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Background: The causes of poor respiratory function and COPD are incompletely understood, but it is clear that
genes and the environment play a role. As DNA methylation is under both genetic and environmental control,
we hypothesised that investigation of differential methylation associated with these phenotypes would permit
mechanistic insights, and improve prediction of COPD. We investigated genome-wide differential DNA methyl-
ation patterns using the recently released 850 K Illumina EPIC array. This is the largest single population, whole-
genome epigenetic study to date.
Methods: Epigenome-wide association studies (EWASs) of respiratory function and COPD were performed in
peripheral blood samples from the Generation Scotland: Scottish Family Health Study (GS:SFHS) cohort (n =
3781; 274 COPD cases and 2919 controls). In independent COPD incidence data (n=149), significantly differen-
tially methylated sites (DMSs; p b 3.6 × 10−8) were evaluated for their added predictive powerwhen added to a
model including clinical variables, age, sex, height and smoking history using receiver operating characteristic
analysis. The Lothian Birth Cohort 1936 (LBC1936) was used to replicate association (n = 895) and prediction
(n = 178) results.
Findings:We identified 28 respiratory function and/or COPD associated DMSs, which mapped to genes involved
in alternative splicing, JAK-STAT signalling, and axon guidance. In prediction analyses, we observed significant
improvement in discrimination between COPD cases and controls (p b .05) in independent GS:SFHS (p =
.016) and LBC1936 (p = .010) datasets by adding DMSs to a clinical model.
Interpretation: Identification of novel DMSshas provided insight into themolecularmechanisms regulating respi-
ratory function and aided prediction of COPD risk. Further studies are needed to assess the causality and clinical
utility of identified associations.
Fund: Wellcome Trust Strategic Award 10436/Z/14/Z.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Respiratory function is influenced by both environmental factors
and genetic factors, with heritability estimates ranging from 39 to 66%
[1,2]. Epigenetic modifications are at the interface of genetics and the
imentalMedicine,MRC Institute
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environment. DNA methylation, the covalent binding of a methyl
group to the 5′ carbon of cytosine-phosphate-guanine (CpG) dinucleo-
tide sequences in the genome, is an epigenetic modification of DNA that
is associatedwith gene expression. Epigenome-wide association studies
(EWASs) have the potential to provide mechanistic insights into im-
paired respiratory function and COPD pathogenesis. Previous EWASs
of spirometric measures of respiratory function and respiratory disease
have however produced inconsistent results, with some identifying sig-
nificant associations [3–6], and others not [7–9]. Moreover, there has
been little consistency between the positive findings reported [9,10].
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Research in context

Evidence before this study

We searched for articles in PubMed published in English up to July
25, 2018, with the search terms “DNA methylation” and “respira-
tory function”, or “COPD”. We found some evidence for associa-
tion between differential DNA methylation and both respiratory
function and COPD. Of the twelve previous studies identified,
eight used peripheral blood samples (sample size [N] range =
100–1,085) and four used lung tissue samples (N range =
24–160). The number of CpG loci analysed range from 27,578
to 485,512. These studies have not identified consistent changes
in methylation, most likely due to a combination of factors includ-
ing small sample sizes, technical issues, phenotypic definitions,
and study design. In addition, no previous study has: analysed a
sample from a large single cohort; used the recently released
Illumina EPIC array (which assesses ~850,000 CpG loci); ad-
justed both methylation data and phenotype for smoking history,
or used both prevalent and incident COPD electronic health record
data.

Added value of this study

To our knowledge, this is the largest single cohort epigenome-
wide association study (EWAS) of respiratory function and
COPD to date (n = 3,781). After applying stringent genome-
wide significance criteria (p b 3.6 × 10−8), we found that DNA
methylation levels at 28CpG sites in peripheral bloodwere associ-
ated with respiratory function or COPD. Of these 28, seven were
testable in an independent population sample: all seven showed
consistent direction of effect between the two samples and
three showed replication (p b .007 [0.05/7 CpG sites tested]).
Our results suggest that adjustment of both the phenotypic and
the DNA methylation probe data for smoking history, which has
not been carried out in previous studies, reduces the confounding
effects of smoking, identifies larger numbers of associations, and
reduces the heterogeneity of effects across smoking strata. We
used gene set enrichment and pathway analyses, together with
an approach that combinesDNAmethylation resultswith gene ex-
pression data to provide evidence for enrichment of differentially
methylated sites in genes linked to alternative splicing, and JAK-
STAT signalling and axon guidance. Finally, we demonstrated
that the inclusion of DNA methylation data improves COPD risk
prediction over established clinical variables alone in two indepen-
dent datasets.

