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predicting phenotype accurately from genotypic data especially for certain drugs. Our primary aim was to per-
form an exploration of statistical learning algorithms and genetic predictor sets using a rich dataset to build a
high performing and fast predicting model to detect anti-tuberculosis drug resistance.
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ﬁ%zzci;ﬁum tuberculosis Methods: We collected targ.eted or whole.genome seq.uencing and. conventional drug resistanc.e phenotypipg

Multidrug-resistance data from 3601 Mycobacterium tuberculosis strains enriched for resistance to first- and second-line drugs, with

Extensively drug-resistant tuberculosis 1228 multidrug resistant strains. We investigated the utility of (1) rare variants and variants known to be deter-

Machine learning minants of resistance for at least one drug and (2) machine and statistical learning architectures in predicting

Genome sequencing phenotypic drug resistance to 10 anti-tuberculosis drugs. Specifically, we investigated multitask and single
task wide and deep neural networks, a multilayer perceptron, regularized logistic regression, and random forest
classifiers.

Findings: The highest performing machine and statistical learning methods included both rare variants and those
known to be causal of resistance for at least one drug. Both simpler L2 penalized regression and complex machine
learning models had high predictive performance. The average AUCs for our highest performing model was 0.979
for first-line drugs and 0.936 for second-line drugs during repeated cross-validation. On an independent valida-
tion set, the highest performing model showed average AUCs, sensitivities, and specificities, respectively, of
0.937,87.9%, and 92.7% for first-line drugs and 0.891, 82.0% and 90.1% for second-line drugs. Our method outper-
forms existing approaches based on direct association, with increased sum of sensitivity and specificity of 11.7%
on first line drugs and 3.2% on second line drugs. Our method has higher predictive performance compared to
previously reported machine learning models during cross-validation, with higher AUCs for 8 of 10 drugs.
Interpretation: Statistical models, especially those that are trained using both frequent and less frequent variants,
significantly improve the accuracy of resistance prediction and hold promise in bringing sequencing technologies
closer to the bedside.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study

Multidrug-resistant tuberculosis (MDR-TB) remains a public health
challenge globally. Even in the best equipped laboratories, conven-
tional culture and culture based antimicrobial susceptibility testing
constitutes a considerable biohazard and requires weeks to
months before results are reported due to the slow /n vitro growth
of Mycobacterium tuberculosis (MTB). The recent advent of mo-
lecular tests for MDR-TB has been met with considerable enthusi-
asm. However, these tests rely on targeted amplification of a few
select antibiotic resistance genes and have been criticized for
being limited in the number of drugs tested and in their sensitivity.
It has also proved considerably challenging to extend the same
testing platforms that are currently commercially available into a
comprehensive diagnostic test for the full panel of anti-
tuberculosis drugs. An alternative to targeted mutation detection
methods is whole genome sequencing, which captures both com-
mon and rare mutations that may be involved in drug resistance.
Past studies utilizing whole genome sequencing have most com-
monly attempted resistance prediction associating individual mu-
tations with resistance (direct association). However, direct
association has its drawbacks, as some isolates cannot be classi-
fied because they harbor ‘indeterminate’ variants, direct associa-
tion cannot model gene-gene interactions, and the classification
performance declines with higher rates of MDR and higher order
resistance.

Added value of this study

This study is one of the first to explicitly model the effect of
rare and non-causal genetic variants in MTB resistance predic-
tion. While some studies have put forth computational methods
for resistance prediction, the combined effect of our rich variant
dataset and model architecture that included an innovative mul-
titask wide and deep neural net resulted in a prediction perfor-
mance that significantly exceeds prior published performance.
The multitask/multidrug model is the first to our knowledge to
share phenotype and genetic variant data across drugs. We val-
idated both this model and an equally performing simpler penal-
ized logistic regression model using a true independent dataset
that was separately collected and sequenced with a different
MTB lineage distribution. We also examine important features
for resistance to each drug and verify that our analysis is not
confounded by lineage.

Implications of all the available evidence

With improvements in whole-genome sequencing technologies,
the cost of sequencing has decreased and allowed for more rou-
tine whole genome sequencing. Our study allows researchers
and clinicians to directly use whole genome sequencing to predict
MTB drug resistance at a high accuracy with a significantly shorter
timeframe compared to phenotypic susceptibility testing. Because
our methods are able to predict resistance in less than a tenth of a
second, the prediction time for MTB using our method is primarily
dependent on sequencing turnaround time. In addition, as routine
sequencing increases the MTB sequencing data available, our
models can be rapidly updated. We expect that as more data are
incorporated, the sensitivity and specificity gap in second-line in-
jectable drugs and fluoroquinolones will become smaller.

(WHO) estimates that 4.1% of new Mycobacterium tuberculosis (MTB)
clinical isolates are multidrug-resistant (MDR) (i.e. resistant to rifampi-
cin [RIF] and isoniazid [INH]). Furthermore, approximately 9.5% of MDR
cases are extensively drug-resistant (XDR) (i.e. resistant to one second-
line injectable drug, such as amikacin [AMK], kanamycin [KAN], or
capreomycin [CAP], and one fluoroquinolone, such as moxifloxacin
[MOXI], or ofloxacin [OFLX]) [1]. The WHO estimates that 48% of
MDR-TB and 72% of XDR-TB patients have unfavorable treatment out-
comes, including death or treatment failure, citing the lack of MDR-TB
detection and treatment as a global health crisis [1].

