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ABSTRACT
DNA methylation is known to be responsive to prenatal exposures, which may be a part of the
mechanism linking early developmental exposures to future chronic diseases. Many studies use blood
to measure DNA methylation, yet we know that DNA methylation is tissue specific. Placenta is central
to fetal growth and development, but it is rarely feasible to collect this tissue in large epidemiological
studies; on the other hand, cord blood samples are more accessible. In this study, based on paired
samples of both placenta and cord blood tissues from 169 individuals, we investigated the methyla-
tion concordance between placenta and cord blood. We then employed a machine-learning-based
model to predict locus-specific DNA methylation levels in placenta using DNA methylation levels in
cord blood. We found that methylation correlation between placenta and cord blood is lower than
other tissue pairs, consistent with existing observations that placenta methylation has a distinct
pattern. Nonetheless, there are still a number of CpG sites showing robust association between the
two tissues. We built prediction models for placenta methylation based on cord blood data and
documented a subset of 1,012 CpG sites with high correlation between measured and predicted
placenta methylation levels. The resulting list of CpG sites and prediction models could help to reveal
the loci where internal or external influences may affect DNA methylation in both placenta and cord
blood, and provide a reference data to predict the effects on placenta in future study even when the
tissue is not available in an epidemiological study.
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Introduction

DNA methylation affects cell differentiation and tis-
sue development especially during the in utero per-
iod[1–3]. Many exposures occurring during the
prenatal period have been shown to affect DNA
methylation of the developing child [4,5]. During
this period, the placenta has a key role because it is
the organ transferring nutrients from the mother to
the fetus, and can adapt to various exposures [6–13].
Nevertheless, placenta is not always easily collectable
in large-scale epidemiological studies.

Significant progress in the high-throughput
sequencing technology has been achieved over the
past decade, and large-scale whole-genome data

analyses have identified genetic susceptibility loci in
many complex diseases [14–17]. Genome-wide stu-
dies have also shown that many DNA methylation
patterns are highly conserved across tissues [2,18].
DNAmethylation can serve as an important basis for
the analysis and prediction of complex diseases. For
instance, according to the IlluminaGoldenGate Bead
Array platform, which includes 1,505 CpG sites from
807 genes, the mean correlation of the methylation
levels in tissues from 11 individuals is 0.85 (range:
0.74 to 0.94)2. Ursini et al. found that methylation in
target organs (i.e., the brain prefrontal cortex), which
has important biological functions, correlates with
the methylation in peripheral blood mononuclear
cells [19]. In 2013, Barault et al. reported that
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leukocyte DNA methylation levels in imprinted
genes can serve as substitute markers for DNA
methylation in cancer tissue [20]. Ma et al. have
proposed statistical models to predict DNAmethyla-
tion levels in an artery and atrium using DNA
methylation levels in peripheral blood because the
latter is easily accessible [21]. De Carli et al. per-
formed a locus-specific methylation prediction
based on paired cord blood and placenta data-
sets [22].

In general, the computational methods of DNA
methylation can be classified into the following
two main types: (1) prediction of the methylation
status of whole CpG islands or fragments of CpG
islands; and (2) prediction of the methylation sta-
tus of a single CpG site. The methylation status of
a CpG site can be represented as a continuous
methylation beta value measured from microarray.
Although there are a variety of approaches to
DNA methylation prediction, few studies have
focused on genome-wide locus-specific methyla-
tion status (continuous beta values) across
human tissues. In this study, we collected paired
samples of human tissues, i.e., cord blood and the

placenta, from 169 individuals, and measured
methylation levels at individual CpG sites distrib-
uted across the human genome using the Illumina
HumanMethylation450 BeadChips. Our purposes
were to predict the locus-specific methylation sta-
tus in the placenta based on the DNA methylation
in cord blood, to improve prediction accuracy at
the CpG sites with variations in the placenta, to
determine the enrichment of the set of well-
predicted CpGs in functional pathways or disease
pathways and to test the utility of the cross-tissue
prediction model for potential studies.

Results

The raw methylation pattern across tissues

Most DNAmethylation beta values were found to be
conserved across the cord blood and placenta when
all available probes were assessed (after quality con-
trol; QC). The correlation (CpG-wise R2) between
the cord blood and placenta in the 169 samples
ranged from 0.61 to 0.76 with a mean of 0.66
(Figure 1). Despite the high correlation (CpG-wise

Figure 1. R2 of the 169 samples. The x-axis represents the sample index from 1 to 169, and the y-axis represents the CpG-wise R2 of
the 169 samples. The red line represents the CpG-wise R2 of measured methylation beta values in the cord blood and measured
methylation beta values in the placenta, and the purple line represents the CpG-wise R2 of measured methylation beta values in the
placenta and predicted methylation beta values in the placenta by single-CpG-based SVM and leave-one-out cross-validation.
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R2), there were many CpG sites with methylation
levels close to (0,0) and (1,1) in the scatter plot
(Figure 2(a)). To visualize the distribution of the
measured DNA methylation levels in the cord
blood and placenta, we transformed the dot density
in the scatter plot of sample #1 into a colour plot
using the ggplot2 R package (Supplementary Figure
1). We observed obvious red areas at the two ends of
the y = x line; this finding implied that there was
a large number of dots at the two ends (CpG sites
with extreme values of methylation i.e. close to 0 or
close to 1). To evaluate correlations between the
tissues at an intermediate level of DNAmethylation,
we excluded the CpGs with extremely high or low
DNAmethylation levels in both tissues, i.e. removed
the CpG sites meeting two criteria: (1) minimum
methylation beta values>0.8 or maximum beta
values <0.2 in both tissues and (2) minimummethy-
lation beta values>0.9 or maximum beta values <0.1
in both tissues, and these criteria were the same for
both the cord blood and placenta. The correlation

