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Abstract

A physiologically-based scheme that incorporates inherent neurological fluctuations in the 

activation of intrinsic laryngeal muscles into a lumped-element vocal fold model is proposed. 

Herein, muscles are activated through a combination of neural firing rate and recruitment of 

additional motor units, both of which have stochastic components. The mathematical framework 

and underlying physiological assumptions are described, and the effects of the fluctuations are 

tested via a parametric analysis using a body-cover model of the vocal folds for steady-state 

sustained vowels. The inherent muscle activation fluctuations have a bandwidth that varies with 

the firing rate, yielding both low and high frequency components. When applying the proposed 

fluctuation scheme to the voice production model, changes in the dynamics of the system can be 

observed, ranging from fluctuations in the fundamental frequency to unstable behavior near 

bifurcation regions. The resulting coefficient of variation of the model parameters is not uniform 

with muscle activation. The stochastic components of muscle activation influence both the fine 

structure variability and the ability to achieve a target value for pitch control. These components 

can have a significant impact on the vocal fold parameters, as well as the outputs of the voice 

*corresponding author. matias.zanartu@usm.cl. 

HHS Public Access
Author manuscript
IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2020 May 01.

Published in final edited form as:
IEEE Trans Neural Syst Rehabil Eng. 2019 May ; 27(5): 1043–1052. doi:10.1109/TNSRE.2019.2906030.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



production model. Good agreement was found when contrasting the proposed scheme with prior 

experimental studies accounting for variability in vocal fold posturing and spectral characteristics 

of the muscle activation signal. The proposed scheme constitutes a novel and physiologically-

based approach for controlling lumped-element models for normal voice production and can be 

extended to explore neuropathological conditions.
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I. Introduction

Phonation is the primary physiological process of speech production, in which the 

coordinated activation of breathing and laryngeal muscles controls the interaction of airflow, 

the vibratory activity of the vocal folds (VF), and sound. Phonation determines distinctive 

features of speech production, defining the fundamental frequency (fo), amplitude, quality, 

and temporal patterns of vocalization.

A significant amount of data describing voice production from research and clinical 

perspectives have been collected in the past few decades using imaging and acoustic signal 

recording techniques. These efforts have resulted in mathematical models able to reproduce 

different aspects of the phonatory process in normal physiological conditions. Of particular 

value has been the development of lumped-element models of the VFs, since they can 

efficiently represent a wide range of gestures and voice qualities, including the self-

oscillating modal response of the vibrating VFs [1] [2] [3]. These lumped-element models 

can be coupled with models of aerodynamic interactions and acoustical features, thus 

forming a complete framework able to simulate the transmission and propagation of acoustic 

waves within the vocal tract, the subglottal system, and the VF tissue. Reduced order VF 

models can also mimic complex pathological phenomena, including incomplete glottal 

closure [4] and nerve paralysis [5], which opens the possibility of using these models in the 

diagnosis and treatment of VF pathologies [6], [7]. However, a number of gaps need to be 

filled before VF modeling can be established as a viable and robust clinical tool. Although 

efforts to accurately represent an individual patient in a modeling framework have been 

performed recently [8], [9], [10], a reliable representation of the inter-subject variability 

inherent in the clinical population has not yet been achieved.

Titze and Story 11] proposed a set of rules to unfold the physiological relationship between 

laryngeal muscle activation and VF configuration for reduced order models of the VFs [11]. 

However, there are numerous assumptions in that relevant study that need to be revisited. For 

instance, the effect of antagonistic muscles is overly simplified and the number of intrinsic 

laryngeal muscles that the scheme effectively controls is reduced to the thyroarytenoid (TA) 

and cricothyroid (CT) muscles. Their assumption of simplifying the effect of lateral 

cricoarytenoid (LCA) and posterior cricoarytenoid (PCA) muscles in a single activation 

signal reduces the neurological relevance of the adduction process of the VFs. More 

importantly for the present study, the method by which the muscles are activated does not 
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have a neural basis, which in turn results in fixed, deterministic muscle activation values. 

These limitations reduce the physiological and clinical relevance of lumped-element VF 

models, making it difficult to correctly replicate gestures that depend on muscle activation, 

like phonation onset and offset, among others. Also, disordered speech motor control (e.g., 

Parkinson’s disease, spasmodic dysphonia) cannot be properly represented with fixed 

muscle activation.

Several mathematical representations have been developed to describe the neural basis of 

force output during muscle activation, using the electrical and contractile properties of the 

muscle fibers in combination with the spatio-temporal electrical pattern of the neural 

population innervating the muscle. These representations mimic several physiological 

processes in a generic muscle [12] [13] [14], as well as the behavior of specific muscles [15] 

[16], including the laryngeal musculature [17]. In the latter, the variability of laryngeal 

muscle activity was explored assuming a linear relationship between the muscular force and 

fo. Without using a VF model, it was shown that perturbations in fo (coefficient of variation, 

CV, and jitter) were highly dependent on the contractile dynamics of the TA muscle. In spite 

of being a pioneering study, there are various limitations in [17] that need to be resolved, 

including: the disregard of the intricate relationships between the driving forces, VF 

configuration, and vibration patterns that leads to an overly simplified relationship between 

force and perturbation in fo; the lack of muscle recruitment that is known to control muscle 

contraction [18]; and the absence of interactions between laryngeal muscles.