Diagnosing drug resistance remains a barrier to providing appropri-
ate TB treatment. Due to insufficient resources for building diagnostic
laboratories, fewer than half of the countries with a high MDR-TB bur-
den have modern diagnostic capabilities [3]. Even in the best equipped
laboratories, conventional culture and culture based antimicrobial sus-
ceptibility testing constitutes a considerable biohazard and requires
weeks to months before results are reported due to the slow in vitro
growth of Mycobacterium tuberculosis [1]. Molecular diagnostics are
now an increasingly common alternative to conventional cultures, and
the WHO has endorsed three such molecular tests: the GeneXpert
MTB/RIF, a rapid RT-PCR based diagnostic test assay that detects RIF re-
sistance, the Hain line probe assay (LPA) that tests for both RIF and INH
resistance, and the Hain MDRTBs/, an LPA that tests for resistance to
second-line injectable drugs and fluoroquinolones [1]. The LPAs ap-
proved by the WHO have moderate sensitivities, ranging from 63.7%
to 94.4% for second-line injectable drugs and fluoroquinolones [4-6].
However, current diagnostic approaches face several challenges. First,
these methods have limited sensitivity because they rely on a few
genetic loci, ranging between 1 and 6 loci per test [6,7]. Second, they
do not detect most rare gene variants of the targeted loci, especially in-
sertions, deletions, and variants in promoter regions. This has been a
particular challenge for resistance to drugs like pyrazinamide where
many individually rare mutations are thought to be causative [8].
Third, current molecular tests only detect resistance to five anti-
tuberculosis drugs, notably missing several key first line agents,
including pyrazinamide and ethambutol, and over 5 additional agents
currently used for treatment. Fourth, they do not account for variables
such as genetic background and gene-gene interactions despite good
evidence for their contribution to resistance for several drugs including
rifampicin, ethambutol and fluoroquinolones from allelic exchange ex-
periments [9-11]. The limited scope of these tests suggests the need
for a comprehensive antimicrobial susceptibility test.

An alternative to targeted mutation detection methods is whole ge-
nome sequencing, which captures both common and rare mutations
that may be involved in drug resistance. Past studies utilizing whole ge-
nome sequencing however have most commonly attempted resistance
prediction using direct association (DA), i.e. splitting genetic variants
into two categories using a list of rules, those that are resistance associ-
ated and those that are not, and then classifying a given sample as either
resistant or susceptible to the drug of interest. Although this approach
works well for drugs like isoniazid and rifampicin for which resistance
variants are few and each have large effects, the performance for other
first line drugs is considerably lower, at a respective sensitivity (Sn)
and specificity (Sp) of 86% and 84% for ethambutol, and 76% and 92%
for pyrazinamide in the largest study incorporating over 10,000 isolates
[8,12-14]. Notably with DA, 10% or more isolates cannot be classified
because they harbor ‘indeterminate’ variants, and the classification per-
formance declines with higher rates of MDR and higher order resistance
[14]. The prediction from whole genome sequencing (WGS) data for
fluoroquinolones also has limited performance using DA reported at
Sn of 45.5% and Sp of 100% [8,12,13].

We hypothesize that the limited predictive performance of WGS for
anti-tuberculosis drugs other than isoniazid and rifampicin, that define
MDR-TB, could be improved using a large dataset enriched for higher
order resistance with incorporation of an expanded scope of variants
from genome sequencing and using a model capable of incorporating
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both additive effects and interactions. We present here an assessment of
machine and statistical learning models and genetic feature sets to build
a fast and clinically applicable model for detecting anti-tuberculosis
drug resistance.

2. Materials and methods
2.1. Data description

2.1.1. Sequence data

The training dataset consisted of 1379 MTB isolates that underwent
sequencing using molecular inversion probes that targeted 28 pre-
selected antibiotic resistance genes and promoter regions, with 100
bases flanking both ends of each region [8]. This sequence data was
pooled with 2222 additional MTB whole genome sequences curated
by the ReSeqTB knowledgebase, which maintains a public data sharing
platform (www.reseqtb.org) curating genotypic and phenotypic data of
WHO-endorsed in vitro diagnostic assays for MTB [15]. Among the total
3601 MTB isolates that underwent targeted or whole genome sequenc-
ing, there were 3227 unique patterns of genetic mutation features and
phenotypes. The validation dataset of 792 MTB isolates was obtained
by pooling additional data from ReSeqTB, without overlap with the
training set, and other MTB whole genome sequences and phenotype
data curated manually from the following references [16,17,18,19].
The validation isolate genetic mutation features and phenotypes did
not duplicate any observed in the training dataset.

2.1.2. Antibiotic resistance phenotype data

All isolates included underwent culture based antibiotic susceptibil-
ity testing to two or more drugs at WHO approved critical concentra-
tions and met other quality control criteria as detailed in [8]. The
pooled phenotype data included resistance status for eleven drugs:
first-line drugs (rifampicin, isoniazid, pyrazinamide, and ethambutol);
streptomycin; second-line injectable drugs (capreomycin, amikacin,
and kanamycin); and fluoroquinolones (ciprofloxacin, moxifloxacin,
and ofloxacin). Phenotypic data was classified as resistant, susceptible,
or not available.

2.2. Variant calling

We used a custom bioinformatics pipeline to clean and filter the raw
sequencing reads. We aligned filtered reads to the reference MTB isolate
H37Rv using Stampy 1.0.23 [20] and variants were called by Platypus
0.5.2 [21] using default parameters. Genome coverage was assessed
using SAMtools 0.1.18 [22] and read mapping taxonomy was assessed
using Kraken [23]. Strains with a coverage of <95% at 10x or more in
the regions of interest (Table S8) or that had a mapping percentage of
<90% to Mycobacterium tuberculosis complex were excluded. Further,
regions of the remaining genome not covered by 10 regions or more
in at least 95% of the isolates were filtered out from the analysis. In the
remaining regions, variants were further filtered if they had a quality
of <15, purity of <0.4, or did not meet the PASS filter designation by
Platypus.

2.3. Building the predictor sets of features

Because 1379 of the 3601 of the MTB isolates in the training set
underwent targeted sequencing only, we restricted the resistance pre-
dictors to variants in the regions targeted in these isolates (Table S8).
The targeted loci were determined by an expert panel of tuberculosis re-
sistance researchers based on literature evidence that they were causa-
tive of resistance. The details of this are described previously [8]. We
assumed for the purposes of this analysis that any variant found in a
locus with a causal link to the drug, excluding silent coding variation,
can be causal of resistance. Variants found in other loci not causally im-
plicated with resistance to that drug, are labeled non-causal for that

drug, even if they were causally implicated for another drug. Since the
eis and rpsA genes and promoters were recently determined to be caus-
ative of kanamycin and pyrazinamide resistance respectively [24,25],
we added mutations in the eis and rpsA regions into our set of predic-
tors. For those isolates with missing genotype data, we used a status
of 0.5 for the missing mutations.