Implications of all the available evidence

There is now accumulating evidence that DNA methylation in pe-
ripheral blood is associated with respiratory function and COPD.
Our study has shown that DNAmethylation levels at 28CpG sites
are robustly associated with respiratory function and COPD, pro-
vide mechanistic insights, and can improve prediction of COPD
risk. Further studies are warranted to improve understanding of
the aetiology of COPD, explore causality and to assess the utility
of DNA methylation profiling in the clinical management of this
condition.
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Studies of lung tissue [5,8] have been constrained by sample availability,
with the largest study to date comprising 160 subjects [5]. Inconsistency
amongst the results of the peripheral blood-based studies [3,6,7,9,11]
is likely to be due to a number of factors, including small sample size
(e.g., two studies had b200 samples) [6,11] and/or investigation of a rel-
atively small number (~27,000) of CpG loci [3,11]. The study with the
largest number of samples (n = 1085) analysed only 27,000 CpG loci,
while the largest study using the 450 K array (the predecessor to the
array used here) analysed 920 samples [12]. Differences in spirometric
measures, definitions of COPD, study population characteristics and
study design, in particular in themethod used to adjust for smoking his-
tory, are also likely to be important sources of variation [9,10]. Smoking
is established as a major risk factor for COPD [13], and previous
genome-wide DNA methylation have focused on DNA methylation as-
sociated with smoking and COPD [5,14,15]. However, not all smokers
develop COPD and N25% of COPD cases occur in never smokers [16].
Results from a growing number of studies suggested that impaired re-
spiratory function and COPD are strongly associated with risk factors
other than smoking [17–19], and have a strong genetic component
[20–22] that generally acts independently of smoking [23]. To under-
stand the pathological mechanisms of impaired respiratory function
and COPD other than smokingwe sought to identify robust associations
by assessing methylation in a large single cohort sample, applying a
more rigorous correction for smoking history and by performing sensi-
tivity analyses. In contrast to prior studies, we used the recently released
Illumina EPIC array, which interrogates over 850,000 methylation sites.
All 3781 individuals in our sample were from a single cohort with ex-
tensive and consistent phenotyping comprising clinical investigation,
questionnaire, and linkage to routine medical health records. The
cross-sectional design of prior studies has limited their capacity to dis-
tinguish cause and effect [10]. To identity predictive biomarkers of
COPD, and to provide insights into the causal nature of our findings
we tested our findings for their predictive power. We used an indepen-
dent subpopulation of 150 participants with incident COPD who were
disease free at the time of blood sampling. Finally, where data were
available, we attempted to replicate our EWAS and prediction findings
in an independent cohort, LBC1936, drawn from the same population.

2. Material and methods

A flow chart showing the overall study design is outlined in Fig. 1,
and full description of the methods is provided in the appendix.

2.1. Epigenome-wide association study

2.1.1. Cohort information
The Generation Scotland Scottish Family Health Study (GS:SFHS;

≥18 years of age at recruitment) [24] and Lothian Birth Cohort of 1936
(LBC1936; ∼70 years of age at recruitment) [25] have extensive clinical,
lifestyle, health and genetic data. Medical Research Ethics was obtained
for all components of GS:SFHS and LBC1936. Written informed consent
was obtained from all participants.

2.1.2. Genome-wide methylation profiling
In the GS:SFHS cohort, DNA methylation data was obtained from

5190 participants using peripheral blood collected at baseline [26].
DNA methylation was assessed using the Infinium MethylationEPIC
BeadChip. Quality control procedures were implemented to identify
and remove unreliable probes and samples, and probes on the X and
Y chromosomes were excluded leaving data for 735,418 methylation
loci in 5190 individuals. In the LBC1936, DNAmethylationwas assessed
in whole blood samples from 1004 participants using the Illumina
HumanMethylation450 BeadChip. Low-quality probes and samples,
and probes on the X and Y chromosomes were removed, lea-
ving 450,726 probes and 920 samples for inclusion in the analysis.
M-values were calculated for both datasets. The M-values were then
pre-corrected for relatedness (in GS:SFHS), array processing batch and
estimated cell counts.
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2.1.3. Trait data
Respiratory function was assessed at the time of blood sampling

in 4193 GS:SFHS and 895 LBC1936 participants with methylation
data. Forced expiratory volume in 1 s (FEV1) and forced vital capacity
(FVC) were measured in litres, using spirometry. Spirometry was
performed three times, and the maximum values of FVC and FEV1

were used in the analyses. Only pre-bronchodilator spirometry mea-
sures were available. Quality control of the phenotype data was un-
dertaken to exclude participants with inaccurate spirometry or
covariate data; 4171 and 895 individuals were retained in the GS:
SFHS and LBC1936 samples respectively.
Fig. 1. Flow-chart showing the analysis pipeline. Direction of the arrows represents the workflo
the in the discovery Generation Scotland: Scottish Family health study cohort and the replicat
input data of COPD case-control differential expression in lung tissue. The green boxes indicat
results.
Following the Global Initiative for Obstructive Lung Disease
(GOLD) criteria. Post-bronchodilator spirometry is used for GOLD
COPD diagnosis. Pre-bronchodilator spirometry has been used in
other studies [22,27], and has been shown to lead to minimal mis-
classification of moderate (GOLD 2) to severe (GOLD 4) COPD [27].
Therefore, Individuals with airflow limitation consistent with GOLD
2 or worse (FEV1/FVC ≤0.7 and percent predicted FEV1 ≤ 80%) were
classified as cases in this study [28]. Individuals with FEV1 N80% pre-
dicted and FEV1/FVC N0.7 were classified as control subjects. Individ-
uals meeting the criteria for GOLD stage 1 (FEV1/FVC b 0.7, FEV1

≥ 80% predicted) were excluded from the comparison of COPD
wof the study design with performed analysis indicated. Lemon and blue boxes represent
ion Lothian Birth Cohort of 1936 (LBC1936) data sets respectively. The grey box indicates
e the analyses undertaken. The black arrows and gold boxes indicate output of significant
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cases and controls tominimise potential misclassification of case and
control subjects.

The GS:SFHS dataset (n = 4171) was then divided into an incident
COPD dataset (i.e., where COPD developed after recruitment to the co-
hort) for prediction analysis and a discovery EWAS dataset. The predic-
tion dataset (described below) comprised of incident COPD cases and
matched controls. To ensure independence, individuals in the predic-
tion data and their close relatives (identity by state [IBS] N 0.05) were
not included in the discovery dataset; leaving 3781 for inclusion in the
EWAS analysis.
2.1.4. Identification of differentially methylated sites (DMSs)
We first corrected the FEV1, FVC, FEV1/FVC, and COPD trait data for

age, age2, sex, height, height [2], smoking status (current smoker, for-
mer smoker [quit b12 months], former smoker [quit ≥12 months], and
never smoked), and pack-years using the R stats package. FVC data
was additionally pre-corrected for weight. Linear regression models
were then run in the limma package in R,fitting each CpG site (corrected
M-values) as the dependent variable, and pre-corrected respiratory
function traits or COPD, age, sex, smoking status, pack-years and the
Table 1
Characteristics of Generation Scotland: Scottish Family Health Survey (GS:SFHS) partici-
pants (n = 3781) in the epigenome-wide association study discovery population.