The connection between modeling and experimental realms in laryngeal neural control 

remains largely unexplored. Recordings of electromyography (EMG) of laryngeal muscles 

in human subjects have allowed for characterizing vocal fold posturing during running 

speech [19], and during steady-state under the presence of voice tremors [20]. Studies of in 
vivo canine phonation [21], [22] showed that a graded nerve stimulation procedure (i.e., 

electrical stimulation of the laryngeal muscles) can be used to achieve appropriate glottal 

configurations to produce normal phonation. This type of stimulation uses regular uniform 

0.1 ms cathodic pulses at 100 Hz and has also been used to explore VF posturing and the 

effect on fundamental frequency and vibratory stability, among others [23], [24]. It is also 

relevant to note that these types of experiments have shown that acoustic perturbations (e.g., 

jitter, shimmer) can be present even in the absence of a neural drive in the laryngeal muscles 

[25], [26]. In fact, acoustic perturbations can be affected by acoustical [27], aerodynamic 

[28], biomechanical [29], and neural [30] [17] components, and thus are not useful to 

identify the source of abnormal behavior. Even though acoustic perturbations have 

limitations for diagnostic purposes, they continue to be used in the clinic as an overall 

measure of vocal function, and normative values have been provided by several authors [31] 

[32] [33].

In this study, a new neurophysiological modeling paradigm for laryngeal muscle activation 

is proposed. This approach significantly extends prior efforts with the aim of introducing a 

neurophysiological description in the control of muscle behavior for a reduced order model 

of the VFs. The scheme features inter-spike interval variability [34], interactions between 

different types of muscle fibers, muscle recruitment [35] [36] using motor units (MU) [37], 

and electro-physiologically relevant parameters measured in laryngeal muscles [38]. The 

Manríquez et al. Page 3

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proposed approach intends to capture more faithfully the main characteristics of the muscles, 

and therefore generate a more realistic representation of the activation signal.

In an effort to extend existing rules that relate muscle activation to VF parameters for low 

order models [11], the proposed scheme will be used to jointly study the TA and CT intrinsic 

laryngeal muscles. The models for TA and CT will be combined with a body-cover model 

(BCM) [2] of the VFs. By introducing neurophysiological fluctuations in the muscle 

activation with the proposed scheme, we aim to move away from the current fixed 

deterministic muscle activations and capture intrinsic fluctuations in the VF parameters. We 

hypothesize that the resulting fluctuations in the muscle activation signals will affect the VF 

dynamics in a physiologically meaningful way that differs from a simple addition of noise in 

the VF parameters. We relate our results with the proposed scheme to prior experimental 

studies in laryngeal neural control. To evaluate the impact of the muscle activation 

fluctuations, vocal fold posturing changes and spectral characteristics in the muscle 

activation signal will be computed and compared with prior in vivo canine measurements 

and intramuscular EMG recordings in human subjects. Contrast with other studies will be 

discussed.

II. Methods

A. Physiological and Morphological Aspects of Muscle Activation

Activation of the laryngeal muscles comprises two major physiological processes 

responsible for muscle force production, namely, the temporal and the spatial summations of 

the muscle contraction [39], [37]. Temporal summation is at the level of individual MUs, 

which are composed of an alpha motor neuron and the muscle fibers that it innervates [40], 

[39]. The spatial summation is the successive activation of additional MUs with increasing 

strength of voluntary muscle contraction; i.e., MU recruitment [37] [41].

Fibers forming an individual MU respond synchronously to every action potential (AP) 

arriving at the neuronal pre-synaptic terminal, producing a motor unit action potential 

(MUAP). In turn, MUAPs lead to muscle contraction, the extent of which depends on the 

firing rate of the MU. A single MUAP leads to a simple twitch (single contraction), allowing 

the fibers to return to a relaxed baseline before a subsequent contraction is elicited. 

Typically, the first MUs to fire are those that generate the slowest and the smallest twitches, 

producing relatively small and slow contractions (type I MUs). As more considerable force 

is required, high threshold MUs generating faster and larger twitches begin to respond (type 

IIa and IIb MUs) [35] [36]. Figure 1 shows a sketch of the time course of slow and fast 

twitches, highlighting the differences in both timescale and amplitude of the responses.