The features used for prediction consisted of two groups. In the first
group, each mutation was considered a predictor and its status was bi-
nary (either present or absent). The second group, we created ‘derived’
categories by grouping the rarer mutations (present in <30 isolates) by
gene locus (coding, intergenic and putative promoter regions). For each
coding region, we split the variants by type into three groups: single nu-
cleotide substitution (SNP), frameshift insertion/deletion, or non-
frameshift insertion/deletion. For each non-coding region, we split the
variants by type into two groups: insertions/deletion or single nucleo-
tide substitution). We used individual and derived predictors found in
at least 30 MTB isolates to make our final set of predictors used to
train all models. We also included wide and deep neural network
(WDNN) and L2 regularized logistic regression models trained on sub-
sets of the predictor data. The first subset was mutations or derived cat-
egories based on preselected genes known to be important to resistance
to the particular drug. The second subset was only mutation predictors
without the derived features to measure the effect on accuracy (ACC) of
these derived features.

2.4. Evaluation of MTB isolate diversity

We identified lineage-defining variants as assessed in a 2015 study
by Walker et al. [12]. The genetic-lineage similarity between each pair
of isolates was computed as the Euclidean distance between the two-
corresponding lineage-defining mutation vectors. We applied Ward's
method of hierarchical clustering on the resultant distance matrix [26]
to group the isolates and displayed the isolate-isolate Euclidean dis-
tance matrix based on the lineage-defining variants in a heat map. We
used hclust in the R stats 3.4.2 package to perform hierarchical cluster-
ing. Each group was mapped back to the recognized MTB lineage classi-
fication by matching the expected pattern of SNPs in Walker et al. [12].

2.5. Machine learning models

Deep neural networks have had measurable success across several
areas of biomedicine. Here, we evaluated several neural network archi-
tectures for ACC in predicting MDR-TB. These included a multidrug
(MD) and single drug (SD) wide and deep neural network (WDNN)
[27] and a deep multilayer perceptron (MLP), with the same architec-
ture as MD-WDNN without the ‘wide’ logistic regression model. The
SD-WDNN and MLP underwent the same training process as the MD-
WDNN (Table S9). We also implemented two simpler machine learning
classification models - a single drug random forest and a simple drug L2
regularized logistic regression, to test the relative performances of sim-
pler and more complex machine learning models. See the supplement
for the hyperparameters of each model. The WDNN [27], marries two
successful models, logistic regression and deep multilayer perceptrons
(MLP), to leverage the strengths of each approach. In WDNNs, a ‘wide’
logistic regression model is trained in tandem with a ‘deep’ MLP and
the two models are merged in a final classification layer, allowing the
network to learn useful rules directly from the input data and higher
level nonlinear features. For genomic data, the logistic regression por-
tion of network can be thought of as modeling the additive portion
genotype-phenotype relationship, while the MLP models the nonlinear
or epistatic portion. We implemented a WDNN with three hidden layers
each with 256 rectified linear units (ReLU) [28], dropout [29], batch nor-
malization [30], and L2 regularization (Fig. 7). Dropout and L2 regulari-
zation are used to prevent overfitting of the models to the training data.
L2 regularization was applied on the wide model (which is equivalent to
the well-known Ridge Regression model) [31], the hidden layers of the
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deep model, and the output sigmoid layer. The network was trained via
stochastic gradient descent using the Adam optimizer for 100 epochs
with randomized initial starting weights determined by Xavier uniform
initialization.

The MD-WDNN was trained simultaneously on resistance status for
all 11 drugs, including ciprofloxacin. Each of the 11 nodes in the final
layer represented one drug and its output value was the probability
that the MTB isolate was resistant to the corresponding drug. We con-
structed a single-drug WDNN (SD-WDNN) with the same architecture
as the multidrug model except for the structure of the output layer,
which predicts for one drug.

The MD-WDNN utilized a loss function that is a variant of traditional
binary cross entropy. Our dataset had a missing resistance status for
some drugs in the MTB isolates, so we implemented a loss function
that did not penalize the model for its prediction on drug-isolate pairs
for which we did not have phenotypic data. Due to imbalance between
the susceptible and resistant classes within each drug, we adjusted our
loss function to upweight the sparser class according to the susceptible-
resistant ratio within each drug. Thus, the final loss function was a class-
weight binary cross entropy that masked outputs where the resistance
status was missing.

2.6. Training and model evaluation

To assess each model, we performed ten-fold cross-validation, re-
peated 5 times, for a total of 50 different validation sets. The metric
used for evaluation was the area under the receiver-operator curve
(AUC) and overlap of its 95% confidence interval between the models.
All single drug models were stratified by class label to address imbal-
ances between resistance and susceptible classes, as they were all single
task classifiers. The highest performing simple and complex models, L2
regularized logistic regression and the MD-WDNN trained on the full
predictor set, were validated through an independent validation set.

For the MD-WDNN and L2 regularized logistic regression on the full
predictor set, we reported two pairs of Sn and Sp performance on the in-
dependent validation set. We reported the first pair by determining a
probability threshold to maximize the sum of Sn and Sp for each drug.
For the second pair, we determined the probability threshold to maxi-
mize Sn given that the Sp is at least 90%. The 90% specificity threshold
stems from the value assessment that over-diagnosis of antibiotic resis-
tance is more harmful than under-diagnosis due the treatment toxicity
and side effects, e.g. renal failure and hearing loss, for the drugs used in
antibiotic resistant cases.

Hyperparameters were determined using Bayesian optimization as
implemented by Spearmint [32]. We reported the prediction time for
the MD-WDNN and L2 regularized logistic regression on the indepen-
dent validation set, averaged over 1000 iterations.

2.7. MTB isolate visualization using t-SNE

We applied t-distributed Stochastic Neighbor Embedding (t-SNE), a
method for visualizing data with high dimensionality [33], to two
datasets: (1) the set of input predictors (common mutations and de-
rived categories) and (2) the final output layer of the MD-WDNN. The
genetic markers, originally in 222 dimensions, and the final layer
weights, originally in 11 dimensions, were each extracted from the
MD-WDNN and projected onto two dimensions. Each point represented
one MTB isolate and was colored based on its phenotypic status for each
drug. The lineage clustering was also overlaid on the t-SNE plots to
determine the effect of lineage on the two different representations
of isolates.

