imaging (MRI) data.

Results

To evaluate the utility of H-AI-L, we first quantified its performance and efficiency in 

segmenting histologic sections of kidney tissue, beginning with glomerular localization in 

mouse kidney WSIs4,29–32. This glomeruli segmentation network was trained for five 

iterations, using a combination of periodic acid–Schiff (PAS) and haematoxylin and eosin 

(H&E)-stained murine renal sections. For more data variation, streptozotocin (STZ)-induced 

diabetic nephropathy33–36 murine data were included in iteration 4 (Table 1). To validate the 

performance of our network, we use four holdout WSIs, including one STZ-induced WSI.

During the training process, we observed approximately four- to tenfold increases in average 

glomerular annotation speed between the initial and end iterations (Fig. 2a). Compared to 

each annotator’s baseline speed, these increases represent time savings of 81.4, 82 and 

72.7% for annotators 1, 2 and 3, respectively. The prediction performance increase is shown 

in Fig. 2b, where the network reaches nearly perfect performance on a holdout dataset by 

annotation iteration 4. One side effect of using iterative annotation is intuitive qualification 

of network performance after each interaction. That is, an expert interacts with the network 

predictions after each training round, visualizing network biases and shortcomings on 

holdout data. Two examples of evolving network predictions are highlighted in 

Supplementary Video 1.
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To improve network prediction efficiency, we designed a two-stage segmentation approach. 

This uses two segmentation networks, first identifying hotspot regions at 1/16th scale and 

then segmenting them at the highest resolution. This approach (which we call multi-pass 

segmentation) provides a better F-measure (F1 score)37,38 (Fig. 2b) than a full-resolution 

pass, as well as approximately 4.5-times faster predictions (Fig. 2c). An overview of this 

method can be found in Supplementary Fig. 1.

Quantification of the performance achieved by our method in WSIs is a challenge due to the 

imbalance between class distributions39. Therefore, we choose to report the F-measure, 

which considers both precision and recall (sensitivity) simultaneously37, as specificity and 

accuracy are always high because the negative region is large with respect to the positive 

class. This choice of using the F-measure is particularly important considering the 

performance characteristics of multi-pass segmentation. During testing we found that the 

multi-pass approach trades segmentation sensitivity for increased precision, while 

outperforming full analysis overall, with an improved F1 score (Fig. 2). This result is due to 

a lower false-positive rate achieved by multi-pass segmentation as a result of the low-

resolution network pre-pass, which limits the amount of background region seen by the 

high-resolution network. Overall (on four holdout WSIs), our network achieved its best 

performance after the fifth iteration of training using multi-pass segmentation, with a 

sensitivity of 0.92 ± 0.02, specificity of 0.99 ± 0.001, precision of 0.93 ± 0.14 and accuracy 

of 0.99 ± 0.001.

Network performance analysis is further complicated by human annotation errors. We note 

several instances where network predictions outperformed human annotators, despite being 

trained using flawed annotations. This phenomenon is highlighted in Fig. 3, where 

glomerular regions annotated manually in iteration 0 are compared to the iteration 5 network 

predictions. Such errors are more prevalent in WSIs annotated in early iterations, where 

network predictions need the most correction.

To qualitatively prove the effectiveness and extendibility of our method, we show its 

extension to multi-class detection by segmenting glomerular nuclei types40,41 and interstitial 

fibrosis and tubular atrophy (IFTA)42,43, as well as by differentiating sclerotic and non-

sclerotic glomeruli44. This analysis is performed in mouse kidney and human renal biopsies. 

Figure 4 shows the glomeruli detection network from Fig. 2 adapted for nuclei detection. 

This study was carried out by retraining the high-resolution network using a set of 143 

glomeruli with labelled podocyte and non-podocyte nuclei, marked via immunofluorescence 

labelling. For this analysis, the low-resolution network from Fig. 2 was kept unchanged to 

identify the glomerular regions in the mouse WSI.