Twitches superimpose as the discharge rate increases, leading to stronger muscle 

contraction. Linear superposition is referred to as the wave summation model [39]. Figure 2 

shows the contractile force as a function of MUAP firing rate for a single MU. At low firing 

rates, a given twitch almost completely relaxes before the next twitch occurs, leading to low 

frequency undulations and a low net force of contraction. Conversely, at high firing rates the 

superposition of twitches leads to a fast rise and larger “steady state” contractile force 

magnitude, with small high frequency fluctuations. At a sufficiently high firing rate, a MU 

Manríquez et al. Page 4

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



will cease to increase its contractile force with further increases in firing rate, referred to as 

tetanus.

Figure 2 is an idealized representation of the wave summation process, wherein the MUAP 

interval is a constant (deterministic) value. In actuality, biological systems exhibit some 

stochasticity, with the inter-spike intervals (ISI) for MUAPs being no exception. In addition, 

recruitment of subsequent MUs, while exhibiting an overarching structure, also 

demonstrates some randomness in the process.

B. Muscle Activation Scheme

Human skeletal muscles typically comprise hundreds of MUs, with both the MUAP 

frequency and the number of recruited MUs dictating the total contractile force of the 

muscle. According to Roth and van Rossum [42], a single MU contraction (twitch) can be 

described using

α̈(t) + 2
τ α.(t) + 1

τ2 = u(t), (1)

where u(t) represents the input MUAP, τ is the time constant of the contraction, and α(t) 
denotes the resulting contraction force of the fibers. Consequently, the impulse response of 

the system is represented by:

α(t) = t
τ e−(t − τ) ∕ τ, t ≥ 0 (2)

which characterizes how a MU responds to an electric impulse (spike). Equation 2 is known 

as the alpha synapse function [42]. Herein, type I and II fibers can be differentiated by their 

time constants τs (slow) and τf (fast). All MUs for a given muscle are assumed to have the 

same number of fibers, independent of their type. Equation 2 should be scaled according to 

the magnitude of the response of the different fibers. However, due to the lack of available 

data on the laryngeal muscle fibers, a normalization by the area is performed to approximate 

the differences in amplitude of the slow and fast fibers. The normalized version of the alpha 

function [42], corresponds to

ατ(t) = t
τ2e−t ∕ τ, t ≥ 0 (3)

Figure 1 presents a plot of Equation 3 for both slow and fast twitch fibers. This waveform 

will serve as the foundation for the muscle activation scheme proposed herein to capture 

both the temporal and spatial summation processes.

To describe the spatial summation, MU recruitment is modeled via the rule of five (ROF), 

wherein additional MUs are recruited when currently activated MUs experience an 

approximately 5 Hz increase in MUAP firing rate [43]. To facilitate modeling of the 
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recruitment of MUs, we assume the MUs to be functionally bundled into clusters, herein 

referred to as a group of motor units (GMU). GMUs can consist of both fast and slow MUs, 

the proportions of which will dictate the overall contraction speed of the GMU. GMUs are 

assumed to follow the ROF for recruitment.

GMUs are composed as follows: A fixed number of GMUs N is first defined for a given 

muscle. Slow-fiber MUs are assigned to the first GMUs, until all slow MUs are assigned. 

Fast-fiber MUs are then assigned to the remaining GMUs. Note that depending on the 

proportion of slow and fast fibers in a muscle, there could be a GMU with mixed fibers. 

GMUs then are recruited by the ROF from first to last (slow fibers to fast fibers), allowing 

for the recruitment of all slow fibers first.

To implement the ROF, we employ a parameter F to control the firing rate of the GMUs. The 

firing rate for a given GMU j ∈ {1,…, N} is governed by

F j = min {max {F − 5( j − 1) + η, 0}, Fmax}, (4)

where Fmax is the maximum firing rate that a GMU can physically sustain, i.e., the firing 

rate at which the GMU tetanizes. The parameter η~𝒩 (0, σF)is a random noise term to 

capture the inherent variability in the ROF; that is, subsequent MUs may not be recruited at 

exactly a 5 Hz increase in F. Herein, bold font is used to indicate stochastic parameters and 

functions.

The stochasticity inherent in the arrival of a MUAP is captured in the temporal summation 

process by incorporating a random component into the inter-spike interval (the interval 

between any two subsequent AP spikes). For a given GMU j with firing rate Fj sampled from 

Equation 4, we construct an impulse train IIIi(t, Fj) with inter-spike interval drawn from 

𝒩(1 ∕ F j, CVe(F j) ∕ F j) for each MU i. The coefficient of variation (i.e., standard deviation 

divided by the mean value), CVe(Fj), derived from the experimental data of Mortiz [34], is 

given as

CVe(F j) = 1 + e
−F j ∕ 50

∕ 10, (5)

which captures the observed change in behavior across firing rates. This implementation 

implies that the CVe ranges from 0.2 for lower activation frequencies to 0.1 at higher firing 

rates.