calculated with all CpG sites included could be
potentially inflated by these almost completely
methylated or unmethylated CpG sites. Removing
the extreme CpG sites may decrease the artificial
between-tissue correlation coefficients and uncover
the relation at intermediate CpGs, which would
show more tissue specificity. Moreover, the CpGs
with intermediate DNA methylation levels could be
those showing DNA methtylation variation among
individuals: these CpGs are most likely to be influ-
enced by environmental exposures and/or associated
with chronic disease development.

After removal of the CpG sites with minimum
methylation beta values>0.8 or maximum beta values
<0.2 in both the cord blood and placenta, some red
areas remained in the upper right corner and lower
left corner as presented in Supplementary Figure 2,
and the maximum density value substantially
decreased from 45 to 25. After the exclusion of the
CpG sites with minimum DNA methylation beta
values>0.9 or maximum beta values<0.1 among all

Figure 2. Methylation pattern across tissues and the between-tissue differences across individuals. (2a). Red circles indicate
measured placenta beta values vs. measured cord blood beta values (x = measured placenta beta values, y = measured cord
blood beta values), and purple circles indicate measured placenta beta values vs. SVM predicted placenta beta values (x = measured
placenta beta values, y = predicted placenta beta values by single-CpG-based SVM and leave-one-out cross-validation). R2(raw) =
CpG-wise R2 between measured methylation beta values in the placenta and measured methylation beta values in the cord blood.
R2(svm) = CpG-wise R2 between measured methylation beta values in the placenta and predicted methylation beta values in the
placenta by single-CpG-based SVM and leave-one-out cross-validation.
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the subjects and tissues, the correlations decreased
(CpG-wise R2 ranged from 0.58 to 0.74, mean 0.63).
The correlations further decreased (CpG-wise R2 ran-
ged from 0.43 to 0.65, mean 0.51) after removal of the
CpG sites with minimum DNA methylation beta
values>0.8 or maximum beta values<0.2 among all
the subjects and tissues (Table 1, Figure 1, and
Supplementary Figures 3 and 4). The magnitude of
the difference between the cord blood and placenta
was similar across the individuals (Figure 2(b),

Supplementary Figures 5–23). The CpG sites mani-
festing differences in methylation values across tissues
determined the tissue-specific patterns of DNA
methylation.

Locus-specific methylation prediction

We evaluated the utility of the DNA methylation pre-
diction via support vector machine (SVM) and paired
tissue samples: the cord blood and placenta.We treated

Table 1. CpG-wise R2 in different tissue pairs.

All CpGs

Removed CpGs with min methylation
beta values >0.9 or max beta values

<0.1

Removed CpGs with min methylation
beta values >0.8 or max beta values

<0.2

Tissue pair Mean R2 Range Mean R2 Range CpGs removed Mean R2 Range CpGs removed

measured Placenta- measured Cord Blood 0.66 0.61, 0.76 0.63 0.58, 0.74 15822 0.51 0.43, 0.65 99076
measured Placenta- SVM predicted Placenta 0.97 0.92, 0.98 0.97 0.91, 0.98 15822 0.95 0.87, 0.97 99076

For the ‘All CpGs’ column, we used all CpG sites in each sample to calculate the CpG-wise R2. For the ‘Removed CpGs with min methylation beta
values>0.9 or max beta values<0.1’ column, we excluded the extreme CpGs that fell within this range and used the remaining data to calculate
the CpG-wise R2, and this column is similar to the ‘Removed CpGs with min methylation beta values >0.8 or max beta values<0.2’ column. For the
‘measured Placenta-measured Cord Blood’ row, the R2 is the squared correlation coefficient of measured methylation in both placenta and cord
blood. For the ‘measured Placenta-SVM predicted Placenta’ row, the R2 is the squared correlation coefficient of measured methylation in the
placenta and predicted methylation in the placenta by single-CpG-based SVM and leave-one-out cross-validation.

Figure 2b. Red circles indicate measured placenta beta values–measured cord blood beta values of sample #1 vs. measured placenta
beta values–measured cord blood beta values of sample #2(x = measured placenta beta values–measured cord blood beta values of
sample #1, y = measured placenta beta values–measured cord blood beta values of sample #2). Purple circles indicate measured
placenta beta values–SVM predicted placenta beta values in sample #1 vs. measured placenta beta values–SVM predicted placenta
beta values in sample #2(x = measured placenta beta values–SVM predicted placenta beta values of sample #1, y = measured
placenta beta values–SVM predicted placenta beta values of sample #2). Note: ‘–’ represents minus sign.
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the cord blood as the surrogate tissue and the
placenta as the target tissue. A leave-one-out cross-
validation procedure was performed to estimate
prediction accuracy and avoid overfitting. After iterat-
ing through all the samples, we obtained
an n�m matrix of the predicted methylation values
in the placenta and amatrix of their observedmethyla-
tion values as experimentallymeasured by the Illumina
HumanMethylation450 array, where n represents the
number of samples, andm denotes the number of CpG
sites. The CpG-wise and sample-wise squared correla-
tion coefficient (R2) and mean absolute error (MAE)
between these two matrices were used to evaluate the
prediction performance (see Methods).

