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ABSTRACT

Lifestyle interventions, including exercise and dietary supplementation, can modify DNA methyla-
tion and exert health benefits; however, the underlying mechanisms are poorly understood. Here
we investigated the impact of acute aerobic exercise and the supplementation of omega-3 poly-
unsaturated fatty acids (n-3 PUFA) and extra virgin olive oil (EVOO) on global and gene-specific
(PPARGCIA, IL6 and TNF) DNA methylation, and DNMT mRNA expression in leukocytes of disease-
free individuals. Eight trained male cyclists completed an exercise test before and after a four-week
supplementation of n-3 PUFA and EVOO in a double-blind, randomised, repeated measures design.
Exercise triggered global hypomethylation (Pre 79.2%; Post 78.7%; p = 0.008), alongside, hypo-
methylation (Pre 6.9%; Post 6.3%; p < 0.001) and increased mRNA expression of PPARGCITA
(p < 0.001). Associations between PPARGCTA methylation and exercise performance were also
detected. An interaction between supplement and trial was detected for a single CpG of IL6
indicating increased DNA methylation following n-3 PUFA and decreased methylation following
EVOO (p = 0.038). Global and gene-specific DNA methylation associated with markers of inflamma-
tion and oxidative stress. The supplementation of EVOO reduced DNMT1 mRNA expression com-
pared to n-3 PUFA supplementation (p = 0.048), whereas, DNMT3a (p = 0.018) and DNMT3b
(p = 0.046) mRNA expression were decreased following exercise. In conclusion, we demonstrate
that acute exercise and dietary supplementation of n-3 PUFAs and EVOO induce DNA methylation
changes in leukocytes, potentially via the modulation of DNMT mRNA expression. Future studies are
required to further elucidate the impact of lifestyle interventions on DNA methylation.
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Acute exercise is associated with adjustments in the
expression of genes involved in a variety of cellular
processes, including immune response mitochondrial
biogenesis, metabolism and muscle remodelling [14-
16]. The PPARGCIA gene, which encodes for peroxi-
some proliferator-activated receptor gamma, co-
activator alpha (PGCl-a), is known as the master
regulator of mitochondrial biogenesis and plays an
important role in aerobic training adaptation [17].
In immune cells, PPARGCI1A is associated with anti-
inflammatory [18,19] and anti-oxidant defence [20];
however, the impact of exercise-induced inflamma-
tion and oxidative stress on PPARGC1A DNA methy-
lation is unknown. Epigenetic studies have linked
a CpG site —260 bases from the promoter of
PPARCGIA with the regulation of mRNA expression.
In skeletal muscle, exercise can demethylate the

Introduction

Environmental stimuli, including exercise and dietary
interventions, can modify the DNA methylome at
a global and gene-specific level [1]. Exercise training
studies have demonstrated hypomethylation of the
genome following exercise in both skeletal muscle
[2-4] and blood leukocytes [5-7]. Within skeletal
muscle, acute exercise has been demonstrated to
induce hypomethylation [4,8-10]; however, the only
investigation of DNA methylation in leukocytes fol-
lowing acute exercise failed to detect any changes in
DNA methylation [11]. Despite the scarcity of litera-
ture surrounding the impact of acute exercise on DNA
methylation in leukocytes, an epigenetic consequence
is suggested by the remodelling of the leukocyte tran-
scriptome [12-14].
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PPARGCIA -260 CpG site which has been shown to
concurrently upregulate PPARGCIA mRNA expres-
sion [8,10,21]. Although well characterised in skeletal
muscle, the regulation of PPARGCIA expression in
other cells and tissues, including immune cells is
poorly understood [22].

Exercise of sufficient intensity and duration can
cause tissue injury and lead to a systemic inflamma-
tory response [14,23]. Increased circulating levels of
the inflammatory cytokines IL-6 and TNFa are
strongly correlated with the progression of sarcopenia
and measures of physical performance [24,25]. Acute
exercise can also increase the production of reactive
oxygen species, in both skeletal muscle and immune
cells [26], potentially leading to the development of
oxidative stress and damage to lipids, proteins and
DNA [27]. Increases in markers of oxidative stress
and circulating levels of inflammatory cytokines,
such as IL-6 and TNFa, have been shown to alter the
expression of DNA methyltransferases (DNMTs)
[28-32] and influence DNA methylation patterns
[11,33]. DNA methylation of inflammatory cytokines
have been associated with various inflammatory dis-
eases including IL6 with Rheumatoid Arthritis [34]
and obesity [35]; TNF DNA methylation with type 2
diabetes [36] and Alzheimer’s disease [37]. Despite
increased circulating levels of inflammatory cytokines
post-exercise [14,23], the impact of exercise on the
DNA methylation of genes encoding inflammatory
cytokines such as IL6 and TNF remains unknown.