The pulse train comprising the time series of twitches is given by

p(t, F j) = 1
M ∑

i = 1

M
(IIIi(t, F j) ∗ ατ)(t), (6)
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where M is the number of MUs in the GMU. We note that care must be taken in Equation 6 

for GMUs comprising both slow and fast fibers, as ατ differs for the two fiber types, as 

shown in Figure 1.

Finally, muscle activation, which is a normalized representation of the contractile force 

exerted by a given muscle [11], is given by

am(t) =
∑ j = 1

N p(t, F j)
E{∑ j = 1

N p(t, Ftet)}
(7)

where E{·} is the expectation operator as t → ∞ and

Ftet = Fmax + 5 (N − 1) (8)

is the firing rate for a fully tetanized muscle (all GMUs fully activated). In this manner, a 

fully tetanized muscle is given by E{am} = 1, whereas E{am} = 0 represents a fully relaxed 

muscle. We highlight the fact that am is a function of our firing rate control parameter F 
introduced in Equation 4. The nonlinear mapping between these parameters will be 

discussed in subsequent sections.

C. Laryngeal Muscle Parameters

Two intrinsic laryngeal muscles are considered in this study due to their importance in pitch 

control during phonation [44] and the VF model used in the study: TA and CT. Table I 

presents the laryngeal muscle parameters employed in the proposed scheme. This includes 

experimental data on muscle morphology [45] [46] [38], as well as modeling assumptions, 

such as the number of GMUs per muscle and the number of MUs per GMU. Similar model 

parameters have been used recently in a experimental study of the dynamics of intrinsic 

laryngeal muscle contraction [47].

For this study, the body-cover model developed by Titze and Story [2] was employed. This 

low-dimensional model was chosen due to its simplicity and the physiologically-based 

relationship between model parameters and muscle activations established in [11]. Glottal 

aerodynamics were modeled following [48], and no vocal tract was included to facilitate 

comparisons with results presented in [11].

III. Results

A. Muscle Activation Description

Figure 3 shows examples of TA muscle activation signals obtained using the proposed 

stochastic muscle activation scheme for the same set of firing rates shown in Figure 2. At the 

lowest firing rate, only the first 2 GMUs are nominally recruited, while for the remaining 

firing rates all 10 GMUs may be active. In all cases shown, none of the GMUs are tetanized. 

The time series shown in the figure have transient portions that last for approximately 0.2 s, 
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which represents the time required for the muscle to transition from the fully relaxed to a 

contracted state. In comparison with the traditional wave summation model shown in Figure 

2, we observe that the muscle activation signal generated using the stochastic scheme lacks a 

periodic structure, thus more closely resembling actual muscle behavior [34].

Note that Figure 3 was constructed with only one realization of the proposed stochastic 

muscle activation scheme. In order to characterize its general behavior we need to run 

statistics on many realizations of the signal. Therefore, 40 simulations of the activation 

signal were computed for each value of the firing rate, which spans from 10 Hz to 250 Hz, in 

steps of 10 Hz for a total of 10000 simulations. Note that Fmax is set at 150 Hz, so the 

tetanization frequency Ftet is approximately 200 Hz by the ROF. At this frequency, 

nominally all 10 GMUs should be firing at Fmax, barring stochastic variability in the ROF in 

Equation 4. Simulations are performed up to 250 Hz to account for the latter.

The average CV of the 40 signal realizations for each firing rate F for both the TA and CT 

muscles is shown in Figure 4. The average CV is an estimate of the variability within the 

activation signals across firing rate. The larger variability in low firing rates is a result of 

Equation 5 and the different responses between muscles is a product of the morphological 

construction of the muscles, as shown in Table I. Specifically, the differences between the 

two muscles is confined to lower firing rates due to the different proportion of slow-small 

fibers, which changes the properties of the temporal filtering in the muscles. We note that 

CV is essentially constant for F > 180 Hz as more and more GMUs become tetanized, and 

thus no longer change their behavior with increasing firing rate.

In addition to differences in signal variability between individual realizations, the mean of 

the signal can also change. That is, each realization may have a different steady state mean 

muscle activation value due to the stochastic nature of the scheme. To capture this, we 

present the average muscle activation (average of the mean signal values for all realizations) 

and coefficient of variation of the mean (standard deviation of the mean values divided by 

the average muscle activation) in Figure 5 for the TA muscle at each firing rate. We note that 

in the range of 40 Hz ≤ F ≤ 180 Hz the relationship between firing rate and mean activation 

is linear. Below 40 Hz there are inactive GMUs, while above 180 Hz the effect of saturated 

GMUs begins to be noticeable. Typical values of muscle activation employed in reduced 

order models range between approximately 0.1 and 0.5, which falls within the linear region 

of the mapping and is thus amenable to simple control strategies.