Spirometry data

COPD
cases
(n = 274)

Controls
(n = 2919)

GOLD
stage 1
(n = 588)

Missing
(n = 905)

Characteristics
Age, years 53.96 ±

13.59
46.98 ±
13.37

52.15 ±
12.75

49.58 ± 15.56

Sex
– Male 93 (33.9) 1162 (39.8) 222

(37.8)
335 (37.0))

– Female 181
(66.1)

1757 (60.2) 366
(62.2)

570 (63.0)

Height, cm 166.39 ±
8.76

167.85 ±
9.08

166.98 ±
9.47

166.22 ± 9.75

Weight, kg 73.50 ±
15.63

75.82 ±
16.33

76.60 ±
16.87

75.24 ± 17.45

Smoking status
– Never 96 (35.0) 1603 (55.0) 249

(42.4)
388 (42.9)

– Former (quit N12
months)

74 (27.0) 715 (24.5) 164
(27.9)

242 (26.8)

– Former (quit b12
months)

3 (1.1) 88 (3.0) 20 (3.4) 31 (3.5)

– Current 89 (32.5) 443 (15.1) 133
(22.6)

206 (22.8)

– Missing records 12 (4.4) 70 (2.4) 22 (3.7) 25 (2.8)

Pack-year
– Former smokers (quit
N12 months)

25.47 ±
31.84

16.67 ±
20.31

22.83 ±
22.85

22.83 ± 22.87

– Former smokers (quit
b12 months)

30.00 ±
31.05

15.16 ±
15.76

18.35 ±
20.20

18.35 ± 20.20

– Current smokers 22.97 ±
19.15

15.71 ±
15.95

23.59 ±
16.85

23.59 ± 16.85

Lung function
– FEV1, litres/s 2.01 ±

0.60
3.24 ± 0.76 2.58 ±

0.66
–

– FVC, litres/s 3.45 ±
0.93

4.07 ± 0.94 3.72 ±
1.08

–

– FEV1/FVC 0.59 ±
0.10

0.80 ± 0.06 0.71 ±
0.08

–

– FEV1 percent predicted 66.96 ±
11.44

99.56 ±
11.17

83.97 ±
12.98

–

– FVC percent predicted 89.90 ±
13.09

99.49 ±
11.90

94.93 ±
20.81

–

Abbreviations: COPD, Chronic obstructive pulmonary disease; FEV1, Forced expiratory volume
in 1 s; FVC, Forced vital capacity. Figures shown are themean± standard deviation or n (%).
first 20 principal components from the corrected M-values. The
genome-wide significance threshold was set at 3.6 × 10−8 [29].
2.1.5. Sensitivity analyses
To assess the impact of pre-correction of the traits for smoking status

and pack-years, we undertook sensitivity analyses, in which FEV1, FVC,
FEV1/FVC, and COPD were not pre-corrected for smoking status and
pack-years. To assess the stability of the estimated effects in older
adults, according to smoking status (ever smokers and non-smokers),
smoking history, and non-restrictive spirometry pattern (individuals
with FEV1/FVC ≥ 0.7 and FVC or FEV1 b 80% of predictedwere excluded).
The data was truncated by age (≥ 40 years; an age group with greater
risk of COPD), smoking history (≥ 10 pack-years; smokers with a sub-
stantial smoking history), non-restrictive spirometry and stratified by
smoking status. For each trait-specific genome-wide significant DMS,
we conducted separate random-effects meta-analysis to combine re-
gression coefficients and standard errors from analyses across the full
dataset and data-subsets using the ‘rma’ function from the R-package
metafor. Heterogeneity of effects across analyses was assessed descrip-
tively with the I2 index. We formally tested heterogeneity of effects
via Cochran Q statistic.
2.2. Probe annotation and epigenetic regulation of gene expression

DNA methylation probes were mapped to genes based on the
IlluminaHumanMethylationEPICanno.ilm10b2.hg19 library. For each
trait, methylation probes were filtered at p b .001, and probes that
mapped to genes extracted.

For biological processes andmolecular function, and canonical path-
way enrichment analyses, DMSs were analysed in the Database for An-
notation, Visualization and Integrated Discovery (DAVID) database and
Ingenuity Pathway Analysis (IPA) software respectively. The Benjamini
Hochberg, False Discovery Rate method, was used to correct for
multiple-testing with p b .05 considered significant. We used the
Significance-based Modules Integrating the Transcriptome and Epigenome
(SMITE) package in R to combine summary statistics from publicly
available COPD lung gene expression data [30] with methylation results
from this study. Trait-specific gene modules (set of genes with shared
regulation; p b .05 and 10–500 genes) were then identified and sub-
jected to KEGG pathway enrichment analysis and terms with a p b .05
were held as significant.
2.3. Prediction

2.3.1. Case-control data
Incident cases in GS:SFHS were defined as any hospital admission

where the primary diagnosis was assigned an ICD-10 J40 to J44 COPD
exacerbation code [31]. During follow-up, 81 GS:SFHS participants (all
40 years or older) with DNA methylation data developed COPD. To ob-
tain a balanced dataset for model training an equal number of controls
≥40 years of age were selected at random from those with no-self
report, spirometry-defined, or ICD-10 diagnosis of COPD. Participants
with missing records and closely related individuals (IBS N 0.05) were
excluded; leaving 72 COPD cases and 78 controls. The data was then
separated into a training set of 47 COPD cases and 48 controls, and a
test set of 25 COPD cases and 30 controls.