There is the potential for the dietary supple-
mentation of fatty acids (FAs) to prevent the
exercise-induced inflammation via the modula-
tion of DNA methylation. Supplementation of
FAs, including omega-3 polyunsaturated FAs
(n-3 PUFAs) and extra virgin olive oil (EVOO),
are consumed to reduce levels of inflammation
[38,39], however, the impact of these supple-
ments on exercise-induced inflammation is equi-
vocal. Some studies have detected reductions in
inflammation post-exercise with FA supplemen-
tation [40,41], whereas, others have reported no
change in inflammation [42,43]. An emerging
mechanism for the anti-inflammatory impact of
FA supplementation is via epigenetic modifica-
tions [44-47]. The supplementation of the diet
with krill oil, high in n-3 PUFAs, has been
demonstrated to reduce PPARGCIA mRNA
expression and the change in mRNA expression
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was negatively correlated to the change in plasma
n-3 PUFAs [48]. Total n-3 PUFA content is nega-
tively correlated to both IL6 DNA methylation
and IL-6 protein concentration [47].

EVOO is a commonly used control in exercise
studies to assess the impact of n-3 PUFA; however,
the supplementation of EVOO has also been reported
to modify the DNA methylation of genes associated
with inflammation [49]. It remains to be identified
whether the supplementation of FAs have an epige-
netic impact on exercise-induced inflammation.

The present study investigated the impact of aero-
bic exercise on global and gene-specific (PPARGCIA,
IL6 and TNF) DNA methylation and DNMT mRNA
expression in leukocytes of disease-free individuals.
We also investigated whether these relationships
could be modified by the supplementation of FAs.
The association between physiological markers
related to exercise performance, inflammation and
oxidative stress post exercise and DNA methylation
were also investigated.

Results

Global cytosine methylation and DNMT mRNA
expression

One-hour of cycling reduced global methylation,
assessed by the Luminometric Methylation Assay
(LUMA; Figure 1(a); Pre 79.2%; Post 78.7%,
p = 0.008), and the mRNA expression of both
DNMT3a (Figure 1(c)); p = 0.018) and DNMT3b
(Figure 1(d)); p = 0.046). Supplementation of FAs
did not alter global methylation or mRNA expression
of DNMT3a or DNMT3b (Figure 2; p > 0.05). While
DNMT1 mRNA expression was unaffected by exer-
cise, a significant interaction was identified between
supplement and trial (p = 0.048; Figure 2(b)) indicat-
ing differential effects on mRNA expression with the
two supplements. No correlation was detected
between global DNA methylation values and DNMT
mRNA expression.

Gene-specific DNA methylation and mRNA
expression

PPARGCI1A

A reduction in PPARGCIA DNA methylation
(Pre 6.9%; Post 6.3%, Figure 3(a); p < 0.001) and
an increase in mRNA expression (Figure 3(b));
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Figure 1. Effect of exercise on global DNA methylation (a) and mRNA expression of DNMT1 (b), DNMT3a (c) and DNMT3b (d). Data
presented as the mean value of all trials for each time point. * p < 0.05, # p < 0.01.

p < 0.001) were detected following exercise. The
supplementation of FAs had no impact on PPAR
GCIA DNA methylation or mRNA expression
(p > 0.05). Moderate but non-significant negative
correlations were detected between PPARGCIA
DNA methylation and DNMT3a and DNMT3b
mRNA expression (Figure 5).

IL6

Despite an increase in IL-6 protein concentrations
following exercise (Pre: 0.63 + 0.24 pg/mL, Post:
3.78 £ 0.55 pg/mL; p < 0.001), there was no change
in IL6 DNA methylation (p > 0.05) or mRNA
expression (p > 0.05) following exercise.
A significant interaction was detected between sup-
plement and trial for CpG3 (-1094) indicating
increased DNA methylation following n-3 PUFA
and decreased methylation following EVOO
(Figure 4(a)); p = 0.038). A similar, non-significant
(p =0.080) trend was detected for IL6 mRNA expres-
sion following supplementation (Figure 4(b)).
A significant correlation was detected between the
mean [L6 methylation across all CpG sites and
DNMT3b mRNA expression (Figure 5, p = 0.007).

TNF

Neither exercise or the supplementation of FAs altered
TNF DNA methylation or mRNA expression. Trends
were identified between 3 TNF CpG sites and differ-
ential methylation following supplementation (CpG2
p =0.069; CpG3 p =0.098; CpG4 p = 0.067; CpGmean
p = 0.077). TNF DNA methylation was negatively
correlated with TNF mRNA expression (Figure 5;
p = 0.007). Moderate, however, non-significant corre-
lations were detected between both IL6 and DNMT3a
mRNA expression, and TNF DNA methylation
(Figure 5).

Associations between DNA methylation and
post-exercise physiological markers

Figure 6 demonstrates the association between
post-exercise DNA methylation and physiological
markers related to exercise, oxidative stress and
inflammation. Prior to FA supplementation, both
PPARGCIA and TNF methylation post-exercise
are significantly correlated with Time Trial (TT)
performance (Figure 6, p < 0.05). Following the
supplementation of n-3 PUFA and EVOO,
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Figure 2. The impact of supplementation of n-3 PUFA and EVOO on global DNA methylation (a) and mRNA expression of DNMT1 (b),
DNMT3a (c) and DNMT3b (d). Data presented as the relative change (A) between pre and post supplementation trials (post supplementa-
tion — pre supplementation) for each supplement. n-3 PUFA, n-3 polyunsaturated fatty acid; EVOO, extra virgin olive oil. * p < 0.05.
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Figure 3. Effect of exercise on DNA methylation of CpG-260 (a) and mRNA expression (b) of PPARGC1A. Data presented as the mean

value of all trials for each time point. # p < 0.01.