Themean R2 of all 169 samples increased from 0.66
(CpG-wiseR2 betweenmeasuredDNAmethylation in
both the cord blood and placenta, then the mean
across 169 samples) to 0.97 (mean R2 between
measured placenta DNA methylation and predicted
placenta DNA methylation according to the single-
CpG-based SVMmodel). The improvement afforded
by the proposed method (the single-CpG-based SVM
prediction) is illustrated in the scatter plots of sample
#1 in Figure 2(a) (measured cord blood vs. measured
placenta and predicted placenta vs. measured pla-
centa). The predicted placenta methylation values
were much closer to their experimental counterparts
(methylation values measured directly in the pla-
centa). The difference between measured and pre-
dicted placenta DNA methylation greatly diminished
(as compared to the difference between measured
cord blood andmeasured placentaDNAmethylation)
and was consistent across the samples (Figure 2(b)).
A similar improvement was also observed in other
samples; we presented examples using samples #1 to
#169 (Supplementary Figures 5–42).

After excluding the extreme CpG sites in both the
cord blood and placenta, we still noted increases in the
correlation (CpG-wise R2). After removal of the CpG
sites meeting two criteria (1) minimum methylation
beta values>0.8 or maximum beta values <0.2 in both
tissues; (2) minimum methylation beta values>0.9 or
maximum beta values <0.1 in both tissues, our pre-
diction model enhanced overall CpG-wise R2 (Table
1). These results indicated that we can relatively accu-
rately predict the levels of DNA methylation in the
placenta bymeans of cord blood, including some with
DNA methylation levels not at the extremes.

At individual CpG sites, when there were sub-
stantial variations (standard deviation[SD] >0.1,
33,314 CpGs) in the placenta, the trends in sam-
ple-wise R2 vs. MAE negatively correlated as
shown in Figure 3, which indicates that the R2 is
larger, and the MAE is smaller, or vice versa. For
measured cord blood and placenta methylation,
the mean sample-wise R2 for all CpGs was
0.0453, the mean sample-wise R2 for CpGs with
SD > 0.1 was 0.0677, and the mean sample-wise R2

for CpGs with SD > 0.2 (786 CpGs) was 0.2064.
For measured and predicted placenta methylation,
the mean sample-wise R2 for all CpGs was 0.0410,
the mean sample-wise R2 for CpGs with SD > 0.1
was 0.0737, and the mean sample-wise R2 for
CpGs with SD > 0.2 was 0.2167. The results
revealed that the proposed method had higher
prediction accuracy evaluated by the mean sam-
ple-wise R2 of the CpGs with SD > 0.1 or 0.2 and
improved the cross-tissue prediction accuracy at
the CpGs with substantial variations in the
placenta.

The effect of sample size on prediction accuracy

In addition to the leave-one-out cross-validation, we
performed evaluation of the impact of the size of the
training dataset. We carried out twofold and threefold
cross-validation (see Methods) and obtained predic-
tive results listed in Table 2. Additionally, we con-
ducted an experiment to estimate prediction accuracy
when changing the size of the training dataset. First,
100 samples were randomly selected from 169 sam-
ples to serve as the testing dataset; the training dataset
was chosen from the remaining 69 samples; and the
sample size of the training dataset was varied from 3
to 69. For each sample size, we used the training
dataset to build the single-CpG-based SVM models
and utilized the testing dataset to validate the models.
The mean CpG-wise R2 of measured placenta methy-
lation and SVM predicted placenta methylation in
100 testing samples were calculated as prediction
accuracy and are plotted in Figure 4. We calculated
the CpG-wise R2 using all CpG sites and the remain-
ing CpG sites after removing the extreme CpG sites
with minimum methylation beta values>0.8 or max-
imum beta values<0.2, respectively, and found that
the mean CpG-wise R2 increased with the sample size
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both before and after the removal of the extreme
CpGs, and the mean CpG-wise R2 reached 0.96
when the sample size was 20 and then rose slowly.

The single-CpG-based model vs. multiple-CpG-
based model

Our cross-tissue prediction model based on
a single CpG only chose DNA methylation at the
same CpG site as a predictor; however, the DNA
methylation at a CpG site correlated with certain
other CpG sites in the genome, and those other
sites may contribute to further improvement of
prediction accuracy. We tested the utility of
SVM, which can leverage information from multi-
ple correlating CpGs as predictors to enhance
cross-tissue prediction accuracy (see Methods).
For one sample, the computational complex
is M×(M–1), where M is the number of all CpG
sites available. We randomly selected 20 CpGs
with substantial SD in the placenta but small R2

based on the single-CpG prediction to assess the
usefulness of this approach. The CpG sites were
selected with SD > 0.1 and sample-wise R2 < 0.1.

The latter is the squared correlation coefficient of
measured placenta DNA methylation and the pla-
centa DNA methylation predicted by the single-
CpG-based SVM. For each selected CpG site, in
each round of the leave-one-out cross-validation
procedure, we used the training dataset to select 30
CpG sites in the cord blood that highly correlated
with the target CpG in the placenta, and we
included these correlating CpG sites in the SVM
models as predictors.