Comparing the CV of the mean in Figure 5 with the average CV in Figure 4 shows that the 

variability of the mean is on the order of the variability of an individual realization, which 

has implications for pitch control. To begin to establish a relationship between the mean 

activation behavior and pitch control, we posit that mean activation represents a neurological 

target. Therefore, the standard deviation of the mean is associated with the target variability. 

The CV of the mean decreases exponentially with the firing rate due largely to the increasing 

mean; the standard deviation of the means remains relatively constant with firing rate, except 

at very low firing rates. Neurologically, this translates into a better pitch control at higher 

muscle activations.
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The behavior of the average CV and the CV of the mean support the idea that variability in 

discharge rates influences force fluctuations at lower levels of activation. This is consistent 

with previous findings [49], which report that variability at lower levels is due to low-pass 

filtering of the neuronal drive. Most of the higher frequency components that are present in 

the input signal are damped out, leading to low-frequency oscillations manifesting in the 

muscle activation output. It is uncertain if low-frequency variations are due to ISI variability 

or low-frequency oscillations in MU discharge [50]; this is particularly true in the specific 

case of laryngeal muscles, for which information is scarce.

B. Spectral Analysis

To further characterize the properties of the muscle activation scheme, we analyze its 

spectral content as a function of firing rate. The power spectral density (PSD) is computed as 

the average periodogram of the 40 signal realizations. Figure 6 presents the resulting PSD 

for the TA muscle as a function of firing rate. A strong energy band is centered around the 

firing rate, which has a slope of 1 and saturates at a firing rate of 150 Hz due to tetanization 

(see Table I). The width of the high energy band is approximately 50 Hz that arises due to 

the ROF distributing energy between GMUs. Higher harmonics are present due to the quasi-

periodic content in the signals. We note that when η = 0 in Equation 4 and CVe = 0 in 

Equation 5, the muscle activation scheme is completely deterministic. In this case, the PSD 

has a similar structure, but with the high energy bands resolved into clear tonal components.

The other salient feature in Figure 6 is a low frequency component in the response below 

approximately 20 Hz. This arises from a cross-spectral DC component that is inversely 

proportional to the standard deviation of the random variable that models the ISI in the 

activation signal [51]. This is directly related to the non-zero CV of the mean observed in 

Figure 5; that is, there is variability in the mean muscle activation that arises as a direct 

result of the ISI variability. Low-frequency components are essential for the resulting 

activation profile (or force output), as they have been related to force steadiness at low 

activation values [49]. In the deterministic case, there is no variability in the ISI, thus the DC 

component does not appear and the mean muscle activation parameter is independent of 

realization, as expected.

To further characterize the low-frequency components, we examined the spectral tilt (slope) 

that the PSD exhibits between 2 Hz and 60 Hz according to Kuda and Ludlow [20]. This 

spectral slope was computed with a filtered version of the muscle activation signal in which 

the mean value was removed. The spectral slope was computed between the peak and a point 

15 Hz higher. Figure 7 presents the spectral slopes for CT and TA muscles at different levels 

of activation.

Previous studies show that normal voices that do not exhibit tremor have spectral slope 

values between 0 than 1, whereas voices with tremor have spectral slopes between 1 and 2 

[20]. Figure 7 illustrates that the activation signal resulting from the proposed stochastic 

scheme for normal conditions has slopes between 0 and 1, which is in agreement with the 

expected normal behavior.
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C. Body-Cover Model Integration

The BCM of the VFs is typically configured using physiological rules of muscle activation 

[11] that allow for a meaningful construction of the model parameters. The BCM model 

parameters are functions of the TA, CT, and LCA muscle activations, and as such, the output 

of the BCM accounts for the complex interactions between these muscles. By itself, a 

standard simulation of the model presents no stochastic or random behavior, although 

sources of perturbation can be included (i.e., aerodynamic turbulence [28]). We explore the 

impact of the proposed stochastic muscle activation scheme by implementing it into the 

BCM. The proposed stochastic variability is incorporated into the muscle activation input of 

rules of muscle activation [11] and will thus propagate through the BCM in a non-trivial 

manner, being the only stochastic source in the whole model in our implementation. Note 

that in this study we only looked at steady-state phonation and we did not explore the role of 

phonation onset, phonation threshold pressure, or pre-phonatory conditions for achieving 

self-sustained phonation [52], [19].

Figure 8 shows an example of how the proposed stochastic muscle activation scheme 

produces variability in the lower cover layer mass and spring constant in the BCM with time. 

This specific realization employs a firing rate for the TA muscle of 70 Hz with the CT and 

LCA activations assumed fixed at 0.2 and 0.5, respectively. Temporal variations in the BCM 

model parameters in Figure 8 arise due to the stochasticity embedded in the TA muscle 

activation by the proposed model. The mean (standard deviation) are 6.53 × 10−2 (9.21 × 

10−5) g and 8.78 × 104 (67.3)dyn/cm for the mass and spring constant, respectively.