correlations between TT performance and both
PPARGCIA and TNF DNA methylation are wea-
kened and no longer significant (Figure 6).
A negative correlation was detected between per-
ipheral blood mononuclear cell (PBMC) protein
carbonyl (PC) concentration, an intracellular mea-
sure of oxidative stress, and both global and
PPARGCIA methylation prior to supplementation
of FAs, however, no association was detected fol-
lowing n-3 PUFA supplementation (Figure 6). The

concentration of PC in serum, a systemic measure
of oxidative stress, was uncorrelated with DNA
methylation at baseline, however, following
EVOO supplementation significant correlations
existed between serum PCs and both PPARGC1A
and TNF DNA methylation (Figure 6). The only
significant correlation between DNA methylation
and serum IL-6 concentration was a negative cor-
relation with global DNA methylation following
n-3 PUFA supplementation (Figure 6).
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Figure 4. The impact of n-3 PUFA and EVOO supplementation on IL6 CpG3 DNA methylation (a) and IL6 mRNA expression (b). Data
presented as the change (A) between pre and post supplementation trials (post supplementation — pre supplementation). n-3 PUFA,
n-3 polyunsaturated fatty acid; EVOO, extra virgin olive oil. * p < 0.05.
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Figure 5. Spearman’s Rho correlation coefficients between mean
DNA methylation values and gene expression values across all
conditions (supplement, time and trial). The mean of all CpG sites
assessed for each gene has been used to provide an overall view of
the region of interest. Blue indicates a negative correlation, red
indicates a positive correlation and black indicates correlation
coefficients between —0.5 and 0.5. * p < 0.05, # p < 0.01.

Discussion

A single bout of aerobic exercise and supplemen-
tation of FAs can modulate leukocyte DNA
methylation and mRNA expression patterns.
A one-hour cycling bout decreased global and
PPARGCIA DNA methylation and mRNA expres-
sion of DNMT3a, DNMT3b and PPARGCIA. The
supplementation of FAs induced differential
effects on the DNA methylation of a CpG site in
the promoter region of IL6; n-3 PUFA increased
methylation, whereas, EVOO supplementation
decreased methylation. The same result was iden-
tified for mRNA expression of DNMT1 and trends
existed for 3 CpG sites in the promoter region

TNF. Significant correlations were identified
between global DNA methylation; PPARGCIA,
IL6 and TNF DNA methylation post-exercise;
and physiological markers related to exercise per-
formance, inflammation and oxidative stress indi-
cating that the epigenetic modifications have
functional effects.

For the first time we report, global hypomethy-
lation in leukocytes following an acute bout of
exercise. The only previous study to investigate
the impact of acute exercise in blood cells failed
to detect any change in DNA methylation follow-
ing correction for multiple testing [11]. The
results of the present study are in accordance
with previous reports of a net hypomethylation
following chronic exercise training [2-7] and
acute bouts of exercise in plasma [50] and skeletal
muscle [4,8]. Other studies have failed to detect
any change in global DNA methylation [51,52];
however, this can be explained by a similar num-
ber of CpG sites increasing and decreasing in
DNA methylation [51]. It has also been demon-
strated that exercise-induced hypomethylation is
retained during periods of detraining, allowing it
to become further hypomethylated following
further training [4]. These data suggest that
both acute and chronic exercise is sufficient to
alter DNA methylation patterns typically resulting
in hypomethylation.

In the present study, a 4-week supplementation of
FAs did not influence global DNA methylation. In
contrast, a 6-month supplementation of n-3 PUFA
decreased LINE-1 DNA methylation, a surrogate for
global DNA methylation, in Alzheimer’s patients [53].



DNA Methylation

methylation
PPARGC1A

©
Qo
o
O

Marker
TT Mean Power
TT Work Done
PBMC PC

Baseline

Serum PC

Serum IL-6

TT Mean Power
TT Work Done
PBMC PC

Post n-3 PUFA

Serum PC
Serum IL-6

TT Mean Power
TT Work Done

PBMC PC

Post EVOO

Serum PC

Serum IL-6

Correlation coefficient kei:

Figure 6. Spearman’s Rho between post-exercise DNA methyla-
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of the region of interest. Blue indicates a negative correlation, red
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coefficients between —0.5 and 0.5. n-3 PUFA, omega-3 polyunsa-
turated fatty acid; EVOO, extra virgin olive oil; TT, Time trial; PC,
protein carbonyl. *p < 0.05, # p < 0.01.

However, LINE-1 methylation is increased in
Alzheimer’s patients compared to healthy controls
[54], therefore, the supplementation of n-3 PUFA in
these individuals may act to restore global DNA
methylation to the normal level detected in healthy
individuals. The use of different surrogate measures of
global methylation (LUMA vs LINE-1) prevents the
direct comparison between studies because of the
different region which these assays investigate. Two
separate studies have indicated that the methylation
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estimates provided by LINE-1 and LUMA are poorly
correlated [55,56].