2.8. Importance of MTB genetic variants to drug resistance

We examined predictor importance to resistance by analyzing the
prediction outputs of the MD-WDNN and the presence or absence of

mutations through a permutation test. We permuted the resistance la-
bels and calculated the distribution of following difference:

P(isolate is resistant | mutation is present)
—P(isolate is resistant | mutation is absent)

where P(isolate is resistant | mutation is present) is the MD-WDNN's
probability of resistance for a given mutation. We then compared the
actual differences with the permuted differences. The sampling distri-
bution included 100,000 randomized permutations per mutation and
the actual differences were evaluated at a significance level of o =
0.05 using a Bonferroni correction for the 222 multiple comparisons.
We conducted the permutation test for each predictor (common muta-
tions or derived categories) that was present in at least 30 MTB isolates.

We also examined predictor importance to the L2 regularized logis-
tic regression model. Using bootstrapping with 10,000 iterations, we
built a confidence interval for each predictor-drug pair's exponentiated
B coefficient (commonly referred to as the odds-ratio) to determine re-
sistance or susceptibility importance. The confidence interval was built
at a significance level of o = 0.05 using a Bonferroni correction for the
222 multiple comparisons.

2.9. Implementation details

All WDNN and MLP model implementations used the Keras 1.2.0 li-
brary in Python 2.7 with a TensorFlow 0.10.0 backend. The random for-
est and regularized logistic regression classifiers were implemented
with Python Scikit-Learn 0.18.1. The isolate diversity analysis was im-
plemented using R 3.4.0, the t-SNE analysis used the Rtsne 0.13 package
in R, and the permutation tests were implemented in Python 2.7. All
models were trained on a NVIDIA GeForce GTX Titan X graphics pro-
cessing unit (GPU). Hyperparameters are available in Table S9. All anal-
ysis code and input data files are openly available at https://github.com/
farhat-lab/wdnn.

3. Results
3.1. Data Processing

The pooled data from the WHO network of supranational reference
laboratories and the ReSeqTB knowledgebase [8,15] used in training
the initial model included 3601 MTB isolates. Ofloxacin was tested on
the smallest number of isolates at a total of 739. All other drugs were
tested in at least 1204 isolates, with rifampicin tested in 3542 isolates
and isoniazid in 3564 isolates (Table S1). A high proportion of isolates
tested resistant, ranging from 19.9% to 47% for the different drugs.

The independent validation set contained 792 MTB isolates, with
198 to 736 of these isolates tested for each of the 10 drugs (Table S2).
Because ciprofloxacin had limited phenotypic availability in the inde-
pendent validation set and predictive performance could not be vali-
dated, we did not include performance for ciprofloxacin resistance.

We found 6342 different insertions, deletions, and single nucleotide
polymorphisms (SNPs) in 30 promoter, intergenic, and coding regions
of the MTB isolates’ genomes. Of these variants, 166 were present in at
least 30 of the 3601 isolates and were used as predictors in the “Com-
mon Mutations” predictor set. Of the 3445 variants found in fewer
than 30 isolates, we aggregated the variants into 141 derived categories
(see Methods) and used 56 of them, those present in at least 30 isolates,
as predictors in the “Common Mutations” and rare aggregate variants
predictor set. The final model used these 222 total predictors in training
and subsequent analyses.

3.2. Evaluation of MTB isolate diversity

Sequence data from 33 genetic lineage markers (Table S3) were
available in all 3601 isolates and were used to measure genetic distance
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Agglomerative clustering of MTB isolates by genetic similarity

TIsolate-isolate distance

Fig. 1. Agglomerative clustering of MTB isolates by genetic similarity. We used known lineage-defining mutations to calculate isolate-isolate Euclidean distances, which is shown in the
heat map. Using these distances of the lineage-defining mutation vectors between isolates, we applied Ward's method of hierarchical clustering to construct the dendrogram and deter-
mine the five lineage clusters. The dendrogram is colored by the corresponding isolate genetic lineage. Green: East Asian, Purple: Euro-American (Latin America Mediterranean-LAM
sublineage), Orange: Euro-American (other sublineages than LAM), Yellow: Central Asian, Blue: Indo-oceanic & M. africanum.

between isolates [12]. The isolates fell into five well-defined clusters
that corresponded to MTB's known genetic lineages. All 5 lineages
were well represented with 632 from the Euro-American Latin
America Mediterranean sub-lineage, 1501 from other Euro-American
sub-lineages, 331 from the Indo-Oceanic or Mycobacterium africanum,
643 from the Central Asian lineage, and 494 from the East Asian lineage
(Fig. 1). The input genetic data t-SNE coordinates also largely recapitu-
lated the genetic clustering due to lineage (Fig. S1), illustrating that
the largest genetic differences between isolates were related to lineage.
On the other hand, overlying t-SNE coordinates for the MD-WDNN's
probabilistic representation (Fig. S2) confirmed that the MD-WDNN's
prediction of phenotype was not simply predicting on the basis of line-
age related variation.

Compared with the training data, the independent validation dataset
was geographically distinct and contained a higher proportion of East
Asian lineage, 351 isolates (44%), but a lower proportion of other line-
ages: Euro-American Latin America Mediterranean sub-lineage (63 iso-
lates), other Euro-American (253 isolates), Central Asian lineage (32
isolates), and 93 isolates from other lineages (Indo-Oceanic, Lineage 6,
bovis and africanum).

3.3. Comparison of models and genetic marker feature sets

To investigate the effect of different machine learning architectures,
we compared three deep learning models, including the MD-WDNN,
with two simpler models, L2 regularized logistic regression and random
forests. All models were trained on the full feature set of common and
derived features. We found the performances across the different neural
net model architectures were not significantly different in our data
when trained on the full feature set (Table 1). We found the random for-
est model to be inferior to either L2 regularized logistic regression or
any of the neural net models for three of the four first line drugs, and

as a result, we did not examine this model further. The most complex
neural net model, the MD-WDNN, showed the highest average perfor-
mance across both first and second line drugs with an AUC of 0.953,
and the highest performing simple model, L2 regularized logistic regres-
sion, showed only slightly lower performance, with an average AUC
of 0.949.

To investigate the effect of different feature sets, the MD-WDNN and
L2 regularized logistic regression models were trained on different sub-
sets of genome sequence data (Fig. 2). The largest step up in AUC across
any of our models and feature sets was observed between the models
trained using genetic regions known to be causative of resistance for
each particular drug and the models trained on the full predictor set of
variants known to be determinants of resistance to at least one drug
(Fig. 2, Table 1). For the second line drugs, the average AUC was 0.887
for L2 regularized logistic regression using the ‘causative’ variants vs.
0.929 for L2 regression using the full predictor set. The importance of
using rare genetic variation in predicting resistance is highlighted by
the loss of performance seen with the WDNN or L2 regression built
without the derived variables (Fig. 2). This was most notable for the
drugs pyrazinamide, capreomycin, and moxifloxacin.