A neighbouring-CpG-based model has been pro-
posed elsewhere to predict DNAmethylation levels in
the placenta by means of DNA methylation levels in
cord blood and includes two predictors: (1) the same
CpG site and (2) the mean DNAmethylation levels of
neighbouring CpG sites [22]. To examine the
utility of stand-alone and multiple CpG sites in pre-
diction models, the single-CpG-based SVM
model, 30-correlating-CpG-based SVM model and
neighbouring-CpG-based SVM model [22] were
compared. After randomly choosing 20 CpG sites
that satisfied the above criteria, we applied the three
prediction models to these CpG sites and calculated
the mean sample-wise R2 of measured and predicted

Figure 3. Relationship between R2 and mean absolute error. The y-axis is the sample-wise mean absolute error (MAE) of measured
placenta methylation beta values and predicted placenta methylation beta values by single-CpG-based SVM and leave-one-out
cross-validation, and the x-axis is the sample-wise R2 of measured placenta methylation beta values and predicted placenta
methylation beta values by single-CpG-based SVM and leave-one-out cross-validation (CpGs with SD > 0.1).
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DNA methylation among the 20 CpG sites
(Supplementary Table 1). The results suggested that
the multiple-correlating-CpG-based method can
improve prediction accuracy (mean sample-wise R2)
from 0.00366 in the single-CpG-based model to
0.04063 in the 30-correlating-CpG-based model,
whereas the mean sample-wise R2 between measured
cord blood methylation and placenta methylation at
these 20 CpG sites was 0.01791, and themean sample-
wise R2 yielded by the neighbouring-CpG-based
model was 0.00713. We hypothesized that a larger
sample size may further improve the prediction
model by incorporating multiple correlating CpGs
because the increased number of degrees of freedom
from a greater number of samples can afford more
accurate estimates of the model parameters.

A comparison of well-predicted CpGs in datasets
cord blood–placenta, blood–artery, and blood–
atrium

To determine howmany common CpG sites could be
well predicted among different human tissues, we
chose the well-predicted CpGs with R2 > 0.8 from
the following three datasets: Cord Blood–Placenta,
Blood–Artery [21] and Blood–Atrium [21], where
sample-wise R2 is the squared correlation coefficient
of measured DNAmethylation values in the placenta,
artery or atrium and predicted DNA methylation
values in the placenta, artery or atrium (on the basis
of the single-CpG-based SVM prediction). The num-
ber of all CpGs available after QC in datasets Blood–
Artery and Blood–Atrium was 435,605, and the num-
ber of all CpGs available after QC in the Cord Blood–
Placenta dataset was 437,882. A Venn diagram was
plotted to show the overlaps among the sets of well-
predictedCpGs from the three datasets (Figure 5). The
number of well-predicted CpGs in the Blood–Atrium
dataset was 3,684, that in the Blood–Artery dataset
3,751, and in the Cord Blood–Placenta dataset 1,012.
The number of well-predicted CpG in the overlap
between datasets Blood–Atrium and Cord Blood–
Placenta was 204, that in the overlap between datasets
Blood–Artery and Cord Blood–Placenta was 198,
between the Blood–Artery and Blood–Atrium data-
sets 2,149, and among the three datasets: 152. The
Venn diagram illustrates that 152 common CpGs
can be well predicted across the three datasets. The
results indicate that 15%of well-predictedCpGs in theTa
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Figure 4. Effect of sample size on prediction accuracy. The x-axis is the sample size of the training dataset, and the y-axis is the
mean of CpG-wise R2 for measured placenta methylation beta values and predicted placenta methylation beta values by single-CpG-
based SVM for 100 testing samples. For the blue line, the extreme CpG sites with a minimum methylation beta value >0.8 or
a maximum beta value <0.2 were removed.

Figure 5. Venn diagram of well-predicted CpGs across the three datasets. The numbers in the circle represent the well-predicted
CpGs (sample-wise R2 > 0.8) in the three datasets, and the Venn diagram shows the intersection of the well-predicted CpGs across
the following three datasets: cord blood–placenta, blood–artery and blood–atrium.
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CordBlood–Placenta dataset are consistentwith 4%of
well-predictedCpGs in the Blood–AtriumandBlood–
Artery datasets. Moreover, the number of well-
predicted CpGs in the overlap between the Blood–
Artery dataset andBlood–Atriumdataset ismore than
10 times that between the Cord Blood–Placenta data-
set and one of the other two datasets, even though
sample size in the Cord Blood–Placenta dataset is
much larger (n = 169 vs. n = 14 in the Blood–Artery
or – Atrium dataset), because the latter two tissues
(atrium and artery) are more similar. These results
imply that closer tissue types could show relatively
higher prediction performance.