As hospital admission data were not available for the LBC1936 co-
hort, spirometry data were used to define case-control status. In total,
89 participants with DNA methylation data had prevalent COPD
[GOLD stage ≥2 cases]. Imbalanced data can negatively impact predic-
tive performance. Controls were therefore selected at random from
the participants with DNAmethylation data in a 1:1 ratio to case partic-
ipants. This dataset was used to replicate the prediction findings from
GS:SFHS.
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2.3.2. Model selection
For the training data, the reduced model, including clinical risk fac-

tors, age, age [2], sex, height, height [2], smoking status (current, former
and never), and pack-years of smoking [6] was constructed using
unpenalized logistic regression. The full model, including DMSs and
clinical risk factors, was constructed using penalized logistic regression
with an elastic net penalty. Selection of the full model was conducted
based on 10-fold cross-validation (appendix p26) using the R package
caret. The optimal model was selected based on the maximum mean
area under the curve (AUC). Final models were constructed using the
complete training set and evaluated on the independent test and
replication datasets.

2.3.3. Model evaluation
Comparison of the predictive performance of the models was car-

ried out using the AUC in the pROC R package. The incremental value
of the DMS to predict COPD risk, when added to the model with
established clinical predictors was assessed using the integrated dis-
crimination improvement (IDI), and binary net reclassification
Fig. 2. Manhattan plots of epigenome-wide association results for FEV1 (forced expired volum
pulmonary disease) from the discovery Generation Scotland: Scottish Family health study co
(p= 1.0 × 10−5) significance level. Labels are for the nearest gene to genome-wide significan
improvement (NRI) measure. Finally, we performed decision curve
analysis to estimate the potential clinical usefulness of the models
in the ‘rmda’ R package.

3. Results

3.1. EWAS sample characteristics

The discovery sample for respiratory function traits comprised 3781
individuals from GS:SFHS. For the COPD analysis, there were 274 cases
and 2919 controls (Table 1; Fig. 1).

3.2. Differentially methylated sites

EWASs for the three respiratory function traits (FEV1, FVC and FEV1/
FVC) and COPD on the discovery data identified 29 genome-wide signif-
icant associations (p b 3.6 × 10−8; Fig. 2; Table 2; appendix p6–7),
representing 28 DMSs from 25 annotated genes. Fourteen of the DMS
were not associated with smoking status (Table 2). We found only
e in 1 s), FVC (forced vital capacity; bottom), FEV1/FVC and COPD (chronic obstructive
hort data. The red line correspond to the genome-wide (p = 3.6 × 10−8) and suggestive
t CpG sites.



Table 2
Genome-wide significant differentially methylated sites (DMSs) associated with the respiratory function traits or chronic obstructive pulmonary disease (COPD) in the Generation Scot-
land Scottish Family Health Study (GS:SFHS) discovery data. Results are ordered by chromosomal location.

Trait Chr Base pair Gene name/annotation (region) CpG site (location) β (p-value) DMSses

FEV1 3 3,010,002 CNTN4 (Body) cg13993467 (Open sea) −0.023 (5.19E-10) 6.31E-01
3 150,479,084 SIAH2 (Body) cg16963852 (North shore) 0.015 (2.88E-08) 1.36E-07
7 8,201,134 ICA1 (Body) cg26804423 (Open sea) −0.011(4.88E-11) 3.44E-02
7 72,775,853 [FKBP6, 3 kb, 3′ *] cg26080684 (Open sea) −0.010 (9.75E-09) 5.85E-09
8 121,597,619 SNTB1 (Body) cg01198738 (Open sea) 0.013 (5.12–09) 1.42E-03
9 136,009,651 RALGDS (Body) cg03770138 (Open sea) 0.010 (2.34E-08) 1.32E-15
14 74,227,431 ELMSAN1 (TSS1500) cg18871648 (South shore) 0.014 (4.30E-09) 1.10E-59
14 74,227,441 C14orf43 (5’UTR) cg10919522 (South shore) 0.014 (2.14E-10) 1.14E-47
16 57,180,107 CPNE2 (Body) cg09018739 (Open sea) −0.008 (5.49E-10) 8.97E-14
17 8,844,581 PIK3R5 (5’UTR) cg07687574 (Open sea) 0.013 (6.68E-11) 3.15E-27
17 76,274,856 LOC100996291 (TSS1500) cg19748455 (Open sea) 0.015 (1.11E-9) 5.57E-04
17 76,354,621 SOCS3 (Body) cg18181703 (North shore) 0.011 (4.51E-09) 7.38E-14
17 76,354,934 SOCS3 (Body) cg11047325 (Island) 0.019 (3.91E-11) 7.54E-22
17 76,355,061 SOCS3 (Body) cg13343932 (Island) 0.014 (6.52E-10) 8.89E-25
19 1,130,866 SBNO2 (Body) cg18608055 (Open sea) 0.010 (5.52E-09) 1.15E-04
19 17,955,786 JAK3 (5’UTR) cg02370334 (North Shelf) 0.011 (3.48E-08) 1.76E-01
22 46,884,476 CELSR1 (Body) cg03187361 (Open sea) 0.012 (1.39E-08) 1.49E-05