Due to the non-sparse nature of IFTA regions in some human WSIs, we forgo our multi-pass 

approach to generate the results shown in Fig. 5. The development of this IFTA network has 

been limited due to the biological expertise required to produce these multi-class 

annotations. However, preliminary segmentation results on holdout WSIs are promising, 

even though only 15 annotated biopsies were used for training (Fig. 5). We note that this is a 

small training set, as human biopsy WSIs contain much less tissue area than the mouse 

kidney sections used to train the glomerular segmentation network above.
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Finally, to show the adaptability of the H-AI-L pipeline to other medical imaging modalities, 

we quantify the use of our approach for the segmentation of human prostate glands from T2 

MRI data. These data were oriented and normalized as described in ref.45 and saved as a 

series of TIFF image files. These images can be opened in ImageScope and are compatible 

with our H-AI-L pipeline. This analysis was completed using a training set of data from 39 

patients, with an average of 32 slices per patient (512 × 512 pixels) (Fig. 6d); 509 of the total 

1,235 slices contained prostate regions of interest. Iterative training was completed by 

adding data from four new patients to the training set before each iteration. Data from the 

remaining seven patients were used as a holdout testing set (a full breakdown is available in 

Supplementary Table 1). The newly annotated/corrected training data were augmented ten 

times, and a full-resolution network was trained for two epochs during each iteration: the 

results of this training are presented in Fig. 6. While the network performs well after just one 

round of training, the performance on holdout patient data continues to improve with the 

addition of training data (Fig. 6a), achieving a sensitivity of 0.88 ± 0.04, specificity of 0.99 

± 0.001, precision of 0.9 ± 0.03 and accuracy of 0.99 ± 0.001. This trend is also loosely 

reflected in the network prediction on newly added training data, where an upward trend in 

prediction performance is observed in Fig. 6b. Notably, when our iterative training pipeline 

is applied to this dataset, annotation is reduced by approximately 90% percent after the 

second iteration; only 10% of the MRI slices containing prostate fall below our segmentation 

performance threshold (Fig. 6c). We note that careful conversion between the DICOM and 

TIFF format (considering orientation and colour scaling) is essential for this analysis.

Conclusions

We have developed an intuitive pipeline for segmenting structures from WSIs commonly 

used in pathology, a field where there is often a large disconnect between domain experts 

and engineers. To bridge this gap, we seek to provide pathologists with robust data analytics 

provided by state-of-the-art neural networks. We have developed an intuitive library for the 

adaptation of DeepLab v225 a semantic segmentation network, to WSI data commonly used 

in the field. This library uses annotation tools from the common WSI viewing software 

Aperio ImageScope26 to annotate and display network predictions. Training, prediction and 

validation of the network are performed via a single Python script with a command line 

interface, making data management as simple as dropping data into a pre-determined folder 

structure.

Our iterative, human-in-the-loop training allows considerably faster annotation of new WSIs 

(or similar imaging data), because network predictions can easily be corrected in 

ImageScope before incorporation into the training set. With this approach, network 

performance can be qualitatively assessed after each iteration. Newly added data act as a 

holdout validation set, where predictions are easily viewed during correction. The theoretical 

performance achievable by this method is bounded by the training set used, and is therefore 

the same as the current state-of-the-art (manual annotation of all training data). However, 

due to the increased speed of annotation and the intuitive visualization of network 

performance (allowing selection of poorly predicted new data after each iteration), H-AI-L 

training can converge to the upper bound of performance more efficiently than the traditional 

method. That is, H-AI-L achieves state-of-the-art segmentation performance much faster 
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than traditional methods, which are limited by data annotation speed (Fig. 7). Our H-AI-L 

approach offers an ideal viewing environment for network predictions on WSIs, using the 

fast pan and zoom functionality provided by ImageScope27, improving the accuracy and 

ease of expert annotation.

The ability to transfer parameters from a trained network (repurposing it for a different task) 

ensures that segmentation of tissue structure can be tailored to any clinical or research 

definition, including other biomedical imaging modalities. Our two-stage segmentation 

(multi-pass) analysis allows rapid prediction of sparse regions from large WSIs, without 

sacrificing accuracy due to low-resolution analysis alone. Inspired by the way pathologists 

scan tissue slides, multi-pass approaches have been successfully described in digital 

pathology for detecting cell nuclei46. We believe that this technique offers the perfect 

compromise between speed and specificity, producing high-resolution sparse segmentations 

ideal for display in ImageScope. Our method provides non-sparse segmentation of WSIs by 

forgoing multi-pass analysis. However, in the future we plan to change how the class 

hierarchy is defined in our algorithm, offering easy functionality to search for low-resolution 

regions with high-resolution sub-compartments.