For the first time, decreased methylation and con-
current increased mRNA expression of PPARGCIA
following a bout of aerobic exercise have been detected
in leukocytes. The results from the present study
match previous reports of aerobic exercise-induced
hypomethylation in skeletal muscle [2,8,10] poten-
tially indicating a systemic impact of exercise on
PPARGCIA DNA methylation. The mRNA expres-
sion profile of skeletal muscle and PBMCs have been
shown to be highly associated following an 8-week
supplementation of n-3 PUFAs [57]. Although we
do not find any association with PPARGCIA methyla-
tion/mRNA expression and n-3 PUFA supplementa-
tion in the present study, the hypomethylation
detected in the present study is consistent with the
impact of exercise in skeletal muscle providing further
evidence for blood-derived expression profiles to be
used as a surrogate for skeletal muscle.

The only previous report of PPARGCIA methyla-
tion from leukocytes failed to detect an association
with physical activity [58]. The lack of previous
association could be the result of the investigation
of different CpG sites in the promoter region of
PPARGCIA. Alternatively, the discordance in these
results could reflect the heterogeneity in methylation
pattern of immune cells [59]. Exercise increases the
number of circulating leukocytes, therefore, changes
in methylation may be the result of different propor-
tions of leukocytes rather than a change in DNA
methylation patterns [60]. The present study has
adjusted DNA methylation values to account for
the number of leukocytes (lymphocytes, neutrophils,
monocytes, basophils and eosinophils) [59],
whereas, previous reports have failed to account for
this critical variable.

The positive correlation between leukocyte
PPARGCIA methylation and exercise performance
indicates that increased DNA methylation may pro-
vide a performance advantage. PPARGCIA is
thought to upregulate mitochondrial biogenesis in
monocytes to induce a shift towards an anti-
inflammatory phenotype [18,19] and antioxidant
defence in lymphocytes [20]. Although we did not
find an association with IL-6 protein concentration,
a negative association was detected between
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PPARGCIA DNA methylation and PC concentra-
tion indicating epigenetic control of the antioxidant
role of PPARGCIA. There is limited literature com-
paring mitochondrial function in leukocytes and
skeletal muscle following exercise; however, the asso-
ciation between gait speed and mitochondrial func-
tion in both skeletal muscle tissue and PBMCs
provides a conserved mechanism between mito-
chondrial function in skeletal muscle and blood-
derived mitochondria [61]. Further evidence of
a conserved mechanism is suggested with genes
related to mitochondrial structure and function
found to be co-expressed in skeletal muscle and
neutrophils following aerobic exercise [62]. Future
studies are required to detect if the same phenotypic
associations exist in skeletal muscle as detected in
leukocytes in the present study.

Aerobic exercise did not alter the DNA methyla-
tion or mRNA expression of either IL6 or TNF. The
epigenetic impact of exercise on inflammatory cyto-
kines is relatively unknown, however, several studies
have indicated a role for cytokine DNA methylation
in inflammatory disease [34-37]. Although no asso-
ciation between TNF DNA methylation and mRNA
expression was detected in the present study, n-3
PUFAs have previously been demonstrated to reverse
the epigenetic changes observed with inflammation in
skeletal muscle cells. The administration of TNF
induced hypermethylation and decreased mRNA
expression of MyoD [63], whereas the supplementa-
tion of EPA dampens the impact of TNF in muscle
and restores MyoD mRNA expression [44]. Despite
an increase in the circulating protein concentration of
IL-6 in the present study, the exercise bout may have
not increased TNFa protein concentration and
induced an inflammatory response sufficient to mod-
ify DNA methylation patterns of inflammatory cyto-
kines. TNF hypermethylation is reported in elderly
individuals who maintained or increased their energy
expenditure by 500 kcal/wk over an 8-year period
compared to those who decreased energy expenditure
over the same period [64]. The same TNF CpG sites as
the present study have previously been shown to
negatively associate with mRNA expression, plasma
concentrations and measures of adiposity [65,66]. In
the present study, a significant negative correlation
was detected between TNF DNA methylation post-
exercise and BMI, exercise performance and TNF
mRNA expression. These data suggest an acute bout

of exercise may not regulate TNF DNA methylation,
however, the long-term benefits of regular exercise,
such as reduced adiposity, may subsequently increase
TNF DNA methylation levels and as a result, reduce
TNF mRNA expression and the chronic low-grade
inflammation levels associated with increased
adiposity.

Previously decreased methylation in a region ~600
bp upstream of the IL6 promoter has been associated
with increased erythrocyte n-3 PUFA concentrations
and mRNA expression [47]. In the present study, the
supplementation of EVOO and n-3 PUFA had con-
trasting effects on a single CpG (-1094) of IL6
(increased methylation following n-3 PUFA and
decreased methylation with EVOO). The region
~1,000 bp from upstream of was investigated in the
present study because of previous associations
between DNA methylation and both inflammatory
diseases [34,35] and mRNA expression [34].
Conflicting results between studies may indicate that
distinct regions of the promoter regulate IL6 expres-
sion differently. Supplementation of n-3 PUFA and
OO have been shown to induce differential methyla-
tion of elongase and desaturase enzymes which are
responsible for the metabolism of FAs [67]. The dif-
ferential DNA methylation of these enzymes indicates
the potential for n-3 PUFAs to switch towards the
production of less inflammatory eicosanoids.
Although the DNA methylation of desaturase and
elongase enzymes have not been measured in the
present study, a switch towards n-3 PUFA derived
eicosanoid production, such as 3-series rather than
2-series prostaglandins, has been shown to reduce
cytokine expression [38] which is potentially indicated
by the increased DNA methylation of IL6 following
n-3 PUFA, but not EVOO, supplementation.