To more thoroughly evaluate the impact of the proposed stochastic muscle activation 

scheme, we perform a parametric analysis of CT and TA activations. An evenly spaced grid 

of 20 × 20 firing rates for CT and TA muscles, ranging from 0 to 200 Hz, was utilized with 

40 simulations performed for each parameter combination. To facilitate comparison with the 

deterministic muscle activation rules established by Titze and Story [11], we extendws their 

Muscle Activation Plots (MAPs) to include variability in BCM output from our stochastic 

representation. MAPs now allow for an explicit representation of the BCM parameters as a 

function of firing rate for each muscle.

Figure 9 shows a contour MAP of fundamental frequency as a function of CT and TA firing 

rates. The estimation of fo was obtained using the RAPT algorithm [53] on the glottal area 

waveform. The contour lines in Figure 9 display the mean value of fo, while the flood 

contour indicates the average CV of the realizations. The range of displayed firing rates 

nominally corresponds to mean muscle activation parameters ranging from 0 to 1, barring 

the mapping presented in Figure 5. With this in mind, we note that the distribution of fo with 

muscle activation parameters displays similarities to the MAP presented by Titze and Story 

[11]. Specifically, fo generally increases with increasing CT and decreasing TA firing rates 

and vice versa. The CV distribution is somewhat more complex, with the highest variability 

occurring at high fo, when FCT is high and FTA is low. A slight increase is also observed 

when FTA is high and FCT is low. Interestingly, CV is not elevated when both firing rates are 

high. Thus, there is not a direct relationship between the variability in fo and that of a 

particular muscle. This is in contrast with the results from the simpler mathematical 

description presented in [17] that ascribed all fo variation to the TA muscle. In addition, we 
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highlight that the average CV of the fundamental frequency in Figure 9 provides information 

of target values for pitch control. That is, high pitch frequencies (high CT, low TA) are 

subject to the highest variability, meaning that it is more difficult to hit a pitch target in that 

scenario. In contrast, intermediate pitch frequencies (intermediate CT and TA) exhibit the 

lowest variability, meaning that it is easier to hit a pitch target in that condition.

To further investigate the trends observed in Figure 9, we explore the details of the principal 

BCM parameters influencing fo, namely the lower cover spring k1 and mass m1. A sample 

time series for a specific case was previously presented in Figure 8. Figure 10(a) presents the 

mean spring stiffness and average CV for the full range of CT and TA firing rates. In 

general, the mean value of k1 is a strong function of CT, increasing rapidly as FCT increases. 

It is a much weaker function of FTA. The opposite is true for m1, shown in Figure 10(b), 

which increases with FTA while remaining virtually unchanged with FCT. The average CV 

distribution for k1 shows relatively higher values for the extremes of FCT, whereas the 

density for m1 is highest at low values of FTA and relatively invariant otherwise. The 

combination of these two average CV distributions largely explains the average CV map for 

fo in Figure 9.

One parameter of great importance in the BCM is the VF length, as the resulting fo directly 

depends on it. It has been shown that small variations in VF length affect the pitch regularity 

[30]. Variations of VF length were obtained across all the possible combinations of 

activations. We contrast our results with experimental VF length measurements obtained 

from in vivo canine larynges that were excited using electrical stimulation [26]. Hirano’s 

four laryngeal adjustments were reproduced using the BCM with the proposed stochastic 

muscle activation scheme, and changes in the VF length were obtained with respect to its 

nominal length L0. The results of this comparison are shown in Table II.

General agreement is observed in the trends in Table II, although it is necessary to point out 

the fundamental differences between the original experiment and our simulations, to 

understand the observed discrepancies. First, the experimental study of Vahabzadeh et al. 
[26] uses a canine larynx, whereas our representation is designed for human phonation. 

Naturally, the nominal values for the VF lengths and its variability are different. In addition, 

the type of graded nerve stimulation procedure in [26] and the experimental nature of the 

protocol introduce larger differences in the standard deviations.

To place the previous discussions on the output variability in a more clinical context, we 

computed common acoustic perturbations, i.e., jitter and shimmer [54]. While we 

acknowledge that these measures have limitations for diagnostic purposes since they are not 

capable of identifying the source of abnormal behavior (acoustic, aerodynamic, 

biomechanical, and neurological), they do enable comparisons with prior studies on the 

impact of muscle activation variability [30], [17], and have been widely reported in human 

subjects [31], [32] and speech synthesis studies [33]. Herein, jitter and shimmer were 

computed from the simulations previously described using PRAAT scripts [55]. Simulations 

of 3 s of duration were performed to accurately calculate both measures. 20 simulations 

were carried out for each activation combination, considering the same 20 × 20 spaced grid 

mentioned earlier. Once computed for the whole range of possible activation combinations, 
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jitter was found to always be below 0.2% and shimmer below 0.7%, which is typical of a 

normal voice [31], [32], [33]. Therefore, it can be inferred that although the proposed 

scheme only introduces neuronal fluctuations, the resulting acoustic perturbations are within 

the “normal” range. In addition, it is worth noticing that articulatory speech synthesizers 

[33], [4] use fluctuations in the voice source (similar to jitter) that linearly increase with 

fundamental frequency, to make the synthesized speech more natural. This behavior is in 

agreement with our scheme, as observed in the flood contour in Figugre 9, although with 

more a complex pattern that depends on muscle configuration.