To compare the effect of building a single model for all drugs vs. in-
dividual models for each drug (e.g. multi-task vs single-task), we
measured the performance of a single drug model (SD-WDNN) to the
multidrug version (MD-WDNN). The predictive performance of
the MD-WDNN and the SD-WDNN during repeated cross-validation
are shown in Fig. 3. The average AUC for the SD-WDNN was 0.978 for
first-line drugs and 0.928 for second-line drugs; the multidrug architec-
ture of the MD-WDNN resulted in a higher average AUC for both first-
line drugs (AUC = 0.979) and second-line drugs (AUC = 0.936)
although these differences were not significant. The largest gains were
observed for the drugs kanamycin and ofloxacin, with AUC differences
of 0.023 and 0.017, respectively.
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Table 1

Tuberculosis drug resistance prediction AUROC performance of the models examined using repeated cross-validation. A table of predictive performance across all nine models during re-
peated cross-validation. The MD-WDNN, SD-WDNN, deep MLP, random forest, and logistic regression models were trained on the full set of predictors. The MD-WDNN (Common Muta-
tions) and logistic regression (Common Mutations) models were trained on mutations not including the derived categories. The kSD-WDNN (Preselected mutations) and logistic
regression (Preselected mutations) models were trained on preselected mutations known to be determinants of resistance for each drug. Performance is shown in average AUC and
95% confidence interval across all cross-validation folds. The cells are colored by rank of the model for each drug, colored from lightest to darkest corresponding with lowest to highest

AUC value.
AUC (95% Confidence Interval)
1% line Drugs 2"d Line Drugs

Algorithm  |[RIF INH PZA EMB Average |STR CAP AMK MOXI |[OFLX |KAN Average
Logistic 0.985 0.986 0.948 0.966 0.971  [0.932 0.802 0.945 0.802 0.931 0.908 0.887
Regression  [(0.983 - [(0.984 - [(0.944 - [(0.964- | (0.967 - |(0.929 - ((0.793 - [(0.934- ((0.791 - |(0.919- |(0.897 - | (0.875 -
(Preselected [0.986) [0.988) ]0.951) [0.968) 0.975) (0.936) [0.812) |0.955) [0.812) 0.943) |0.92) 0.899)
Mutations)
Logistic 0.988 0.984 0.935 0.966 0.969  [0.926 0.877 0.942 0.849 0.92 0.897 0.902
Regression  [(0.987 - [(0.983 - [(0.931- |(0.965- | (0.963- |(0.922- ((0.861- ((0.935- [(0.837- |(0.908- [(0.889- | (0.884 -
(Common [0.989) [0.986) ]0.939) |0.968) 0.974) 10.929) ]0.892) |0.948) ]0.861) |0.932) |0.906) 0.919)
Mutations)

0.994 0.959 0.953 0.944 0.905 0.921 0.91 0.928
Logistic (0.993 - (0.955 - (0.948 - [(0.933 - [(0.895- {(0.902- |(0.901- | (0.916 -
Regression  [0.995) 0.963) 0.958) [0.954) ]0.915) [0.941) ]0.919) 0.941)

0.986 0.982 0.954 0.966 0.972  10.924 0.93
Random (0.985- [(0.98- [(0.949- [(0.964- | (0.967- |(0.92 - (0.914 -
Forest 0.988) [0.985) ]0.958) |0.969) 0.977) 10.929) 0.946)

0.973 0.979  [0.934 0.962 0.914 0.909 0.934
0.97 - (0.975 - |(0.929 - ((0.956 - (0.904 - (0.898 - | (0.924 -

Deep MLP 0.975) 0.983) [0.938) 10.967) 0.924) 0.92) 0.945)
kSD-WDNN |0.985 0.986 0.95 0.965 0.972 0.793 0.93 0.785 0.917 0.913 0.879
(Preselected [(0.984 - [(0.984 - [(0.947 - [(0.963 - | (0.968 - (0.784 - {(0.918 - [(0.777- {(0.9 - (0.901 - | (0.866 -
Mutations) (0.987) [0.988) ]0.952) [0.967) 0.975) 0.802) [0.943) ]0.794) |0.933) ]0.924) 0.892)

0.994 0.987 0.959 0.971 0.978 10.936 0.962 0.944 0.909 0.918 0.896 0.928

(0.993 - [(0.985- [(0.955- [(0.968- | (0.973- |(0.932- [(0.958- [(0.934- [(0.9- (0.902 - ((0.886- | (0.916-
SD-WDNN (0.995) |0.989) ]0.963) |0.973) 0.982) [0.941) |0.966) [0.954) |0.918) [0.933) [0.907) 0.939)
MD-WDNN |0.991 0.983 0.938 0.967 0.970  [0.925 0.941 0.901 0.919 0.901 0.925
(Common [(0.99- [(0.981 - [(0.933- |(0.965- | (0.966- |(0.921 - (0.932- [(0.892- [(0.905- {(0.89 - (0.916 -
Mutations) [0.992) I 0.97) 0.951) 0.934)

3.4. Independent validation

The cross-validation results above supported the choice of the MD-
WDNN (Average AUC = 0.953) and L2 regularized logistic regression
(Average AUC = 0.949) trained on the full set of common and rare var-
iant derived categories as high performing methods for drug resistance
prediction. We proceeded to validate the model performances on an in-
dependent data set. The ROC curves for our two final models on the in-
dependent validation data across the 10 anti-tuberculosis drugs are
shown in Fig. 4, illustrating the different Sn and Sp performance values
at probability thresholds between 0 and 1. Table 2 shows the AUC cor-
responding to the ROC curves for each drug. The average AUCs for the
MD-WDNN were 0.937 for first-line drugs and 0.891 for second-line
drugs on an independent validation set, which were slightly lower
than the AUCs during repeated cross-validation (AUC = 0.979 for
first-line drugs, AUC = 0.936 for second-line drugs). The AUCs for L2
regularized logistic regression were 0.941 for first-line drugs and
0.879 for second-line drugs. Due to class imbalance for some of the
drugs, we also measured performance using the precision-recall curve
(Fig. S4), as this may be more informative for rare events [49]. The com-
parison between the MD-WDNN and logistic regression performance

according to the precision-recall curve largely aligns with the AUC met-
ric (Tables 1 and S4). We do note, however, there is a sizeable gap in av-
erage precision (AP) between MD-WDNN and logistic regression
models for three drugs: capreomycin, amikacin, and moxifloxacin. The
MD-WDNN achieved APs of 0.5, 0.74, 0.63 while logistic regression
had APs of 0.45, 0.64, and 0.55 for those three drugs, respectively.