The impact of exercise and FA supplementation
on DNMT mRNA expression was investigated to
identify whether changes in DNMT mRNA expres-
sion could be a potential mechanism underlying
modulated DNA methylation. DNMT1 mRNA
expression was modulated by FA supplementation,
whereas, exercise reduced the expression of both
DNMT3a and DNMT3b. This is the first demon-
stration of reduced expression of DNMT3a follow-
ing acute exercise, whereas, the reduction in
DNMT3b expression has previously been reported
[31,68]. The inclusion of DNA methylation assess-
ment in the present study allows the confirmation



that following a single bout of aerobic exercise
DNMT expression is decreased alongside decreases
in global and gene-specific DNA methylation. The
only previous report of concurrent assessment of
exercise-induced DNMT expression and DNA
methylation was following an 8-week resistance
training program [6]. The genome-wide method
of methylation does not identify a net increase or
decrease in global methylation; therefore, further
studies are required to identify whether the mod-
ulation of DNMT3b causes hypomethylation or if it
is important in both hyper- and hypomethylation.

The present study detects contrasting effects of
n-3 PUFA and EVOO supplementation on DNMT1
mRNA expression. There is a paucity of literature
surrounding the impact of FA supplementation on
DNMT expression in humans, whereas, animal
models have associated supplementation of alpha-
linolenic acid supplementation, a n-3 PUFA, with
changes in DNMT mRNA expression [69,70].
Interestingly, similar to the present study, no
change in global DNA methylation was detected
alongside modulated DNMTI expression [69].
A change in global DNA methylation potentially
would not be expected with increased in DNMT]I
mRNA expression because DNMTI1 functions to
maintain DNA methylation. The impact of EVOO
on DNMT expression is unknown, however, EVOO
contains phenolic compounds, including decarbox-
ymethyl oleuropein aglycone (DOA) [71], which
reduce DNMT activity via competitive inhibition
[72]. The absence of a measure of DNMT activity
is a limitation of the present study, however, paral-
lel changes in DNMT mRNA expression and activ-
ity have previously been reported [73]. A measure
of activity could potentially explain the lack of
association between altered DNMT mRNA expres-
sion and modulated DNA methylation following
supplementation which should be considered in
future studies.

While exercise and FA supplementation may
directly influence DNMT expression, these inter-
ventions may modulate DNMT expression by inter-
mediary mechanisms. The expression of several
miRNAs, including miRNA-29 -130 and -148,
are associated with: DNMT expression [74-77],
exercise [78] and FA supplementation [79-81]. IL-
6 protein levels have been reported to regulate
DNMT mRNA expression [30-32] via the

EPIGENETICS (&) 301

modulation of miRNA [29]. The small increase in
IL-6 protein expression following exercise in the
present study may be insufficient to modulate
DNMT expression explaining the lack of agreement
with previous reports. Future studies should use
a bout of exercise with a greater inflammatory
response, such as eccentric exercise, to examine
the effect of exercise-induced inflammation on
DNMT expression. The capability of exercise and
n-3 PUFA supplementation to modify the expres-
sion of the same miRNAs which control the expres-
sion of DNMTs suggests miRNA expression could
be one of the underlying mechanisms controlling
DNA methylation.

The use of a homogenous population of trained
cyclists in the present study potentially limits the
generalisability of the results to other populations.
Trained male cyclists were selected as the population
for the present study because they are the most
familiar with the exercise stimuli and we would
expect this to reflect in the smallest epigenetic
response. Previously a single bout of exercise was
sufficient to reduce global DNA methylation in
plasma of COPD patients; however, following
a training intervention the exercise bout was no
longer sufficient to reduce global DNA methylation
[50]. Exercise training has previously been demon-
strated to alter DNA methylation patterns differ-
ently depending on family history of diabetes [2].
Future studies should compare the impact of exer-
cise in trained athletes and sedentary individuals or
a disease cohort to determine whether exercise-
induced alterations to the DNA methylome are con-
tributors to health and disease in diverse
populations.

In conclusion, the present study highlights the
impact of an acute bout of aerobic exercise and the
supplementation of FAs on DNA methylation and
mRNA expression in leukocytes of trained male
cyclists. Alterations in the epigenetic control of these
genes are associated with physiological markers
related to exercise performance and inflammation/
oxidative stress, however, a more extensive study is
required to confirm these associations. The observa-
tional nature of the present study prevents the identi-
fication of the underlying mechanisms controlling
altered DNA methylation following exercise and FA
supplementation, therefore, future mechanistic stu-
dies are required to identify such mechanisms. Here
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we suggest that modulation of DNMT mRNA expres-
sion may be one such mechanism for future research.
Future studies should compare multiple tissue types
to examine whether exercise and supplementation of
FAs have systemic effects on DNA methylation.