FVC 3 3,010,002 CNTN4 (Body) cg13993467 (Open sea) −0.025 (1.71E-11) 6.31E-01
4 129,715,236 [JADE1, 16 kb, 5′ *] cg01620970 (Open sea) −0.012 (4.11E-09) 1.71E-08
6 10,210,316 [OFCC1, Body *] cg00213822 (Open sea) −0.020 (5.23E-11) 4.74E-02
9 107,631,656 ABCA1 (Body) cg15659943 (Open sea) −0.009 (1.68E-08) 9.96E-09
11 62,269,149 AHNAK (Body) cg25465557 (Open sea) −0.013 (2.11E-10) 2.78E-06
15 71,041,066 UACA (Body) cg18007249 (Open sea) −0.013 (5.60E-10) 8.49E-01
17 11,608,711 DNAH9 (Body) cg13108341 (Open sea) −0.032 (2.57E-08) 7.91E-02

FEV1/FVC 1 160,714,299 SLAMF7 (5’UTR) cg00045592 (Open sea) 0.014 (1.22E-08) 7.91E-255
5 373,378 AHRR (Body) cg05575921 (North shore) 0.029 (3.48E-09) 0.00E+00
19 17,000,585 F2RL3 (Body) cg03636183 (North shore) 0.016 (5.10E-09) 0.00E+00

COPD 2 198,243,567 [SF3B1, 13 kb, 3′ *] cg09455379 (Open sea) −0.030 (3.28E-08) 4.16E-01
6 10,466,788 [GCNT2, 27 kb, 5′ *] cg20453862 (Open sea) −0.039 (7.42E-09) 3.18E-01

Key: Chr: chromosome; Gene name/annotation (region): human genome build 37/Hg19, region relative to the first listed transcript; including the gene body, transcription start site (TSS)
1500 (within 1500 base pairs of a TSS) and 5′-untranslated region (5′-UTR); CpG site location: location relative to CpG island; including shore (±2 kb) and shelf (2 to 4 kb) up (North)- and
down (South)-stream from a CpG island, and open sea (N4kb) from a CpG island; β, regression coefficient; DMSses: associated with having ever smoked in the GS:SFHS cohort, genome-
wide significant differentiallymethylated CpG sites are highlighted in bold.; FEV1, Forced expiratory volume in 1 s; FVC, Forced vital capacity. The CpG sites lacking gene information in the
IlluminaHumanMethylationEPICanno.ilm10b2.hg19 library [*] were mapped to the closest gene (in kilobases [kb] from either the 5′ or 3′ end) using the UCSC Genome Browser (http://
genome.ucsc.edu). Respiratory function was assessed by spirometry in the GS:SFHS cohort.
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marginal evidence of genomic inflation (max= 1.12) across traits (ap-
pendix p6 & 27). Ten of the 25 genes that contain DMSs have previously
been implicated by genetic, EWAS and functional analysis in respiratory
function or disease (excluding cancer; appendix p8–9). Three FEV1

related-DMSs mapped to the SOCS3 gene (Table 2); DNA methylation
levels at these sites are highly correlated (appendix p28).

Wenext attempted to replicate thesefindings in 895 individuals from
the LBC1936 (Table 3). No other Illumina EPIC dataset was available, but
seven of the 28 DMSs identified in the discovery dataset had been pro-
filedusing theHumanMethylation450BeadChip,whichhadbeenapplied
to the LBC1936. Of these seven, two FEV1-associated DMSs (cg18181703
in SOCS3 and cg18608055 in SBNO2) and one FEV1/FVC ratio-associated
DMS (cg03636183 in F2RL3) replicated in LBC1936 (Bonferroni-
corrected p ≤ .00714). For all seven probes, however, the direction of
the effects were the same in the two datasets (Table 4).

3.3. Sensitivity analyses

As age and smoking affect both DNA methylation and lung function
[13,32],andwe do not know if pre-bronchodilator restrictive spirometry
patternswere reversible in this study.We therefore undertook sensitiv-
ity analyses for each significant DMS for each trait. The associations
between each significant DMS and its associated phenotype were
there assessed in older adults (N40), smokers with a substantial
smoking history and individuals with non-restrictive spirometry, and
across smoking strata (ever smokers and non-smokers). Meta-analysis
was used to compare regression coefficients from the discovery dataset
and the sensitivity analyses. All but four of the associations identified in
the discovery dataset were robust to differences in age, spirometry pat-
terns, and smoking status and history (p b .05/30 DMSs; appendix
p10–11). The associations between FVC and cg00213822, in OFCC1,
and cg13108341, in DNAH9 were primarily driven by non-smokers.
Whereas, the associations with FEV1/FVC and the established
smoking-associated DMSs, cg05575921, in AHHR, and cg03636183, in
F2RL3, were primarily driven by smokers (Fig. 3).

We carried out sensitivity analyses in which the trait data were not
pre-corrected for smoking history (appendix p12–15). Two of the
identified associations were affected by pre-correction of the traits
(appendix p15 & 29). In addition, an FVC-related DMS was identified
at cg10919522 only when the trait data was not pre-corrected for
smoking history. Pre-correction for smoking history reduced the het-
erogeneity of the effect size estimates of association across the age
and smoking strata.

3.4. Gene ontology analysis

For each trait, to explore whether genes with DMSs share functional
features, we filtered methylation probes at p b .01 and performed bio-
logical processes (appendix p30), molecular function (appendix p31)
and canonical pathway enrichment analyses (appendix p16–23). In
the study of molecular functions, we found that each of the four traits
were significantly enriched for genes linked to the alternative splicing
and phosphoprotein categories (appendix p31). Many of the canonical
pathways identified were related to signalling, including apoptosis
(appendix p16), cardiovascular signalling (appendix p17) and neuro-
transmission (appendix p22).