Sn, Sp, and the corresponding probability threshold, which was
chosen to maximize the sum of Sn and Sp, are also reported for
each model and drug in Table 2. For the MD-WDNN, the average Sn
and Sp, respectively, on the independent validation set were 87.9%
and 92.7% for first-line drugs and 82.0% and 90.1% for second-line
drugs. For L2 regularized logistic regression, the average Sn and Sp,
respectively, on the independent validation set were 90.1% and
90.5% for first-line drugs and 76.7% and 91.0% for second-line
drugs. Notably, the two models perform similarly, with L2 regular-
ized logistic regression slightly higher on average, for drugs except
amikacin. For amikacin, the MD-WDNN significantly outperforms
L2 regularized logistic regression, with an increased AUC of 0.107
and increased sum of Sn and Sp of 22.4%. Sn and Sp values for the sec-
ond probability threshold, which maximizes Sn given that Sp is at
least 90%, are available in Table S5.
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Fig. 2. Comparison of tuberculosis drug resistance predictive performance based on input feature set. Area under the ROC curve classification performance and 95% confidence intervals
during repeated cross-validation for the MD-WDNN and logistic regression models trained on all features (common and derived mutations), MD-WDNN trained on just mutations
(Common Mutations), and the trained on mutations and derived categories occurring in genes known to be resistant determinants for each drug (Preselected Mutations).

The prediction runtime for each model was also tested on the inde-
pendent validation set. The MD-WDNN prediction time was 0.0352 s,
and the L2 regularized logistic regression prediction time was 0.00291 s.

3.5. MTB isolate visualization using t-SNE

A popular way to visualize the components of a deep learning model
is the t-distribution stochastic neighborhood embedding (t-SNE)
method, which is a nonlinear dimensionality reduction technique [33].
We applied t-SNE separately to (1) the input genetic predictors and
(2) the MD-WDNN predictions. t-SNE on the input genetic markers
showed well-defined clusters, and each cluster contained both suscep-
tible and MDR isolates with little discernable pattern of resistance clas-
sification (Fig. S3). Conversely, Fig. 5 demonstrates clear separation by
the MD-WDNN's output representation between resistant and suscepti-
ble isolates, consistent with our measurements of high model Sn and Sp.
The t-SNE plots also demonstrates the multitask WDNN's ability to clas-
sify resistance across multiple drugs, separating them into nested
groups of pan-susceptible isolates, followed by mono-isoniazid resistant
isolates, multidrug resistant isolates, pre-XDR isolates, and XDR isolates,
which is consistent with the order of administration of the drugs clini-
cally as well as the usual order of MTB drug resistance acquisition

[34]. The second-line injectable drugs, amikacin, capreomycin, and
kanamycin, also show similarly-classified clusters, highlighting the
moderate level of cross resistance between them. We also observe this
among the fluoroquinolones despite the fact that fewer isolates were
tested for resistance to these agents [35].

3.6. Importance of MTB genetic variants to drug resistance

All 222 predictors were tested for importance to resistance or sus-
ceptibility in the MD-WDNN to each of the 10 drugs through a permu-
tation test as described in the methods section. Of the 156 mutations
and 56 derived categories, the majority were found to be significant ‘re-
sistance predictors’ for one or more drug: rifampicin (103 mutations, 40
derived), isoniazid (102 mutations, 42 derived), pyrazinamide (94 mu-
tations, 38 derived), ethambutol (96 mutations, 44 derived), as well as
the second-line drug streptomycin (98 mutations, 42 derived). Of the
remaining predictors, the highest number of ‘susceptibility predictors’
were found in isoniazid (39 mutations, 0 derived), rifampicin (37 muta-
tions, 1 derived), streptomycin (37 mutations, 0 derived), ethambutol
(36 mutations, 0 derived), and pyrazinamide (32 mutations, 2 derived).
The full list of predictors important to resistance and susceptibility in
the MD-WDNN for each drug are provided in Table S6. Fig. 6 illustrates
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Fig. 3. Comparison of tuberculosis drug resistance predictive performance between single drug and multidrug models. Area under the ROC curve classification performance and 95%
confidence intervals during repeated cross-validation for the multidrug WDNN predicting resistance for all drugs simultaneously and for the single drug WDNN.

the number of significant resistance predictors per drug and their inter-
sections among different drug subsets. Subsets of drugs that included a
second line injectable drug and shared at least two predictors consis-
tently included both INH and RIF. This is consistent with previous find-
ings that MTB isolates acquire resistance to first-line drugs before
second-line drugs [34] and indicates that the multidrug model was
able to capture these relationships. The subset of fluoroquinolones
shared 3 resistance-correlated predictors not found in other first-line
or second-line drugs, and reflect that fluoroquinolones have a mecha-
nism of action that differs from those of first-line and second-line
drugs [36].

There was a large degree of overlap between important predictors
for the MD-WDNN and L2 regularized logistic regression. The number
of significant resistance predictors in overlap between the two models
were 141 predictors for isoniazid, 128 for pyrazinamide, and 139 for
streptomycin, including multiple derived categories. Both models suc-
cessfully excluded variables known to be neutral or lineage markers,
such as excluding gyrA S95 T from association with fluoroquinolone re-
sistance. The MD-WDNN and permutation measure of importance clas-
sified a larger proportion of the variants as associated with susceptibility
than did L2 regularized logistic regression. For example, 39 mutations in
the MD-WDNN measure were associated with isoniazid susceptibility,
whereas 2 mutations were associated with isoniazid susceptibility by
L2 regularized logistic regression (Tables S6-7). Overall, 52 genetic var-
iants were associated with susceptibility to one or more drugs, including
19 known lineage markers (Table S11). Both lists included non-
canonical and rare variants among the top most important variables
for resistance prediction. For example, embA mutations were among
the top resistance predictors for the drug ethambutol with the N54D
mutation as the most prominent, ranking third most important for

resistance prediction. On the other hand, embC variants ranked much
lower in importance for ethambutol, and several of its variants, includ-
ing V104 M, R567H and a frameshift insertion in codon 986, were asso-
ciated with susceptibility (Tables S6-7). Variants in the gene rpsA were
individually rare but were among the top 30 predictors for the drug
pyrazinamide when pooled in the derived mutation category. All pre-
dictors important for resistance and susceptibility in L2 regularized lo-
gistic regression are provided in Table S7.