Distribution of genomic annotation categories

The correlation of cord blood and the placenta
may vary in different regions of the genome, and
this situation may affect the prediction results.
Accordingly, we calculated the genomic distribution
stratified by Illumina annotation category for the data-
set of all the CpGs and the dataset of 1,012 well-
predicted CpGs. Three genomic categories: ‘CpG
island’, ‘promoter’ and ‘enhancer’ were chosen to
determine the differences between the ‘all-CpGs’ data-
set and the ‘1,012 well-predicted CpGs’ dataset. The
proportions of the three above-mentioned genomic
categories were 0.32, 0.21, and 0.22, respectively, for
the all-CpGs dataset and 0.32, 0.21, and 0.17 for the
well-predicted CpGs dataset. The CpG island-related
distributions are listed in Table 3. The proportions for
the all-CpGs dataset were larger than those for the
well-predicted CpGs dataset at the ‘Shore’, and the
proportions for the all-CpGs dataset were smaller
than those for the well-predicted CpGs dataset at the
‘Shelf’. The results showed that the proportions of
‘CpG island’ and ‘promoter’ in the well-predicted

CpGs dataset are equal to those in the all-CpGs data-
set, but the proportion of ‘enhancer’ is smaller in the
former than in the latter.

Cross-tissue prediction improves the utility of
cord blood

We performed clustering analyses using measured
placenta methylation, predicted placenta methyla-
tion and measured cord blood methylation (see
Supplementary Figure 43). Supplementary Figure
43(a) depicts the clustering of measured placenta
methylation, 43B presents the clustering of pre-
dicted placenta methylation, and 43C depicts the
clustering of measured cord blood methylation.
We subdivided the 169 samples into four groups
according to the four most distinct sub-branches
from top to bottom of the clustering tree, and
labelled each group with a color rectangle in each
clustering figure. The overall matched proportion
is defined as the total number of matching samples
in the four groups divided by the number of all
samples. After running through the four groups in
every possible combination, we finally hit on the
four matching groups in (1) measured placenta
methylation and predicted placenta methylation
(A-B), and (2) measured placenta methylation
and measured cord blood methylation (A-C),
according to the maximum overall matched pro-
portion. The same colour rectangle indicates the
matching groups. The overall matched proportion
of the former was 48.5%, and that of the latter was
43.2%. The proportion of matching samples for
each group was defined as the number of the
matching samples in one group divided by the
number of samples in the matching group in mea-
sured placenta methylation. The results of cluster-
ing comparisons are listed in Supplementary Table
2. The proportion of matching samples of the first
three columns in plot 43B is greater than or equal
to that in plot 43C, but the proportion of matching
samples of the fourth column is smaller in plot
43B than in plot 43C. This finding is expected
since all proportions should add up to 100%.
This result was obtained in the largest group is
reassuring because the larger group contains sam-
ples that are not so close to one another as com-
pared to samples in the smaller group. The results
show that the clustering based on predicted

Table 3. CpG island-related distributions.
Dataset Island N_Shelf N_Shore S_Shelf S_Shore Other

All CpGs 0.3199 0.0501 0.1318 0.0445 0.1031 0.3506
Well-predicted

CpGs
0.3192 0.0642 0.1196 0.0583 0.0672 0.3715

The categories were designated by Illumina annotation. Five genomic
annotation categories including island, northern shelf (N_shelf),
southern shelf (S_shelf), northern shore (N_shore) and southern
shore (S_shore) are listed. Each proportion is the number of the
CpGs belonging to the same category divided by the sum of CpGs
in the dataset. The ‘All CpGs’ row is the proportion for the all CpGs
dataset and the ‘Well-predicted CpGs’ row is the proportion for the
well-predicted CpGs dataset.

EPIGENETICS 413



placenta methylation is more similar to the clus-
tering based on measured placenta methylation.
Thus, our prediction models improve the utility
of cord blood as a surrogate of the placenta. This
finding suggests that the predicted placenta
methylation could be helpful for any analysis that
involves array-wide CpG sites, such as clustering
analysis, multi-dimensional scaling (similar to
principal component analysis but more robust to
outliers), and epigenetic similarity matrix con-
struction for mixed model association analysis.

Pathway analysis of well-predicted CpG sites

We report a list of CpGs (Supplementary Table 3)
that can be well predicted with R2 > 0.8 (sample-
wise R2 is the squared correlation coefficient
between measured placenta DNA methylation
and predicted placenta DNA methylation using
the single-CpG-based SVM). To identify the
potential gene pathways associated with these well-
predicted CpGs, we performed a pathway analysis
using the ‘missMethyl’ R package [23] (see
Methods). The set of 1,012 well-predicted CpGs
turned out to be enriched in 143 pathways asso-
ciated with biological processes in the KEGG path-
way database (False Discovery Rate [FDR] < 0.05),
but was not found to be enriched in any pathway
in the Gene Ontology (GO) database (FDR <
0.05). We provide Supplementary Table 4 with
rows for each KEGG category tested and various
statistics of interest, such as FDR. The hsa04930,
hsa04940, and hsa04750 are related to type II
diabetes mellitus, type I diabetes mellitus, and
inflammatory mediator regulation of transient
receptor potential channels, respectively.

Discussion

In this study, first we examined the methylation
correlation between the placenta and cord blood,
and then a machine-learning-based method was
proposed to predict the DNA methylation values
in the placenta based on the DNA methylation
values in the cord blood. Our results indicate
that the cross-tissue prediction method can
improve the utility of cord blood at a certain num-
ber of loci, and a large size of a training sample
can enhance prediction accuracy. Furthermore, the

set of 1,012 well-predicted CpG sites is enriched in
143 KEGG pathways, and we also provide the
corresponding SVM models established by our
dataset for potential studies.