Methods
Participants

Complete sets of data were available for eight partici-
pants whose characteristics are described in Table 1.
Prior to participation, informed written consent was
provided by each participant. Participants were
healthy, non-smokers with no history of metabolic
or cardiovascular disease. In the six-months prior to
the study, participants had no history of n-3 PUFA,
anti-oxidant or anti-inflammatory supplementation.
Participants recorded their physical activity and main-
tained habitual diet throughout the study. The experi-
mental protocol was approved by the Loughborough
University Ethics Human Participants sub-committee
and performed in accordance with the Declaration of
Helsinki 1975.

Study overview

The study consisted of a pre-test and four experi-
mental trials. Experimental trials were completed
before and after a four-week supplementation of
n-3 PUFA and EVOO in a double-blind, rando-
mised, repeated measures design. A four-week
washout was included between each supplementa-
tion period (Figure 7).

Pre-test

Participants underwent anthropometric assess-
ment for height, body mass and eight-skinfold
measurements prior to the start of the study.
Maximal aerobic work rate (Wmax) and maximal
oxygen uptake (VO,ax) were determined using
a graded exercise test on a Lode Excalibur Sport

Table 1. Participant characteristics. Wmax, maximal aerobic work
rate.

Variable All participants (n = 8)
Age (yrs) 39.50 £ 5.90
Body Mass (kg) 73.04 £ 831
Height (cm) 174.26 + 8.41
Wmax (W) 321.63 + 28.15
VOsmax (ML-kg-min™") 53.88 + 5.24

ergometer (Lode B.V, Netherlands). The exercise
test began with a warm-up period of 5-min cycling
at 100 W. Workload then increased by 50 W every
3-min until volitional fatigue (decrease in self-
selected cadence of 20 revs-min '). Expired air
was collected in the final minute of each stage to
allow VO,pax determination using primary and
secondary criteria [82]. Wmax was calculated
using the formula:

Wmax = Workload-[(t/180)x50]

Where t is the time in seconds completed in the final
stage. Following the completion of the incremental
cycling test, participants received a 10-minute rest
before completing a 15-minute TT familiarization.

Experimental trials

Trials were conducted in the morning (7-9 am) fol-
lowing a 10-hour overnight fast. Participants were
asked to complete a 3-day food diary, refrain from
strenuous exercise and the consumption of alcohol or
caffeine for the 24-hours prior to the trial. The per-
formance test consisted of 45-minutes cycling at 70%
Wmax, followed by a 15-minute TT [83].

Supplementation

Both n-3 PUFA (Holland and Barrett, Warwickshire,
UK) and EVOO (Puritan’s Pride, New York, USA)
supplements were provided in capsule form.
Participants were instructed to take 6 capsules
per day providing 5.7g of n-3 PUFA and 0.01g
per day of a-Tocopherol or 6 g per day of EVOO.
The n-3 PUFA dose was chosen based on previous
findings showing the dose was sufficient to induce
changes in the lipid profile of human blood over four
weeks [84,85]. Compliance of supplementation was
monitored by capsule counts.

Analytic procedures

Blood sampling

Venous blood was sampled via an intravenous cathe-
ter inserted into an antecubital vein of the non-
dominant arm for the collection of whole blood pre
and immediately post-exercise (Figure 7) for DNA
methylation analysis, mRNA expression and a whole
blood cell count using the COULTER® Ac-T™ 5diff
(Beckman Coulter, UK). PBMCs were isolated from
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Supplementation 1

Washout Period

Supplementation 2

Trial 1 n-3 PUFA Trial 2 X Trial 3
Trial 1 EVOO Trial 2 Trial 3 EVOO Trial 4

n-3 PUFA Trial 4

45-min cycling at 70 % of Wmax

15-min time trial

A - Blood sample

Figure 7. Schematic representation of study outline (a) and trial day (b). n-3 PUFA, omega-3 polyunsaturated fatty acid; EVOO, extra

virgin olive oil; Wmax, maximal aerobic work rate.

whole blood by density gradient centrifugation using
Ficoll-Paque Premium (GE healthcare, USA)
according to manufacturer’s instructions. The result-
ing PBMC cell pellet was suspended in 200pl RIPA
buffer for analysis of protein carbonyls. Whole blood
collected in vacutainers (Becton, Dickson &
Company, UK) that contained no anticoagulant
was allowed to clot at room temperature and centri-
fuged at 2800 rpm for 15 minutes for analysis of
serum protein carbonyls and IL-6.

Nucleic acid isolation

Genomic DNA (gDNA) was isolated from 2mL of
whole blood using the QIAamp DNA Blood Midi kit
(Qiagen, Germany) according to the manufacturer’s
instructions. RNA was isolated from whole blood
collected in Tempus Blood RNA tubes using
the Tempus Spin RNA Isolation Kit (Applied
Biosystems, USA) according to the manufacturer’s
instructions. The concentration (mean + SD) and
purity (absorbance ratio A,s0/Azg0 £ SD) of isolated
DNA and RNA were determined using a Nanodrop
2000 (ThermoScientific, USA). The mean concentra-
tion of isolated gDNA was 183.50 + 54.48 ng/uL with
a Augo/Asso ratio of 1.90 + 0.02, whereas, RNA con-
centration was 120.32 + 41.02 ng/uL with an A0/ Ag0
ratio of 2.09 + 0.02. Following extraction, DNA and
RNA were stored at —20°C and —80°C respectively.