4. Discussion

The primary aim of this study was to construct a highly accurate
model of drug resistance through exploration of different machine and
statistical learning methods trained on both common and rare genomic
variant data. We demonstrate that L2 regression and MD-WDNN
trained on a larger diverse dataset using a method of aggregating rare
variants outperforms our previously reported random forest model
[8]. A few prior studies have utilized algorithmic or machine learning
methods using genomic data to account for the complex relationship
between genotype and drug resistance in MTB [8,12,13,19,37]. Com-
pared to one study that used a direct association (DA) algorithm, the
machine learning approaches presented here offer improvement in Sn
and Sp for the majority of drugs when prediction is attempted on all iso-
lates, including those with rarer and not previously observed variants
[12]. For example, DA had Sn and Sp for predicting pyrazinamide resis-
tance of 24% and 99%, respectively, if prediction was attempted on all
isolates including those with uncharacterized variants. Our MD-
WDNN performance on an independent dataset achieved Sn of 75.2%
and Sp of 91.2%. The best sum of Sn and Sp for the L2 regularized logistic
regression model showed Sn of 81.2% and Sp of 82.5%, and fixing Sp to at
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Fig. 4. Tuberculosis drug resistance ROC performance curve of the MD-WDNN and logistic regression. A ROC plot of MD-WDNN (top) and logistic regression (bottom) predictive
performance on the independent validation set for first-line (left) and second-line (right) anti-tuberculosis drugs.

least 90% for comparability with MD-WDNN results in LR Sn of 70.7%.
Similarly, the WDNN and logistic regression Sn and Sp were 69.6%/
93.7% and 71.7%/91.7%, respectively, for ofloxacin, whereas with DA,
the Sn and Sp were 45% and 100%, respectively [12]. One study used
single-task machine learning, demonstrating the validity of this ap-
proach for identifying MDR and XDR-TB, but the study did not verify
their findings using independent validation data, raising concerns
about generalizability [37]. Additionally, the best models in the study
[37] used dimensionality reduction (sparse PCA) for two drugs (CAP
and AMK) to address the problem of rare and sparse inputs, limiting
the interpretability for models of these drugs. In contrast, our approach
used an interpretable set of inputs (no-dimensionality reduction) for
CAP and AMK, while also achieving substantially higher performance

in cross-validation with AUCS of 0.96 and 0.95 for CAP and AMK, com-
pared to AUCs of 0.85 and 0.91 reported in [37]. Across all drugs tested,
our MD-WDNN approach showed higher performance in 8 of the 10
drugs during cross-validation compared to their highest performing
model for each drug (Table S10). The increase in average AUC of our
model was 0.014 for first-line drugs and 0.025 for second-line drugs.
Third, their analysis did not demonstrate the lack of confounding by lin-
eage and report some lineage variants as predictive of resistance.

Our approach has several novel features. First, we included all vari-
ants in the set of 32 genetic loci as potential predictors of resistance to
any drug and did not subset the variants according to a priori knowledge
of causative relationships between genetic loci and drugs. The predic-
tive performance gains offered by this more “permissive” approach
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Table 2
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Tuberculosis drug resistance predictive performance of the MD-WDNN and logistic regression. Area under the ROC curve classification performance on the independent validation set. We
also report sensitivity and specificity performance with the probability threshold chosen to maximize the sum of sensitivity and specificity for all anti-tuberculosis drugs. The cells are col-

ored from lightest to darkest for lowest to highest AUC across the 10 drugs for each model.

WDNN Logistic Regression

Sensitivity | Specificity AUC Sn, % Sp, % Threshold
Drug AUC | (Sn), % (Sp), % | Threshold
Rifampicin 95.4 97.8 0.35 96.1 96.9 0.23
Isoniazid 90.3 96.4 0.09 89.4 99.0 0.26
Pyrazinamide 0.883 75.2 91.2 0.32f 0.883 81.2 82.5 0.05
Ethambutol 0.922 90.6 85.6 0.40 93.8 83.7 0.13
Streptomycin 90.1 89.6 0.26 92.1 89.6 0.2
Capreomycin 0.808 71.9 85.7 0.23( 0.820 68.8 85.7 0.11
Amikacin 89.5 90.8 0.20( 0.843 57.9 100 0.17
Moxifloxacin 0.902 90.0 91.0 0.39( 0.919 85.0 933 0.12
Ofloxacin 0.866 69.6 93.7 0.57( 0.856 71.7 91.7 0.12
Kanamycin 0.879 81.1 89.6 0.32( 0.894 84.9 85.6 0.1

were considerable especially for the second line drugs, and the first-line
“sterilizing” drug pyrazinamide [38]. Second, we utilized rare variants
through our method of forming derived groups of mutations, resulting
in large performance gains for certain drugs. Third, we are the first to
build a neural network model for resistance prediction from MTB geno-
typic data. We attempted to incorporate prior information about the ge-
netic etiology of MDR and XDR directly into the structure of our deep
neural network, as it is known that both individual markers and gene-

gene interactions confer resistance [9-11]. The wide portion of the net-
work allows the effect of individual mutations (e.g. marginal effects) to
be easily learned, while the deep portion of the network allows for arbi-
trarily complex epistatic effects to influence the predictions. Fourth, we
are the first to examine a multidrug approach that allows drugs with
less phenotypic data to borrow pathway information from others with
a higher number of phenotyped isolates. To some extent, this proved
to be true as demonstrated by Fig. 3. We acknowledge that with the

t—SNE visualization for the MD-WDNN's representation of drug resistance status

Isoniazid

Rifampicin

Pyrazinamide Ethambutol
4

TR LR .