A comparison with the existing DNA methylation
prediction models

In their early stage, most computational methods
and tools were developed to predict the methylation
status of CpG island fragments [24–29]. When high-
throughput microarray and sequencing data became
widely and publicly available, the methods proposed
later were able to predict DNA methylation status at
a CpG site in the whole genome [30–32]. Fan et al.
developed a computational model to predict DNA
methylation levels and discover more rheumatoid-
arthritis-related genes on the basis of 14 human
tissues with both whole-genome bisulfite sequencing
and Illumina HumanMethylation450 array data
[33]. This model integrates cell type-specific
Illumina HumanMethylation450 array data and
common DNA sequence features, and then predicts
the methylation levels of CpGs outside the Illumina
HumanMethylation450 covered sites. The correla-
tion coefficient between the measured and predicted
methylation values is 0.9 in leave-one-tissue-out
cross-validation procedures. Zhang et al. developed
a random forest classifier to predict the DNAmethy-
lation status in whole blood and identified the fea-
tures that contribute to prediction accuracy [34].
A deep-learningmodel named ‘CpGenie’ can predict
the DNAmethylation status of a CpG site in immor-
talized cell lines and the impact of non-coding var-
iants on DNA methylation [35]. The two above-
mentioned methods are both based on sequence
context information and output predicted DNA
methylation status as ‘methylated’ or ‘unmethylated’.

There are two studies focused on cross-tissue
prediction [21,22]. Ma et al. proposed a linear
regression model (LM) and SVM model to predict
DNA methylation levels in an artery and atrium
using the DNA methylation levels in peripheral
blood [21]. De Carli et al. predicted DNA methy-
lation levels in the placenta using DNA methyla-
tion levels in cord blood [22], and this statistical
model integrates the same CpG site and the mean
DNA methylation levels of neighbouring CpG sites
identified by the Aclust R package [36]. We
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compared the cross-tissue prediction models: the
30-correlating-CpG-based SVM model and neigh-
bouring-CpG-based SVM [22] model and reported
the mean sample-wise R2 of measured and pre-
dicted DNA methylation (Supplementary Table 1).
The results show that the 30-correlating-CpG-
based SVM model has higher prediction accuracy
than does the neighbouring-CpG-based SVM
model at the CpG sites with substantial variations
in the placenta.

The impact of partially methylated domains on
the cross-tissue prediction

Although most of human tissues have high levels of
DNA methylation genome-wide, the placenta man-
ifests lower methylation levels [37,38]. Studies have
showed that partially methylated domains (PMDs)
are extended genomic regions manifesting a reduced
average level of DNA methylation and may play
a crucial role in special placental methylation pat-
terns [39–43]. Schroeder et al. carried out genome-
wide sequencing of bisulfate-treated DNA
(MethylC-seq) and Illumina Infinium450K array in
the placenta and found that partially methylated
domains are stable across placental samples and
lead to global hypomethylation and distinct methy-
lation patterns as compared with other human tis-
sues, including cord blood [44]. The latter contains
only the subset of cells (nucleated red blood cells,
nRBC) that has similarly low array-wide DNA
methylation relative to the placenta [45].

Subsequently, we calculated the means of CpG-
wise R2 of methylation values between paired tis-
sues, and they turned out to be 0.66, 0.83, and 0.81
for cord blood and placenta, blood and atrium
[21], blood and artery [21], respectively; means of
sample-wise R2 are 0.0453, 0.1345, and 0.1280,
respectively; means of sample-wise R2 of measured
and predicted placenta, atrium, or artery methyla-
tion values are 0.0410, 0.1767, and 0.1783, respec-
tively. The results indicate that the correlation
between the cord blood and placenta is lower
than that between blood and atrium and between
blood and artery. The methylation pattern causes
a decrease in prediction accuracy between the cord
blood and placenta compared to blood–atrium and
blood–artery.

Epidemiological utility

We provided two examples to demonstrate how
our results might be useful for potential studies.
Salihu et al. used cord blood DNA methylation to
investigate differential methylation levels in candi-
date genes for preterm birth between black and
non-black individuals [46]. They found that DNA
methylation at CpG site cg07404485 (PON1gene)
had a lower methylation level in black individuals.
By examining our database, we found that cord
blood DNA methylation at this CpG site was posi-
tively associated (R = 0.508, p value = 1.835e-12)
with that in the placenta, suggesting that DNA
methylation in the placenta might have a lower
methylation level in black individuals than in non-
black individuals. Joubert et al. conducted a meta-
analysis of the association between newborn cord
blood DNA methylation and maternal smoking in
pregnancy across 13 cohorts, and identified 6,073
statistically differentially methylated CpGs in rela-
tion to maternal smoking [47]. By examining our
database, we found that cord blood DNA methyla-
tion at six CpG sites was positively associated with
that in the placenta: R = 0.896 (cg16909109), R =
0.804 (cg07573717), R = 0.925 (cg16309518), R =
0.902 (cg20544437), R = 0.805 (cg00453258), and
R = 0.878 (cg02948944), all p-values < 2.2e-16.