3.5. Integrative analysis of methylation and expression

To investigate the functional relevance of the methylation changes,
we integrated transcriptional (COPD case-control differential expres-
sion in lung tissue) [30] and epigenetic (from this study) datasets to

http://genome.ucsc.edu
http://genome.ucsc.edu


Table 3
The characteristics of Lothian Birth Cohort of 1936 (LBC1936) participants (n = 895) in
the epigenome-wide association study replication population.

COPD cases
(n
= 89)

Controls (n =
586)

GOLD stage 1 (n
=
220)

Characteristics
Age, years 69.60 ± 0.79 69.54 ± 0.91 69.53 ± 0.88
Sex
– Male 44 (46.4) 305 (52.0) 102 (46.4)
– Female 45 (53.6) 281 (48.0) 118 (53.6)
Height, cm 165.75 ±

9.70
166.59 ± 8.84 166.15 ± 8.98

Weight, kg 73.54 ±
14.78

77.29 ± 13.77 77.56 ± 15.44

Smoking status
– Never 20 (22.5) 324 (55.3) 78 (35.5)
– Former (≥ 12 months) 36 (40.4) 223 (38.0) 109 (49.5)
– Former (b 12 months) – 1 (0.2) 2 (0.9)
– Current 33 (37.1) 38 (6.5) 31(14.1)

Pack-year
– Former smokers (≥ 12
months)

45.91 ±
43.25

22.17 ± 23.73 32.37 ± 30.29

– Former smokers (b 12
months)

– 17.85 ± 0.00 26.63 ± 0.53

– Current smokers 45.64 ±
20.55

42.59 ± 18.94 47.15 ± 22.75

Lung function
– FEV1, litres/s 1.52 ± 0.51 2.62 ± 0.57 1.99 ± 0.59
– FVC, litres/s 2.59 ± 0.83 3.21 ± 0.77 2.72 ± 1.01
– FEV1/FVC 0.59 ± 0.09 0.82 ± 0.06 0.75 ± 0.09
– FEV1 percent predicted 58.34 ±

13.92
100.01 ±
11.83

76.58 ± 15.26

– FVC percent predicted 74.00 ±
15.19

90.90 ± 11.91 77.92 ± 23.10

Abbreviations: COPD, Chronic obstructive pulmonary disease; FEV1, Forced expiratory vol-
ume in 1 s; FVC, Forced vital capacity. Figures shown are the mean ± standard deviation
or n (%).
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identify functional genemodules for the traits under study. This analysis
identified two significant modules (p b .05) containing 27 and 35 genes
with correlated differential methylation associated with FEV1 and ex-
pression in COPD, respectively (appendix p24, p32–33). DMSs mapped
to SIAH2 in module 1 (appendix p32) and SOCS3 in module 2 (appendix
p33). Many of the genes in module 1 also had correlated differential
methylation associated with FVC, FEV1/FVC and COPD and expression
in COPD (appendix p32). Gene enrichment analysis revealed that the
top pathway for module 1 was axon guidance, while the top pathways
for module 2 were cytokine-cytokine receptor interaction and JAK-
STAT signalling (p b .05; appendix p24).

3.6. Predictive value of the DMS

To determine the predictive value of DMSs in the prognosis (fore-
casting future risk) of COPD, we used an independent training and test
Table 4
Replication of the genome-wide significant differentiallymethylated sites (DMSs) associatedw
vey (GS:SFHS) cohort in the Lothian Birth Cohort of 1936 (LBC1936). Results are ordered by tr

Trait Chr Base pair Gene name/annotatio

FEV1 7 8,201,134 ICA1 (Body)
14 74,227,441 C14orf43 (5’UTR)
16 57,180,107 CPNE2 (Body)
17 76,354,621 SOCS3 (Body)
19 1,130,866 SBNO2 (Body)

FEV1/FVC 5 373,378 AHRR (Body)
19 17,000,585 F2RL3 (Body)

Key: Chr: chromosome; Gene name/annotation (region): human genome build 37/Hg19, region
1500 (within 1500 base pairs of a TSS) and 5′-untranslated region (5′-UTR); CpG site location: lo
down (South)-stream from a CpG island, and open sea (N4kb) from a CpG island; β, regression
set design to predict COPD risk in GS:SFHS and LBC1936. We calculated
the improvement in prediction quality of a model where genome-wide
significant DMSswith all traits were added to the reducedmodel, which
included the clinical variables: age, age [2], sex, height, height [2],
smoking status and pack-years of smoking [6]. For descriptive statistics
of the prediction datasets see appendix p25 & 34. Discrimination of the
full model in the GS:SFHS test data was good (AUC = 0.856 [95% CI:
0.757–0.956]; appendix p35) and calibration was fair (appendix p36).
Addition of DMSs to the reduced model led to a significant improve-
ment in accuracy (ΔAUC: 0.039 [95%CI: 0.025–0.055; p = .025]), dis-
crimination (IDI: 0.048[95%CI: 0.018–0.079; p = .016]; appendix p37)
and reclassification (NRI: 0.182 [95%CI: 0.030–0.334, p= .019]; appen-
dix p38). There was no improvement in prediction accuracy observed
when never smokers were removed from the prediction data (ΔAUC:
−0.013 [95%CI: 0.007–0.019; p = .226]).

We examined glmnet's variable importance measures to determine
which DMSs contributed most to the increased discriminatory power.
Eight DMSs: cg03770138 (RALGDS), cg18181703 (SOCS3), cg26804423
(ICA1), cg18871648 (ELMSAN1), cg11047325 (SOCS3), cg01620970
(JADE1). cg15659943 (ABCA1) and cg18608055 (SBNO2); were retained
for prediction (appendix p39).