Finally, one additional simulation was conducted to illustrate the effects of the muscle 

variability near bifurcation zones in the BCM model. For this purpose, we included the 

effect of the LCA muscle, which is a very sensitive parameter for achieving self-sustained 

oscillations with the BCM, thus having a significant impact on the vibratory stability near 

bifurcation zones. Figure 11 shows an example in which the variability in the LCA muscle 

(with a mean value close to 0.5) causes a great instability in the area waveform. Jitter for this 

particular case was above 1%, with a spectral slope also above 2, which suggest abnormal 

behavior [32], [20]. The large sensitivity of the BCM model dynamics to LCA illustrates a 

weakness of the current rules for relating muscle activation to model parameters [11] and its 

inability to represent antagonist muscle action to regulate glottal adduction.

IV. Discussion

The proposed muscle activation scheme includes several assumptions regarding muscle 

morphology and functionality, including linear summation of muscle twitches, the “rule of 

five” for MU recruitment, and the collection of MUs into groups that are simultaneously 

recruited. Although linear twitch summation is well established in the literature [17], [39], a 

non-linear summation framework could be explored. We further note that other muscle 

recruitment models exist [12] and may warrant future examination. In this regard, the 

proposed morphology for the GMUs could be further revised. We acknowledge that the 

selection of the number GMU can have an effect on partial frequency components of the 

muscle activation signals, although the resulting VF model kinematics remain largely 

unaffected.

We contrasted the proposed muscle activation scheme with prior studies reporting vocal fold 

posturing changes during in vivo canine measurements and spectral characteristics during 

intramuscular EMG recordings in human subjects, obtaining general agreement in both 

cases. In addition, we provided contrast with studies assessing acoustic perturbations, where 

resulting jitter and shimmer from the BCM output were in the normal range and had an 

increasing behavior with frequency, matching prior observations [33], [4]. All these 

comparisons have limitations that need to be pointed out. The in vivo canine experiments 

from Vahabzadeh et al. [26] do not exactly match the anatomical conditions and type of 

nerve stimulation procedure in our human model, thus affecting mean values and their 

variability. In terms of the acoustic perturbations, we acknowledge that changes in the neural 

drive are not the only source that induces variability. Other factors (acoustic, aerodynamic, 

biomechanical) can result in significant changes in these measures. Furthermore, 

experiments with excised larynx phonation in neurally dead specimens indicate that vocal 
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perturbation is present without fluctuations in the neural drive [22], [25]. It is interesting to 

note that the graded artificial stimulation used in these studies does not generate a voice 

pattern that corresponds to unnatural voice. We could hypothesize that the graded electrical 

input introduced to the laryngeal nerves in these canine experiments could be described 

through a deterministic (periodic) MU firing rate contracting the laryngeal muscles using a 

similar framework as the one proposed in this study, although further research would be 

needed to relate the electrical nerve activation to the MU constriction.

On the other hand, there is evidence in which twitch variations affect perturbations in the 

voice [30], particularly in the fundamental frequency. The simulations presented in this 

study support the idea that small variations in muscular activity can yield perturbations in 

the voice. One aspect that remains to be explored is how these fluctuations affect phonation 

stability near bifurcation zones, information that could be useful for modeling voice breaks 

or tremors. It is important to emphasize that our simulations were obtained for steady state 

vowels, given that previous studies have illustrated that the neural drive of the muscle 

activation changes during phonation onset but not in the same way than the resulting 

acoustic perturbations [52], [19], [47]. Phonation onset has added complexity given the 

inertial effects in the muscle dynamics [56] that are not captured by the current rules of 

reduced order models [11], and measures such as the relative fundamental frequency [57] 

may be more appropriate to assess the variability in pitch than traditional acoustic 

perturbations.

Future efforts will be devoted to exploring the neural effects of antagonistic muscles and 

extending the rules for controlling a triangular body-cover model [7]. In addition, a long-

term goal of this work is to replicate the neural variability of common muscle-related 

pathologies like Parkinson’s disease. In the case of Parkinson’s disease, neurons exhibit an 

intricate pattern of inhibition and excitation, which leads to altered firing rate patterns [58]. 

The proposed scheme could potentially replicate this behavior and therefore serve as a 

starting point to construct a physiologically-relevant model of Parkinson voices, which is 

currently lacking. There are also other applications of the proposed muscle activation 

scheme, e.g., a model of the vocal tract that inherent neural fluctuations. Finally, it would be 

of value to design a comprehensive validation framework of the proposed stochastic muscle 

activation scheme with intramuscular EMG measurements of intrinsic laryngeal muscle 

activity of human subjects during phonation, though it could be quite invasive and complex.