We collected and classified the well-predicted
CpG sites in Supplementary Table 3, where the
CpG sites (1,012) with R2 > 0.8 are listed in data
sheet 1, the CpG sites (5,380) with R2 > 0.5 are listed
in data sheet 2 and the CpG sites (20,493) with R2 >
0.2 are listed in data sheet 3. The prospective inves-
tigators who have only cord blood methylation data
and a disease or trait – who are interested in the
association of the significant loci in the placenta with
the disease or trait – may predict the methylation
levels at these significant loci in the placenta with the
methylation levels in cord blood based on our newly
developed cross-tissue model (see Supplementary
files) and then analyse the association of the pre-
dicted methylation in the placenta with the disease
or trait. To implement a convenient application for
potential studies, we built 1,012 SVMmodels (single-
CpG prediction models) at well-predicted CpG sites
(Supplementary Table 3, data sheet 1) using 169
paired cord blood and placenta samples and ulti-
mately saved them as an R data file (Supplementary
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files). We hope additional epigenome-wide associa-
tion studies and publicly available data will facilitate
application of the cross-tissue model for exploring
the mechanism underlying the association between
the placenta and a disease or trait in the future
because the placenta is central to fetal growth and
development.

Strength and limitation of cross-tissue prediction

In this investigation, the proposedmethod was able to
improve the utility of methylation in cord blood for
predicting methylation in the placenta at a certain
number of loci, and the mean sample-wise R2 slightly
increased from 0.21 to 0.22 (SD > 0.2). Moreover, we
built SVMmodels based on multiple correlating CpG
sites to enhance the prediction performance at some
CpG sites with substantial SD and small sample-wise
R2. The reason for choosing the CpGs with substantial
SD is that the CpGs with small SD do not reveal
differences in methylation levels across samples,
while the CpGs with substantial SD may provide
sufficient resolution for cross-tissue prediction.

By comparing leave-one-out cross-validation
(Table 1) with twofold and threefold cross-validation
(Table 2), we observed that the mean CpG-wise R2

produced by the former is greater than that yielded by
the latter, and the mean CpG-wise R2 of threefold
cross-validation was slightly greater than that of two-
fold cross-validation. The training sample sizewas 168
for leave-one-out cross-validation, 112 for 3-fold
cross-validation and 84 for 2-fold cross-validation.
The results suggest that a larger training sample size
can improve prediction accuracy. Furthermore, on the
basis of the experiments on training sample size
(Figure 4), we recommend that the sample size of the
training dataset is greater than 20.

At the CpG sites with substantial variation, the
accuracy of the cross-tissue prediction could be
improved further by incorporation of correlating
CpG sites. The single-CpG-based SVM model, 30-
correlating-CpGs-based SVM model, and neigh-
bouring-CpG-based SVM model are compared in
Supplementary Table 1. The SVM model based on
multiple correlating CpGs performed better at
a small number of CpG sites (cg22844669 and
cg06085683) but did not work well with all the
CpG sites included.

In summary, our results have shown that
a machine-learning-based method can predict DNA
methylation in the placenta using DNA methylation
in cord blood at a limited number of loci and 1,012
prediction models at well-predicted CpG sites were
established for potential future studies. Nonetheless,
it is still challenging to develop a cross-tissue predic-
tion model with satisfactory accuracy at all CpG sites;
therefore, investigators need to be careful when
designing future potential applications.

Methods

Study population and tissue collection

The cord blood and placenta tissues were obtained
from participants in Genetics of Glucose Regulation
in Gestation and Growth (Gen3G), which is
a prospective population-based cohort study of preg-
nant women and their newborns receiving care at the
Centre Hospitalier Universitaire de Sherbrooke
(CHUS) in Canada [48–50]. Expecting mothers were
recruited during the first trimester of pregnancy if
they were older than 18 years of age, had a singleton
pregnancy and did not receive a diagnosis of pre-
pregnancy diabetes or gestational diabetes during
the first trimester. In total, 169 paired cord blood
and placenta samples were included in this analysis
with information regarding epigenome-wide DNA
methylation. The study protocols were approved by
the CHUS ethics review board and written informed
consents were obtained from all the women before
their enrolment in the study in accordance with the
Declaration of Helsinki.

DNA methylation normalization and quality
control

Among our overall sample of women and newborns,
we obtained 192 paired cord blood–placenta dyads.
After extracting the DNA from the cord blood and
placenta, we used HumanMethylation450 BeadChips
(Illumina, Inc., San Diego, CA, USA) to measure the
DNA methylation levels at 485,512 CpG sites across
the genome. The samples were imported into the
R software as a raw data object of the red-green
channel set (rgSet) via the minfi package [51] in
Bioconductor. We applied the ‘dasen’ function in
the R WateRmelon package [52] to normalize the
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probes. Eight controls were removed, and seven out-
liers were further excluded according to principal
component analysis plots. Individual data points
with detection p > 0.01 were treated as missing data.
We removed each sample with more than 20% of
missing values across the epigenome, excluded each
CpG with more than 5% of missing values across all
samples, and filtered the CpGs that overlapped with
single-nucleotide polymorphisms (SNPs) and/or
cross-hybridized to other loci [53,54]. In total, 169
cord blood–placenta samples with 437,882 CpG sites
met the quality control standards for both tissues and
were included in the analysis.