We next assessed the full model in the LBC1936 replication sample,
which comprised 89 cases and 89 controls. Due to differences in array
coverage, only three of the DMSs retained in the full model built in the
GS:SFHS training data could be tested in LBC1936 (cg18181703,
cg26804423 and cg18608055). Addition of the three sites to the re-
duced model led to a significant improvement in accuracy (ΔAUC:
0.029(95%CI: 0.024–0.032; p= .006; appendix p35) and discriminative
power (IDI: 0.019[95%CI: 0.005–0.033; p = .010]), but not reclassifica-
tion (NRI: 0.045[−0.023–0.113, p = .196]).

Decision curve analysis showed that the model incorporating the
DMSs had good clinical applicability and was superior to the reduced
model over a wide range of threshold probabilities in the discovery
and replication data (appendix p 40 & 41).

4. Discussion

We performed EWASs of three respiratory function traits and COPD
in DNA extracted fromperipheral blood using the high-density Illumina
EPIC array, in 3781 individuals from a single cohort. These analyses
identified 28 DMSs (27 novel, of which 14 were not associated with
smoking status), of which 26 are associated with respiratory function
and threewith COPD in the discovery GS:SFHS data. Datawere available
to test seven of the 28 DMSs for replication in an independent dataset;
three associations replicated. Incorporation of a subset of the identified
DMSs into a model composed of established clinical variables improved
discrimination of individuals at-risk of COPD in two independent sam-
ples. Finally, functional annotation provided insights into the biology
of these phenotypes.

Smoking is a major risk for impaired respiratory function and COPD
[28], and has been shown to impact DNA methylation [3,8]. We for the
first time, adjusted both the phenotypic and DNA methylation data for
ith FEV1 and FEV1/FVC from the discovery Generation Scotland: Scottish Family Health Sur-
ait and chromosomal location.

n (region) CpG site (location) β (p-value)

cg26804423 (Open sea) −0.017 (6.32E-02)
cg10919522 (South shore) 0.011 (2.95E-01)
cg09018739 (Open sea) −0.015 (3.04E-02)
cg18181703 (North shore) 0.034 (1.04E-04)
cg18608055 (Open sea) 0.018 (6.54E-03)
cg05575921 (North shore) 0.041 (4.83E-02)
cg03636183 (North shore) 0.028 (8.75E-03)

relative to the first listed transcript; including the gene body, transcription start site (TSS)
cation relative to CpG island; including shore (±2kb) and shelf (2 to 4 kb) up (North)- and
coefficient; FEV1, Forced expiratory volume in 1 s; FVC, Forced vital capacity.



Fig. 3. Forest plot and meta-analysis across the discovery, older adult (N 40 years), smokers with a substantial smoking history, individuals with non-restrictive spirometry pattern, and
stratified smoking status datasets from the Generation Scotland: Scottish Family Health Survey (GS:SFHS) cohort for differentially methylated sites associatedwith FVC and FEV1/FVC that
showed high heterogeneity in older adults and across the smoking strata. The sizes of the forest plot squares are proportional to the amount of information each dataset contains. Key: All,
discovery data; N40, data from participants aged 40 or greater; N10py, data from participants with a smoking history of 10 pack years or greater.
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smoking history. This approach appeared to reduce the confounding
effects of smoking, identify more associations, and reduce the heteroge-
neity of effect estimates across smoking strata. It identified 14 DMS that
did not associate with smoking status.

Ten of the 25 genes, harbouring the novel DMSs, have been previ-
ously linked to respiratory function or disease (appendix p8–9). In
four cases, these links come from studies in lung tissue: DNA methyla-
tion changes in ABCA1 in lung tissue has been reported to be associated
with pulmonary arterial hypertension; differential expression of ABCA1
and DNAH9 has been reported in lung tissue of patients with COPD and
primary ciliary dyskinesia respectively and pathological changes in lung
tissue have been reported following knockdown and knockout of
SLAMF7, ABCA1, and SOCS3.

Three DMSs showed replication. Thefirst, cg18181703, is one of three
FEV1-associated DMS in SOCS3, which has been associatedwith infection
and autoimmunity [33],modulates the lung inflammatory response [34],
and JAK-STAT signal transduction [35]. Transcriptional down-regulation
of SOCS3 has been observed in COPD [36] and asthma [37] patients. Dif-
ferentially methylated sites in SOCS3within a FEV1-related gene module
in this studywere correlatedwithdifferential gene expression in lung tis-
sue of COPD patients [30]. DMSs in SOCS3were the second and fifthmost
predictiveDMSs in the prognosticmodel for COPD in theGS:SFHS cohort.
Inclusion of this DMS in the prediction model also improved the predic-
tion of prevalent COPD risk in the LBC1936. However, this was one of
the three DMS that could be tested in the LBC1936.

The second replicated DMS, cg18608055, is a FEV1-associated DMS
in SBNO2, which encodes a transcriptional co-regulator of the pro-
inflammatory cascade [38]. Inclusion of this DMS in the prediction
model improved the prediction of COPD risk in the GS:SFHS cohort
and LBC1936. The third, cg03636183, is a FEV1/FVC ratio and smoking-
associated DMS in F2RL3 [39,40], which has been previously reported
to be associated with respiratory function [3].

As discussed above, SOCS3 and SBNO2 were found to provide dis-
criminatory power in the prediction analysis. The inclusion of three
other DMSs in RALGDS, ICA1, ELMSAN1, JADE1 and ABCA1 improved the
prediction of incident COPD risk in the GS:SFHS. JADE1 is a negative reg-
ulator ofWnt signalling, which has been linked to the pathogenesis and
progression of COPD [41]. RALGDS is a Ras effector and regulates cellular
processes such as vesicular trafficking, endocytosis, and migration [42].