£ 4 % e a

B oA -

| ® Resistant ® Sensitive

Unknown

Fig. 5. t-SNE visualization for the final output layer of the MD-WDNN. The final layer predictions, originally in 11 dimensions, were projected onto two dimensions. Each point is an MTB

isolate, colored according to its resistance status with respect to the corresponding drug.
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Fig. 6. Intersection of predictors correlated with resistance by anti-tuberculosis drug subgroups. We permuted the resistance labels and calculated the distribution of the difference, P
(isolate is resistant | mutation is present) — P(isolate is resistant | mutation is absent). We show the number of mutations per subgroup of drugs ordered from most to least mutations

per subgroup. Number of significant predictors per drug is also shown.

use of a more complex model there is an increased risk of overfitting to
our data during repeated cross-validation. We used techniques such as
dropout and L2 regularization at each layer of the model to mitigate
the effect of overfitting. Furthermore, we sought to evaluate potential
overfitting through our analysis on an independent validation set,
which showed performance with high clinical relevance. In light of
these considerations, the MD-WDNN model presented here is the
first multitask tool that provides the full antibiogram for 10 anti-
tuberculosis drugs in one run. We successfully built high performing
deep learning models to predict anti-tuberculosis drug resistance, al-
though the performance gains from these more complex methods are
not yet fully justified over simpler models, except in the case of
amikacin, where the improvement was considerable. We expect the
benefits of these deep learning models to increase when incorporating
more genetic loci into the predictor set. Likewise, incorporating more
prior information into the structure of the model, such as modeling phe-
nomena like linkage disequilibrium using a convolutional neural net-
work, will likely increase the performance of the deep learning
approach.

Although the gains that we attribute to the multitask architecture
per se were not significant, the gains were quantitatively larger for sec-
ond line drugs like kanamycin and ofloxacin. As second line injectables
and fluoroquinolones are cornerstone agents for the treatment of MDR-
TB treatment, and accurate prediction of susceptibility to these agents is
key in determining a patient's candidacy for the recently recommended
shortened MDR-TB regimen, this approach holds promise as more

genomic data is incorporated [39]. Prediction of resistance to second-
line injectables has thus far been challenged by a limited genetic knowl-
edge base and consequently limited Sn when using simple direct
association approaches [12]. Thus, in aggregate, the use of a more com-
plex approach, such as our multidrug WDNN, shows promise for perfor-
mance gains in pyrazinamide and second line drugs. Furthermore, even
for drugs like isoniazid and rifampicin that had high performance across
the model architectures and the feature categories we tested, our mul-
tidrug WDNN validated performance exceeds prior models, achieving
a respective Sn and Sp of 95% and 98% for rifampicin, and 90% and 96%
for isoniazid (Table 2). Prior state-of-the-art Sn and Sp were reported
at 92% and 99%, and 85% and 98%, respectively [12]. This is likely a result
of using a larger and richer TB dataset that has been previously used and
using a multivariate approach to prediction.

The translation of our modeling approach trained on both rare and
common variants is also a function of advancements in whole genome
sequencing and accessibility to more MTB isolate data. Improvements
in whole-genome sequencing technologies have significantly reduced
costs [40], allowing for more routine whole genome sequencing in
MTB isolates [41,42]. The prediction time for MTB drug resistance de-
pends primarily on the sequencing turnaround time, which is signifi-
cantly shorter than phenotypic susceptibility testing [43]. In addition,
as more routine sequencing increases the amount of MTB isolate data,
our models can be rapidly updated as the datasets become accessible.
We expect that as more data are incorporated, the Sn and Sp gap in
second-line injectable drugs and fluoroquinolones will become smaller.
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isolates for one of the 11 anti-tuberculosis drugs.

Our approach allowed us to gain new insights into the relative im-
portance of specific genetic variants for resistance prediction. For exam-
ple, the gene rpsA was previously causally associated with pyrazinamide
resistance [25] but has not been found to be predictive of pyrazinamide
resistance in clinical isolates [14]. This may relate to a low number of
pyrazinamide resistant isolates that were included in prior studies or al-
ternatively because of a more complex association between mutations
in rpsA and the phenotype that our approach was able to capture. The
protein products of the genes embC and embA are known targets of
the drug ethambutol and acquisition of mutations in these genes is
thought to increase ethambutol resistance levels [10,44]. Here we find
several mutations in embC that appear to be predictors of ethambutol
susceptibility and find that at least some embA mutations, especially
N54D, to be more important resistance predictors than any of the ob-
served embC mutations in our data (Tables S6-7). This is supported by
recent data from genome-wide association studies of clinical isolates
where embC variants were found to be relatively common, occurring
in about 10% of isolates but nevertheless not significantly associated
with ethambutol resistance [45].

We acknowledge some limitations of our study. First, one
source of bias could be errors during phenotyping, as susceptibility
testing for some drugs has been shown to have low reproducibility
and high variance [46,47]. However, we used strains with pheno-
typic data measured at national or supranational TB reference lab-
oratories following strict quality control or carefully curated from
research and reference laboratories [8, 15]. Beyond technical or
laboratory limitations in testing, certain resistance mutations, es-
pecially for ethambutol and second-line drugs, may result in mini-
mum inhibitory concentrations (MICs) very close to the clinical
testing concentration, which may result in lower Sn and Sp [48]
when predicting a binary resistance phenotype. The use of MIC

data for building future learning models may help circumvent
this. Second, we only included mutations that occurred in >0.8%
(30 of 3601 isolates) individually or when aggregated with other
rare variants in the same gene or intergenic region. Although we
may have missed some important predictors, this threshold
amounted to only ignoring variants that are very rare in a diverse
sample of MTB genomes with good representation from the 4
major genetic lineages. Third, we did not include third-line anti-
tuberculosis drugs such as cycloserine or para-aminosalicylic acid
due to the lack of phenotypic data.

In summary, we present an exploration of machine learning and
traditional statistical models to identify the resistance of MTB isolates
to 10 anti-tuberculosis drugs from whole genome sequencing data.
Our models trained on rare and common genetic variants achieved
state-of-the-art performance on a large, aggregated TB dataset, with
prediction times of less than a tenth of a second, demonstrating the ef-
ficacy of our model as a diagnostic tool for MTB drug resistance. The
MD-WDNN represented the first multidrug model to our knowledge
that incorporated a high number of genotypic predictors known to be
important to determining resistance for one or more included drugs.
Further work identifying the impact of a wide range of genetic variants
will not only allow for improved predictive performance but may also
give us a greater understanding of the biological mechanisms underly-
ing drug resistance in MTB isolates.
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