In the future, we will also extensively test our method in a clinical research setting. This 

testing will evaluate both the segmentation performance and ergonomic aspects affecting a 

clinician’s ease of use. We will extend our method to provide anomaly detection, defining a 

confidence metric and threshold where WSIs are flagged for further evaluation. Further, to 

minimize the expert’s time, we will create an algorithm to predict the optimal amount of 

annotation performed in each iteration, using a curve fitting similar to Fig. 7. We will also 

adapt our method for native use with a DICOM viewer and a three-dimensional CNN for 

segmentation, allowing easier workflows for segmentation of radiology datasets, and 

mitigating the issues of data orientation and gamut mapping when converting to 8-bit TIFF 

images. Given these tools, we foresee a segmentation approach similar to our H-AI-L 

method underpinning efforts to build searchable medical image databases for research and 

education.

Methods

All animal tissue sections were collected in accordance with protocols approved by the 

Institutional Animal Care and Use Committee at the University at Buffalo, and in a manner 

consistent with federal guidelines and regulations and in accordance with recommendations 

of the American Veterinary Medical Association guidelines on euthanasia. Human renal 

biopsy samples were collected from the Kidney Translational Research Center at 

Washington University School of Medicine, directed by S.J., following a protocol approved 

by the Institutional Review Board at the University at Buffalo before commencement. 

Digital MRI images of human prostate glands were provided by P.S.L., following a protocol 

approved by the Institutional Review Board at the Medical College of Wisconsin. All human 

methods were performed in accordance with the relevant federal guidelines and regulations. 

All patients provided written informed consent.
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For mouse pathology sample preparation, C57BL/6J background mice were euthanized, and 

their kidneys were perfused, extracted and embedded in paraffin. Mice were either treated 

with STZ to induce diabetic nephropathy or with an STZ vehicle for control. The murine 

WSIs used (Figs. 2 and 3) were sliced from paraffin-embedded kidney sections at 2 μm, 

stained with either PAS or H&E, and bright-field imaged at 0.25 μm per pixel resolution and 

×40 magnification using a whole-slide scanner (Aperio Scan Scope, Leica). The sections 

used for podocyte segmentation (Fig. 4) were prepared similarly: stained first using 

immunofluorescence labels targeting WT1 (to generate training labels for podocyte 

detection), and then imaged via a whole-slide fluorescence scanner at 0.16 μm per pixel 

resolution and ×40magnification (Aperio Versa, Leica). These tissue sections were then 

post-stained using PAS, and bright-field imaged as described above. The human pathology 

WSIs used (Fig. 5) were obtained from 2–5-μm-thick biopsy sections, stained with PAS and 

bright-field imaged in a manner similar to that discussed above.

For digital MRI images of human prostate glands, 39 patients were recruited for an MRI 

scan befre a radical prostatectomy, using a 3T GE scanner (GE Healthcare) and an 

endorectal coil. The MRI included an axial T2-weighted image, collected with 3 mm slice 

thickness, 0.234 × 0.234 mm2 voxel resolution, and a 4,750/123 ms TR/TE. The DICOM 

files were converted to NIFTI format using the mri_convert command from the Freesurfer 

library of tools (surfer.nmr.mgh.harvard.edu). Prostate masks were then manually annotated 

using AFNI by P.S.L. and verified by a board-certified radiologist for an unrelated study47. 

The prostate images and annotations were then converted into TIFF format using MATLAB 

(Mathworks Inc) for analysis by the SUNY Buffalo team.

In the H-AI-L pipeline, an annotator labels a limited number of WSIs using annotation tools 

in ImageScope26, which provides the input for network training. The resulting trained 

network is then used to predict the annotations on new WSIs. These predictions are used as 

rough annotations, which are corrected by the annotator and sent back for incorporation into 

the training set; improving network performance and optimizing the amount of expert 

annotation time required. As this technique makes the adaptation of network parameters to 

new data easy, adapting a trained network to new data generated in different institutions is 

extremely feasible.

At the heart of H-AI-L is the conversion between mask and XML48 formats, which are used 

by DeepLab v225 and ImageScope26, respectively. Training any semantic segmentation 

architecture relies on pixel-wise image annotations that are input to the network for training 

and output after network predictions as mask images. In the case of DeepLab, the mask 

images take the form of indexed greyscale 8-bit PNG files, where each unique value pertains 

to an image class. On the other hand, annotations performed in ImageScope are saved in text 

format, as XML files48, where each region is saved as a series of boundary points or 

vertices. Determining the vertices of a mask image is a common image processing task, 

known as image contour detection49,50. As opposed to edge detection, contour detection can 

have hierarchal classifications50, lending itself ideally to conversion into the hierarchal XML 

format used by ImageScope.
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To facilitate the transfer between ImageScope XML and greyscale mask images, we use the 

OpenCV-Python library (cv2)49, specifically the function cv2. findContours to convert from 

masks to contours. Using this function, we are able to automatically convert DeepLab 

predictions to XML format, which can be viewed in ImageScope, and thus easily evaluate 

and correct network performance. Furthermore, we have written a library for converting an 

XML file into mask regions, using cv2.fillPoly. This library follows the OpenSlide-Python51 

conventions for reading WSI regions, returning a specified mask region from the WSI.