V. Conclusion

The present study introduces a neurophysiological muscle activation scheme for intrinsic 

laryngeal muscles. It is designed to capture the essential characteristics of muscle control, 

providing an activation signal for use in numerical models of the vocal folds. The resulting 

muscle activation is controlled by the neural firing rate of the different MUs, therefore 

establishing a link between the nervous system and laryngeal muscle control. Synaptic 

stochasticity present in the neuronal input of the MU arises from the temporal and spatial 

summations that govern superposition of muscle twitches and MU recruitment, respectively. 

As a result, the muscle response has frequency content centered around both the firing rate 

and its harmonics, as well as a low-frequency DC component. These components influence 
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both the fine structure variability of the signal, as well as the ability to achieve a target mean 

activation value for pitch control. The proposed scheme is integrated into a body-cover 

model of the vocal folds to assess the impact of muscle activation variability on overall 

laryngeal control. Along with muscle activation rules, neural firing rate becomes a novel 

control parameter that offers a natural, physiologically-based, framework to govern vocal 

fold properties. Fluctuations arise in the vocal fold model parameters, which in turn result in 

measurable changes in the model output. These changes are in agreement with prior 

experimental studies accounting for changes in vocal fold posturing, spectral characteristics 

of the muscle activation signal, and perturbations in the fundamental frequency. The 

variability in the resulting output is not a simple function of one muscle, but exhibits 

complex interactions between intrinsic laryngeal muscles.
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Fig. 1: 
Examples of fast and slow twitch waveforms. Slow and fast twitches are normalized by the 

area under the curve, so the contribution in terms of energy is the same for both fiber types 

[42].
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Fig. 2: 
Wave summation model for different neuron firing rates. Each time a MU fires, a twitch is 

generated. The sum of successive twitches is the basis of the wave summation model [39].
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Fig. 3: 
Examples of muscle activation for the TA muscle for a range of firing rates using the 

proposed stochastic activation scheme.
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Fig. 4: 
Average CV for CT and TA muscles versus firing rate F. Note that signal variability is 

higher at lower levels of muscle activation.
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Fig. 5: 
Mean activation (left axis, solid line, both muscles) and CV of the mean (right axis, dashed 

line, see legend for muscles) versus firing rate for CT and TA muscles. The mean muscle 

activation saturates at a value of 1 during tetanus, as expected.
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Fig. 6: 
PSD of the stochastic muscle activation scheme versus firing rate for the TA muscle. Strong 

frequency components can be observed in the range in which active GMUs are firing. Low 

frequency components are present at any level of activation.
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Fig. 7: 
Spectral slope for CT (o) and TA (x) muscles at different firing rates. Inset: Example of 

spectral tilt calculation method. The spectral slope is computed between the peak frequency 

in the PSD and a 15 Hz point above it.
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Fig. 8: 
Effect of the proposed stochastic TA muscle activation scheme on the (a) lower cover mass 

m1, and (b) lower cover spring k1 of the BCM. Both parameters vary in time due to the 

temporal variability in the TA muscle activation parameter.
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Fig. 9: 
Mean fundamental frequency (iso-lines) and average CV (flood contour) for the BCM as 

functions of TA and CT firing rates. All units are in Hz.
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Fig. 10: 
Mean BCM parameters (iso-lines) and average CV (flood contour) as functions of TA and 

CT muscle firing rates. (a) Lower cover spring constant k1 (in dyn/cm); and (b) lower cover 

mass m1 (in g) of the BCM.
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Fig. 11: 
BCM simulation with stochastic LCA activation, with a mean activation around 0.5. 

Activation values for CT and TA were fixed at 0.5 and 0.25, respectively.
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TABLE I:

Muscle parameters for CT and TA muscles [45], [46], [38].

Muscle TA CT

GMU per muscle (N) 10 10

MU per GMU (M) 35 44

Fibers per MU 10 20

Percentage of slow fibers 35% 47%

Percentage of fast fibers 65% 53%

Slow fibers time constant (τs) 35 ms

Fast fibers time constant (τf) 15 ms

Maximum firing rate for GMU (Fmax) 150 Hz

Standard deviation for ROF (η) 2 Hz
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TABLE II:

VF length changes in % with respect to nominal length for Hirano’s four laryngeal adjustments [26].

Vahabzadeh et al. 2017 BCM Simulations

Low TA/Low CT +6% ± 1.5% + 10% ± 0.05%

High TA/Low CT −2.5% ± 3% −20% ± 0.06%

TA Slight >CT 0% ± 2% 0% ± 0.08%

CT >>TA +8.4% ± 0.5% +30% ± 0.1%
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