Functional annotation of differently methylated genes identified en-
richment of the molecular function alternative splicing (Fig. 4). This
finding is consistent with earlier reports that genes associated with
COPD (unlike those associated with other complex traits examined)
have greater transcriptional complexity due to a disproportionately
high level of alternative splicing [43]. In addition, many such genes are
spliced differently in COPD patients and controls [43].

Functional analysis also identified two cellular pathways (Fig. 4).
JAK-STAT signalling (appendix p42) was highlighted in the EWAS data
at both the DMS level and in the gene ontology analysis. Amodule com-
prising genes (including SOCS3) that showed both differential methyla-
tion with FEV1 in this study, and COPD-based gene expression in lung
tissue [30] was enriched for JAK-STAT signalling genes. Thus our data
add further support to previous evidence [44] for the importance of
this pathway in respiratory function and COPD. Modules comprising



Fig. 4. Venn diagram showing additional sources of evidence for the functional annotation categories showing enrichment in the epigenome-wide association study (EWAS) data: JAK-
STAT signalling, axon guidance and alternative splicing. Key: the black, blue and red text represent genes enriched for FEV1, FVC and FEV1/FVC ratio-related differentially methylated
positions (DMPs) respectively. A single FEV1 and FVC-related DMP mapped to the CNTN4 gene. The genes with the gold asterisk, represent the FEV1-related DMPs that replicated in
the Lothian Birth Cohort of 1936 (LBC1936). The genes underlined with magenta represent the DMPs that improved the prediction of incident COPD risk in an independent
Generation Scotland Scottish Family Health Study (GS:SFHS) dataset when included in the full model. The inclusion of a DMPs in SOCS3 and SBNO2 in the full model additionally
improved the prediction of COPD risk in the LBC1936 replication data. The genes in yellow rectangles represent those with correlated FEV1-related differential methylation in whole
blood with the altered gene expression in COPD in lung tissue. Gene lists were extracted from Database for Annotation, Visualization and Integrated Discovery (DAVID; http://david.
abcc.ncifcrf.gov/tools.jsp) Bioinformatics resources database and Ingenuity Pathway Analysis (IPA; http://www.ingenuity.com) functional enrichment and Significance-based Modules
Integrating the Transcriptome and Epigenome (SMITE) result tables.
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genes (including SIAH2) that showed both differentialmethylationwith
all three respiratory function traits and COPD in this study, and COPD-
based gene expression in lung tissue [30] were enriched for axon guid-
ance signalling genes. SIAH2 upregulation mediates the ubiquitination
of NRF2which has been previously associated with respiratory function
[45] and COPD [46]. Axon guidance signalling (appendix p43) was
highlighted by two of our analyses, adding support to the neuropathol-
ogy hypothesis of COPD [47].

To investigate the potential clinical implications of our findings we
assessed the predictive properties of DMSs in the prognosis of COPD.
The inclusion of DMSs provided added clinical value to established clin-
ical variables in both the discovery and replication datasets. Clinical
studies are needed to provide formal proof that changes in DNA meth-
ylation at these sites contribute causally to the pathogenesis, and can
impact prognosis of COPD.

There are three main limitations to this study. Firstly, DNAmethyla-
tion was quantified in peripheral blood. There is ongoing debate about
whether DNA methylation from peripheral blood can serve as a surro-
gate marker for DNA methylation in lung tissue [48]. The overlap be-
tween our findings and previous studies performed in lung tissue
(appendix p8–9) suggest that, for at least some loci, the study of DNA
methylation in blood may yield mechanistic insights. Moreover, our
data demonstrate that DMSs from peripheral blood have both predic-
tive and clinical value. As such, blood may be an appropriate tissue for
the development of biomarkers, as it is easily and repeatedly accessible.

The second limitation is that DNA methylation was measured in
blood samples collected at the same time that spirometry tests were
performed. As such, our reported associations are subject to reverse cau-
sality. However, the integrated alterations in DNA methylation in this
study and gene expression profiles in COPD [30] and prospective predic-
tive value of the selected DMSs provide indications that the DNA
methylation alterations observed in blood may play a causal role in re-
spiratory function. Nevertheless, longitudinal studies, with serial mea-
surements of DNA methylation will be required to address causality
formally.

The third limitation is that only seven of the 29 could be tested for
replication due the Illumina HumanMethylation450 BeadChip array
been used to profile participants in the LBC1936.

Another limitation of this study is that COPD cases in the EWASwere
classified based on pre-bronchodilator spirometry data. It is therefore
not possible to determine if their airflow limitation was reversible,
and so a proportion of these cases may have been suffering from other
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respiratory diseases, such as asthma. Nevertheless, sensitivity analysis
demonstrated that restrictive spirometry had little impact on our
results. Also, GOLD COPD diagnosis is based on post-bronchodilator spi-
rometry. Hence, COPD defined cases in this study might not have met
the GOLD stage 2–4 criteria if given bronchodilators. Nonetheless, pre-
bronchodilator spirometry classification of COPD has been used previ-
ously [22,27], and has been shown to lead to minimal misclassification
of moderate to severe (GOLD stage ≥2) COPD [27].

A further limitation is that incident COPD was defined based on ICD-
10COPDexacerbation codes.Wewere not able to removenever smokers
in prediction analyses, as the small sample size leads to overfitting of the
training data and no improvement in accuracy. We were therefore not
able to rule out confounding by other respiratory conditions in never
smokers.

In conclusion, using a large dataset and a robust methodological ap-
proach, we have identified DMSs associated with respiratory function
and COPD, provided new mechanistic insights and supported previous
hypotheses into impaired respiratory function and the pathogenesis of
COPD. We also demonstrated that DMSs can be incorporated into
existing models for predicting COPD risk, yielding better prediction
than established clinical variables alone.
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