Using OpenSlide51 and our XML to mask libraries allows for efficient chopping of WSIs 

into overlapping blocks for network training and prediction; similar sliding-window 

approaches are common in predicting semantic segmentations on large medical images52,53. 

To simplify the iterative training process, and complement the easy annotation pipeline 

proposed, we have created a callable function that handles operations automatically, 

prompting the user to initiate the next step. This function needs two flags [--option] and [--

project], which are the parameters identifying the iterative step and the project to train, 

respectively. Initially created using [--option] ‘new’, a new project is trained iteratively by 

alternating the [--option] flag between ‘train’ and ‘test’.

Multi-pass approach.

Our algorithm uses our multi-pass approach by default. This approach is inspired by the way 

that pathologists scan WSIs at progressively higher resolutions. This process is 

accomplished by training two DeepLab segmentation networks using image regions and 

masks cropped from the training set. A high-resolution and a separate low-resolution 

network are respectively trained with full-resolution and down-sampled cropped regions. 

Prediction using this approach is performed serially; the low-resolution network identifies 

WSI regions to be passed to the high-resolution network for further refinement. This method 

is outlined in Supplementary Fig. 1.

Full-resolution analysis alone is achievable by setting the [--one_network] flag to ‘True’ 

during training and prediction. This analysis trains only the high-resolution network, which 

is exclusively used to segment WSIs during prediction. More information on the training and 

prediction is explained below.

Training.

To streamline the training process, we created a pipeline where a user places new WSIs and 

XML annotations in a project folder structure, and then calls a function to train the project. 

This automatically initiates data chopping and augmentation, and then loads parameters 

from the most recently trained network (if available) before starting to train. For faster 

convergence, we utilize transfer learning, automatically pulling a pre-trained network file 

whenever a new project is created, which is used to initialize the network parameters before 

training. We have also included functionality to specify a pre-trained file from an existing 

project using the [--transfer] flag. For ease of use, the network hyper-parameters can be 

changed using command line flags, but are set automatically by default.

When [--option] ‘train’ is specified, WSIs and XML annotations are chopped into a training 

set containing 500 × 500 blocks with 50% overlap. This training set is then augmented via 
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random flipping, hue and lightness shifts, and piecewise affine transformations, all 

accomplished using the imgaug Python library54. To keep the network unbiased, the total 

number of blocks containing each class is tabulated and used to augment less frequent 

classes with a higher probability55. Our multi-pass approach performs these steps for both 

high- and low-resolution patches separately to generate two training sets. The 500 × 500 

low-resolution patches cover a greater receptive field, emphasizing information that occurs 

in the lower spatial image frequencies.

Once the training data have been assembled, the networks are trained for the specified 

number of epochs. The user is then prompted to upload new WSIs and run the [--option] 

‘predict’ flag. This produces XML predictions that can be corrected using ImageScope 

before incorporation into the training set.

Multi-pass prediction.

Due to the sparse nature of the structures we attempt to segment from renal WSIs, we limit 

the search space, using a low-resolution pass to determine hotspot regions before 

segmentation at full resolution. In this multi-pass approach, thresholding and morphological 

processing first determine which WSI blocks contain tissue, eliminating background regions. 

Second, down-sampled blocks (1/16th resolution, 500 × 500 pixels with 50% overlap) are 

extracted and tested, using the low-resolution segmentation network to roughly segment 

structures. The output predictions of the preprocessing steps are then stitched back into a 

hotspot map, which is 1/16th the WSI size. For multi-class cases, this stitching can be 

performed by finding the maximum class number between overlapping prediction maps, 

which is assigned to each pixel in the hotspot map. In this way, multi-class hierarchies are 

defined by assigning subclasses to higher mask indices. For example, conducting the 

stitching for the nuclear segmentation in Fig. 4 requires the definition of background, 

glomeruli, nuclei and podocyte classes to be 0, 1, 2 and 3, respectively, where nuclei and 

podocytes are compartments of glomeruli. The result in Fig. 5 was obtained using a similar 

procedure. This stitching operation is outlined in Supplementary Fig. 2 for two classes. The 

results in Figs. 2, 3 and 6 were obtained using a similar two-class stitching operation.