Luminometric methylation assay

LUMA was used as a marker of global DNA methy-
lation as previously described [86], with minor
adjustments. Briefly, two reactions containing 200
ng of gDNA were set up per sample, one with the

methylation-sensitive enzyme FastDigest Hpall and
one FastDigest Mspl (Thermo Scientific, USA) and
incubated for 20 min at 37 °C. Following incubation,
13 uL of each reaction were mixed with annealing
buffer and added to a separate well of a Pyromark
Q24 plate and analyzed using a PyroMark Q24 MDx
system (Qiagen, Germany) with the following dis-
pensation order: ACTCGA. Peak heights were
exported, and methylation percentage was calculated
using the following formula:

Methylation = (1 - (Hpall peak 2/Hpall peak 1)/
(MspI peak 2/Mspl peak 1)) x 100.

Bisulfite pyrosequencing

gDNA samples were bisulfite converted using the
EpiTect Fast Bisulfite Conversion Kit (Qiagen,
Germany) according to the manufacturer’s instruc-
tions. PCR of bisulfite converted DNA samples was
performed using the PyroMark PCR Kit (Qiagen,
Germany) according to the manufacturer’s instruc-
tions. For all assays, an initial activation period of
15 min at 95°C was followed by a 3-stage cycling
process of denaturation (95°C for 30s), annealing
(56°C for 30 s) and extension (72°C for 30 s) for 45
cycles. The PCR process was finished with a final
extension period of 72°C for 10 min. Pyromark cus-
tom assay (Qiagen, Germany) genomic location, pri-
mer sequences and the sequence to analyze are
presented in Table 2. To confirm a single PCR pro-
duct, amplicons were analyzed by gel electrophoresis
and visualised by ultraviolet trans-illuminator
(BioRad, USA). The absence of PCR amplification of
non-bisulfite converted DNA confirmed the specifi-
city of each assay for bisulfite converted DNA. DNA
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Table 2. Details of pyrosequencing assays used to determine DNA methylation. Genomic location identified using genome reference
consortium human build 38 patch release 12. CpG sites are indicated in the sequence to analyze by Y. For, forward primer; Rev,
reverse primer, Seq, sequencing primer; TSS, transcription start site; bp, base pair.

Assay ID No. of CpG sites
[Genomic location] Primer Sequence (distance from TSS; bp)
PPARGCTA For: 5'-TGTAGGGGATTTTGGTTATTATATGGT-3' 1
[chr4:23,890,308-23,890,372] Rev: 5"-biotin-ACCAACTTTAAATACCACAAACTCTA-3’ (—260)
Seq: 5'-GGTTATTATATGGTTAGGGT-3’
Sequence to TTYGTTTAGAGTTTGTGGTATTTAAAGTT
analyze:
IL6 For: 5'-GGGAAGAGGGTTTTTGAATTAG-3' 6
[chr7:22,726,051-22,726,198] Rev: 5"-biotin-CTCCCTCTCCCTATAAATCTTAATTTAA-3' (=1099, —1096, —1094,
Seq: 5'-TTGAATTAGTTTGATTTAATAAGAA-3’ -1069, —1061 & —1057)
Sequence to ATTTTTGGGTGTYGAYGYGGAAGTAGATTTAGAGTTTAGAG
analyze: TYGTGTTTGYGTTYGTAGTTTTTTTTTAGTTTTTTTTGATTT
TNF For: 5'-GGAAAGGATATTATGAGTATTGAAAGTATG-3' 4
[chr6:31,575,730-31,575,816] Rev: 5'-biotin-CTAAAACCCCCCTATCTTCTTAAA-3’ (+197, +202, +214 &
Seq: 5'-ATTATGAGTATTGAAAGTATGAT-3' +222)
Sequence to TYGGGAYGTGGAGTTGGTYGAGGAGGYGTTTTTTAAGAA
analyze: GATAGGGGGGTTT

methylation was assessed using a PyroMark Q48
Autoprep system (Qiagen, Germany) using Pyro
Mark Q48 Advanced CpG Reagents (Qiagen,
Germany). The nucleotide dispensation order was
generated by entering the sequence to analyze into
the PyroMark Q48 Autoprep software version 2.4.2
(Qiagen, Germany). A non-CpG cytosine was
included in the nucleotide dispensation order to detect
incomplete bisulfite conversion. The methylation at
each CpG site was determined using the PyroMark
Q48 Autoprep software set in CpG mode. The mean
methylation of all CpG sites within the target region
was determined using the methylation at the indivi-
dual CpG sites. Standards of known methylation per-
centages (0%, 12.5%, 25%, 50%, 75%, 87.5%, 100%)
were created using the EpiTect PCR control DNA set
(Qiagen, Germany) and underwent pyrosequencing
analysis to generate standard curves between the
expected and observed methylation percentage to
check the assays for PCR bias. A high coefficient of
determination (R* > 0.99) was determined for each
assay indicating the absence of PCR bias.

mMRNA expression

A minimum of 1 pg of RNA was reverse transcribed
into complementary DNA (cDNA) using the High-
Capacity RNA-to-cDNA™ Kit (Applied Biosystems,
USA) according to the manufacturer’s instructions
and diluted to a concentration of 5 ng/uL in deionised
water. Relative mRNA expression was performed by
quantitative PCR (qPCR) for each gene of interest and
normalised to the expression of GAPDH using a Viia7