Statistical models for methylation prediction

Cross-tissue prediction models based on single
CpG sites
The cross-tissue prediction models were built using
a training dataset to predict the methylation value
(level) in a testing dataset. Suppose that the values of
the DNA methylation in the training dataset were
split into two n�m matrices, i.e., X and Y, where X
corresponds to the surrogate tissue, and Y denotes the
target tissue. Each sample is a row, and each CpG is
a column in the matrix that contains n samples and
m CpG sites. Let xij and yij (i ¼ 1; 2; 3; :::; n and
j ¼ 1; 2; 3; :::;m) be the elements of matrices X and
Y, respectively. Then, yi:is the ith row, and y:j is the
j-th column of experimentally measured methylation
matrix Y. A similar definition was used for x:j and xi:.
For a given CpG site j, we chose x:j and y:j as the
training dataset to build an SVM model, designated

as y:j ¼ f x:j
� �

. For a new sample, predicted methyla-
tion value y� in the target tissue could be calculated by
applying x� to the newly developed model;
i.e., y� ¼ f x�ð Þ, where x� is the methylation value of
the surrogate tissue from the sample being predicted.

Cross-tissue prediction models based on multiple
correlating CpG sites

We proposed a framework to predict the methylation
levels in a target tissue using multiple correlating CpG
sites. We used the training surrogate data matrix X
(n�m) and target CpG dataset y (n� 1) to build the
linear regression models and calculated the p-values.
The correlating CpG sites ranked by the p-values were

then selected as good predictors to build the SVM
model. For a given CpG site j, we used X and y:j as

the training dataset and then obtained the correlating
L� 1ð Þ CpG sites x:kf g (where k ¼ 1; 2; 3; :::; L� 1)
according to the p-values of regression mod-
els y:j ¼ αx:g þ ε, where g ¼ 1; 2; 3; :::;m; g�j, y:j is
the j-th column; and L is the number of the selected
correlating CpG sites. The prediction model was
denoted as y:j ¼ f X1ð Þ, where X1 ¼ x:k; x:j

� �
and

k ¼ 1; 2; 3; :::; L� 1 . For a new sample, predicted
value y� in the target tissue could be calculated by
applying X�

1 to the newly developed model, i.e.,

y� ¼ f X�
1

� �
, where X�

1 is the methylation value of
the surrogate tissue from the sample subjected to the
prediction.

Assessment of the prediction models

We applied the leave-one-out cross-validation
method to evaluate the prediction performance of
the proposed models. The steps were as follows:

(1) Constructing datasets
One sample (i ¼ 1; :::; n) is left out and used as

the testing dataset, and the other samples serve as
the training dataset.

(2) Building the models
Statistical prediction models (i.e., SVM) are

built using the training dataset.
(3) Prediction
The predicted values are obtained for the target

tissue samples in the testing dataset by substituting
the methylation values of the surrogate tissue in
the testing dataset into the newly developed
models.

(4) Repeat steps (1)–(3) for all samples
(5) Evaluation parameters
After predicted methylation values y�ij were

obtained for all n samples and all m CpG sites
(where i ¼ 1; :::; n; j ¼ 1; :::;m), prediction accu-
racy was evaluated by squared correlation coefficient
(R2) and mean absolute error (MAE) for each spe-

cific sample (CpG-wise R2 ¼ cor y�i:; yi:
� �2

, MAE =

1
m

Pm
j¼1

y�ij � yij
���

���) or each specific CpG site (sample-

wise R2 ¼ cor y�:j; y:j
� �2

, MAE = 1
n

Pn
i¼1

y�ij � yij
���

���).
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Twofold cross-validation

(1) Randomly divide the 169 samples into two
sets with one containing 84 samples, and the
other containing 85 samples.

(2) Use one set as the training set and the other
as the testing set and then switch them.

(3) Predict the methylation values for all 169
samples and calculate R2.

Threefold cross-validation

(1) Randomly divide the 169 samples into three
subsets, with two containing 56 samples and
the third containing 57 samples.

(2) Use one as the testing set and the other two
as the training set and then switch the train-
ing set and testing set.

(3) Predict methylation values for all the 169
samples and calculate R2.

Pathway enrichment analysis

The ‘gometh’ function in the ‘missMethyl’
R package was employed for the enrichment ana-
lysis [23]. This function takes a vector of signifi-
cant CpG sites, and maps the CpG sites to Entrez
Gene IDs, then tests for GO term or KEGG path-
way enrichment by a hypergeometric test, taking
into account the number of CpG sites per gene on
the Illumina HumanMethylation450 or EPIC
array. The main parameters were set as follows:
sig.cpg = the 1,012 well-predicted CpG sites,
all.cpg = all CpG sites on the Illumina
HumanMethylation450 array,
collection = ‘KEGG’,
prior.prob = TRUE.

Implementation of the cross-tissue prediction in
the r packages

We proposed the following two statistical models:
the single-CpG-based SVM model and multiple-
correlating-CpG-based SVM model. The SVM
model was implemented using the e1071
R packages [55]. We also provide R scripts, which
are available for downloading from our laboratory
website (http://lianglab.rc.fas.harvard.edu/
CordBloodPlacentaMethylation/), based on these
models to perform cross-tissue methylation

prediction. The R functions provided in this package
can be utilized to construct prediction model for the
methylation values within a pair of surrogate and
target tissues. The established prediction model can
then be applied to a new dataset where only the
methylation value in the surrogate tissue is available
and outputs a predicted methylation value of the
target tissue. Furthermore, for the 1,012 well-
predicted CpG sites, we built single-CpG-based
SVM models using our 169 cord blood and placenta
samples. The users may apply the methylation values
in cord blood to calculate the methylation values in
the placenta on the basis of our SVM models.
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