The hotspot map is then used to determine the locations for performing pixel-wise 

segmentation using the high-resolution DeepLab network (trained using full-resolution 

image patches). Hotspot indices are calculated, scaled back to full resolution (×16), and used 

to extract these regions at full resolution. The XML annotation file is then assembled from 

the high-resolution predictions on these regions.

Full-resolution prediction.

When the [--one_network] flag is set to ‘True’, the initial extraction of overlapping blocks is 

performed at full resolution. Prediction on these blocks uses the high-resolution DeepLab 

network, and the resulting hotspot map is stitched using the same method as above. Unlike 

above, this map (which is the same size as the WSI) is used to directly assemble the XML 

annotation file.
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Post prediction processing.

To limit possible false-positive predictions of small regions, we implemented a size 

threshold that tests the area of each predicted region, eliminating regions smaller than the set 

threshold using morphological operations. This threshold can be adjusted via the [--

min_size] flag, and is easily estimated using the area displayed in the Annotations tab in 

ImageScope to determine the minimum regions size. By default, this threshold is set to 625 

pixels, which was used for the analysis in this paper.

Validation.

While the performance of the network is easily visualized after prediction on new WSIs, we 

have included functionality for explicitly evaluating performance metrics and prediction 

time on a holdout dataset. This is accomplished using the [--option] ‘validate’ flag. When 

called, it evaluatesthe network performance on holdout images for every annotation iteration 

by automatically pulling the latest models. To perform this performance comparison, 

ground-truth XML annotations of the holdout set are required to calculate the sensitivity, 

specificity, accuracy and precision performance metrics38.

Estimating H-AI-L performance (Fig. 7).

To quantify the time-savings of our H-AI-L method, we plot the normalized annotation time 

per region versus the number of regions annotated. Here we define the normalized 

annotation time per region A as A = t
t0

, where t is the annotation time per region (averaged 

per WSI) and t0 is the average annotation time per region in iteration 0. A is bounded from 

[0,1], where 1 is the normalized time required to annotate one region fully. Although the 

annotation time is reduced as a piecewise function of the training iteration, in Fig. 7 we use a 

continuous exponential decay distribution to approximate A(r):

A(r) = e
− r

τ , where r is the number of regions annotated and τ is the exponential time 

constant, which we call the H-AI-L factor.

The normalized annotation time of our H-AI-L method (H) can therefore be estimated as

H = ∫
0

R
A(r)dr = τ 1 − e

−R
τ

where R is the total number of regions annotated. Likewise, the normalized baseline 

annotation time (B) can be calculated as

B = ∫
0

R
1dr = R

Lutnick et al. Page 10

Nat Mach Intell. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Therefore, the time-savings performance (P) of our H-AI-L method can be estimated as a 

percentage:

P = 1 − H
B × 100 = 1 + τ

R e
−R
τ − 1 × 100

The H-AI-L factor τ reflects the effectiveness of iterative network training, where lower 

values of τ represent training curves that decay faster. In the future, algorithms to select the 

optimal amount of annotation and identify data outliers to be annotated at each iteration will 

improve the performance of the H-AI-L method by reducing τ.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

We have made the data used for analysing the performance of H-AI-L method available at 

https://goo.gl/cFVxjn. The folder contains a detailed note describing the data. Namely, the 

folder contains pathology and radiology image data used for training and testing our H-AI-L 

method, ground-truth and predicted segmentations of the test image data, network corections 

and respective annotations of the training image data for different iterations, and the network 

models trained at different iterations. We have made our code openly available online at 

https://github.com/SarderLab/H-AI-L.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Iterative H-AI-L pipeline overview.
Schematic representation of the H-AI-L pipeline for training semantic segmentation of 

WSIs. Several rounds of training are performed using human expert feedback to optimize 

ideal performance, resulting in improved efficiency in network training with limited 

numbers of initial annotated WSIs.
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Fig. 2 |. H-AI-L pipeline performance analysis for glomerular segmentation on holdout mouse 
WSIs.
a, Average annotation time per glomerulus as a function of annotation iteration. The data are 

averaged per WSI and normalized by the number of glomeruli in each WSI. The 0th 

iteration was performed without pre-existing predicted annotations, whereas subsequent 

iterations use network predictions as an initial annotation prediction that can be corrected by 

the annotator. b, F1 score of glomerular segmentation of four holdout mouse renal WSIs as a 

function of training iteration. c, Run times for glomerular segmentation prediction on 

holdout mouse renal WSIs using H-AI-L with multi-pass (two-stage segmentation) versus 

full-resolution segmentation. d, Example of a mouse WSI with segmented glomeruli (×40 , 