Real-Time PCR system (Applied Biosystems, USA).
Each reaction contained 5 pL of SybrGreen
PrecisionPlus qPCR Master Mix (PrimerDesign,
UK), 0.5 pL of forward and reverse primer (Table 3)
and 4 pL of 5 ng/uL cDNA. All samples were run in
duplicate using the following cycling conditions:
initial denaturation at 95°C for 2 min, followed by
40 cycles of 95°C for 15 s and 60°C for 60 s. Melt
curves were visually inspected for a single peak indi-
cating the generation of a single product. The relative
mRNA expression of the genes of interest were calcu-
lated using the 27“*“Y formula; the pooled group
mean pre-exercise Ct from the initial trial was used
as the control. The mean Ct value of GAPDH across
all participants and experimental conditions was
17.13 £ 0.41 with low variation of 2.40%. The effi-
ciency of each mRNA expression assay was deter-
mined (Table 3) using standard curves generated
from a serial dilution of a cDNA sample. The effi-
ciency was calculated using the formula:

E =((10(-1/5°P9)) —1)x100, where the slope is
the gradient of the linear regression fitted to the
standard curve. The efficiency of each assay was
between 90 and 105% with a R* > 0.99.

Interleukin-6 (IL-6)

Serum IL-6 concentrations prior to and immedi-
ately post-exercise were determined using high sen-
sitivity enzyme immunoassay kits (R & D Systems,
USA). Haematocrit and haemoglobin were used to
ascertain plasma volume changes that were used to
adjust serum IL-6 values [87].
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Table 3. * Details of assays used to determine mRNA expression. For, forward primer; Rev, reverse primer; bp, base pairs.

Assay ID Accession No. Sequence Product length (bp) PCR efficiency (%)

GAPDH NM_001289745.2 For: 5'- GCCTCAAGATCATCAGCAATGCCT-3' 104 98.1
Rev: 5'- TGTGGTCATGAGTCCTTCCACGAT-3'

PPARGC1A NM_001330751.1 For: 5'-CAGCCTCTTTGCCCAGATCTT-3’ 101 104.0
Rev: 5'-TCACTGCACCACTTGAGTCCAC-3'

IL6 NM_000600.4 For: 5'-GCAGAAAAAGGCAAAGAATC-3’ 178 100.9
Rev: 5'-CTACATTTGCCGAAGAGC-3'

TNF NM_000594.3 For: 5'-AGGCAGTCAGATCATCTTC-3' 142 99.5
Rev: 5'- TTATCTCTCAGCTCCACG-3'

DNMT1 NM_001130823.2 For: 5'-TACCTGGACGACCCTGACCTC-3' 103 94.5
Rev: 5'-CGTTGGCATCAAAGATGGACA-3'

DNMT3a NM_175629.2 For: 5'-TATTGATGAGCGCACAAGAGAGC-3’ 11 95.9
Rev: 5'-GGGTGTTCCAGGGTAACATTGAG-3’

DNMT3b NM_006892.3 For: 5'-GGCAAGTTCTCCGAGGTCTCTG-3' 113 96.2
Rev: 5'-TGGTACATGGCTTTTCGATAGGA-3’

Protein carbonyls (PC)

PC was assessed by an in-house ELISA [88,89].
Serum samples, PBMC lysates and standards were
diluted in coating buffer (50mM sodium carbonate,
pH =9.2) to a concentration of 0.05mg/mL using the
bicinchoninic assay method. Protein carbonyls
groups were derivatised with 2, 4-dinitrophenylhy-
drazine (ImM, in 2M HCI) and incubated with
monoclonal mouse anti-DNP antibody (Sigma
Aldrich, UK) and rat anti-mouse IgE, conjugated to
HRP (AbD Serotec, UK). Well absorbance was mea-
sured at 490nm and the PC concentration deter-
mined by using absorbance values of known PC
standards made in our laboratory (1.28-5.20 nmol/
mg protein). PC concentration in PBMCs was
adjusted for changes in protein concentration and
cell number (Beckman Coulter, UK) induced by
acute exercise.

Statistical analysis

All statistical analysis was performed using IBM SPSS
Statistics software (SPSS version 23). The data were
assessed for normality by Shapiro-Wilk’s test. The
composition of white blood cells from which the
DNA is extracted is an important consideration in
DNA methylation research; therefore, all DNA
methylation analysis was conducted on cell heteroge-
neity adjusted values [59]. Analysis of mRNA expres-
sion was performed on log fold change data. DNA
methylation and mRNA expression values were ana-
lyzed using a 2 (supplement) x 2 (trial) x 2 (time)
repeated measures ANOVA. The impact of exercise
is presented using the absolute values (mean of all
trials for each time point), whereas, the impact of

supplementation of FAs is presented as the relative
change (A) between pre and post supplementation
trials (post supplementation — pre supplementation).
Values represented as mean + 95% CIL.

Spearman’s Rho correlation analysis was used to
assess the relationship between DNA methylation
values, mRNA expression values and physiological
markers related to exercise performance, inflamma-
tion and oxidative stress. A p-value < 0.05 was
considered as statistically significant. Moderate
(>0.5) correlation coefficients were considered to
be of interest; however, only large (> 0.7) correlation
coefficients were deemed statistically significant.
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