Lutnick et al. Page 16

Nat Mach Intell. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H&E-stained). Network predictions are outlined in green. The error bars indicate ±1 

standard deviation.
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Fig. 3 |. H-AI-L human annotation errors (mouse data).
a–d, Comparison of initial manual annotations from iteration 0 (a,c) with their respective 

final network predictions from iteration 5 (b,d). These examples were selected due to poor 

manual annotation, where the glomerulus was not annotated (a) or showed poorly drawn 

boundaries (c). These images are captured at ×40, and tissue was stained using H&E.
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Fig. 4 |. Multiclass nuclei prediction on a mouse WSI.
Several examples of multi-class nuclei predictions are visualized on a mouse WSI (×40, 

PAS-stained). Here, transfer learning was used to adapt the high-resolution network from 

above (Fig. 2) to segment nuclei classes. This network was trained using 143 labelled mouse 

glomeruli. The low-resolution network was kept unchanged for the initial detection of 

glomeruli. We expect the results to significantly improve using more labelled training data.
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Fig. 5 |. Multiclass IFTA prediction on a holdout human renal WSI.
Segmentation of healthy and sclerotic glomeruli, as well as IFTA regions from human renal 

biopsy WSI (×40, PAS-stained). Due to the non-sparse nature of IFTA regions, these 

predictions were made using only a high-resolution pass. This is a screenshot of Aperio 

ImageScope, which we use to interactively visualize the network predictions.
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Fig. 6 |. H-AI-L method performance analysis for human prostate segmentation from T2 MRI 
slices.
a, Segmentation performance as a function of training iteration, evaluated on 7 patient 

holdout MRI images (224 slices). Performance was evaluated on a patient basis. We note 

that despite the decline in network precision after iteration 6, the F1 score improves as a 

result of increasing sensitivity. b, The prediction performance on added training data, before 

network training. This figure shows the prediction performance on newly added data with 

respect to the expert-corrected annotation, and is evaluated on a patient basis (data from four 

new patients were added at the beginning of each training iteration). c, The percentage of 

prostate regions where network prediction performance (F1 score) fell below an acceptable 

threshold (percentage of slices that needed expert correction) as a function of training 

iteration. We define acceptable performance as F1 score > 0.88. Using this criterion, expert 

annotation of new data is reduced by 92% by the fifth iteration. d, A randomly selected 

example of a T2 MRI slice with segmented prostate; the network predictions are outlined in 

green. The error bars indicate ±1 standard deviation. A detailed breakdown of the training 

and validation datasets is available in Supplementary Table 1.
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Fig. 7 |. Annotation time-savings using the H-AI-L method while comparing to baseline 
segmentation speed.
H-AI-L plots showing the annotation time per region normalized with respect to the baseline 

annotation speed of each annotator for the result shown in Fig. 2a. An exponential decay 

distribution (H-AI-L curve) is fitted to each annotator, where the H-AI-L factor is the 

exponential time constant: a derivation can be found in the Methods. The vertical lines are 

gaps between iterations (where the network was trained). The area under the H-AI-L curve 

represents the normalized annotation time per annotator. This can be compared to the area of 

the normalized baseline region, which represents the normalized annotation time without the 

H-AI-L method. a, The time-savings by annotator 1 (calculated to be 81.3%) when creating 

the training set used to train the glomerular segmentation network in Fig. 2. b, Annotator 2 

was 82.0% faster. c, Annotator 3 was 72.7% faster. While the y axis in these plots is not a 

direct measure of network performance, it is highly correlated. The spike in annotation time 

seen at 600 regions is data from a WSI with severe glomerular damage from diabetic 

nephropathy. Future work will involve deriving optimal iterative training strategies based on 

information mined via such plots, with a goal of reducing annotation burdens for expert 

annotators.
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Table 1 |

H-AI-L segmentation mouse WSI training and testing datasets

H-AI-L dataset

Annotation iteration 0 1 2 3 4 Test

WSIs added 1 2 4 6 4 4

Total glomeruli Normal 32 84 86 418 0 138

STZ 0 0 0 0 293 96

Mouse WSI training set used to train the glomerular segmentation network. Data presenting structural damage from STZ-induced diabetes1 were 
introduced in iteration 4. The test dataset included three normal and one STZ-induced murine renal WSI.
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