
Lifetime Data Analysis (2019) 25:529–545
https://doi.org/10.1007/s10985-018-9448-1

Hidden three-state survival model for bivariate longitudinal
count data

Ardo van den Hout1 · Graciela Muniz-Terrera2

Received: 13 November 2017 / Accepted: 3 August 2018 / Published online: 27 August 2018
© The Author(s) 2018

Abstract
A model is presented that describes bivariate longitudinal count data by conditioning
on a progressive illness-death processwhere the two living states are latent. The illness-
death process is modelled in continuous time, and the count data are described by a
bivariate extensionof thebinomial distribution.Thebivariate distributions for the count
data approach include the correlation between two responses even after conditioning
on the state. An illustrative data analysis is discussed, where the bivariate data consist
of scores on two cognitive tests, and the latent states represent two stages of underlying
cognitive function. By including a death state, possible association between cognitive
function and the risk of death is accounted for.

Keywords Bivariate binomial distribution · Markov model · Cognitive function ·
Stochastic process · Latent-class model

1 Introduction

In ageing research, longitudinal data are often collected for various tests of cognitive
function. For example, the English Longitudinal Study ofAgeing (ELSA) collects data
on literacy, numeracy, memory, and information processing (Huppert et al. 2006). In
ELSA and often in other studies, the range for test scores is in the form of counts;
that is, {0, 1, ..,m}, where m is a test-specific integer. Important questions in ageing
research concern individual change in cognitive function in the population. When
longitudinal data are used, death during follow-up cannot be ignored in the statistical
analysis because the risk of death is likely to be correlated with change in cognitive
function (Muniz-Terrera et al. 2011).
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Typically, cognitive function is seen as a latent trait that explains observed test
scores.Of specific interest is to detectwhen a change in the observed scores is indicative
of an irreversible decline in cognitive function. When two tests are available, it make
sense to look at options tomodel both tests simultaneously. For this reason, we propose
a statistical framework which allows inference on change in cognitive function by
modelling longitudinal count data for two correlated tests conditional on two latent
states of cognitive function, and with death as an observable third state.

The three-state process is modelled in continuous time using the Markov assump-
tion. Because the two living states are latent, the three-state model is called a hidden
Markov model; see also, for example, Baum and Petrie (1966), Satten and Longini
(1996), Jackson (2011), and Zucchini et al. (2016). The count data are conditionally
modelled by the bivariate binomial distribution as introduced by Altham and Hankin
(2012). The approach is general and can also be used in other areas of applied statis-
tics. For example, if longitudinal count data are collected on biomarkers, and dropout
during the follow-up is correlated with the biomarkers, then the same methodology
can be used.

Our hidden Markov model can be seen as an alternative for a joint-model approach
where amodel for a longitudinal response is combined with a two-state survival model
(alive versus death); see, for example, Rizopoulos (2012).Using two latent living states
in addition to the death state allows us to describe the data in a way which is very close
to our understanding of cognitive function as a latent trait. By making the three-state
model progressive, we model the assumption that cognitive decline is an irreversible
process. In addition, we can use a fitted model to predict latent cognitive impairment
without specifying thresholds on the scale of cognitive tests. This will be illustrated
in the application.

Examples of papers that discuss change of cognitive function conditional on a
multi-state model are Dantan et al. (2011), Van den Hout et al. (2015), and Rouanet
et al. (2016). These papers combine a multi-state model with a model for a univariate
test (or latent trait) for cognitive function. Our statistical framework is an extension
of this approach by introducing a bivariate state-dependent distribution. This allows
us to model two tests for cognitive function simultaneously.

Our hidden Markov model is similar in aim and structure to the modelling in
Cook et al. (2004). Cook et al. discuss hidden Markov models where dependence
in multivariate tests is taken into account by discrete distributions through log-linear
models. They combine a discrete-time two-stateMarkovmodel with log-linearmodels
for a bivariate binary response variable. Our model differs in two important aspects.
First, we specify a continuous-time Markov model so that we can deal with interval-
censored data and irregular follow-up times. Second, our model is specified for count
data which motivates another model for the bivariate state-dependent distributions.

For time t ≥ 0, let Yt ∈ {0, 1, ..,mY } and Zt ∈ {0, 1, ..,mZ } denote bivariate
longitudinal count data, and let Xt ∈ {1, 2, 3} denote a three-state progressive survival
process where state 3 indicates death.

For Yt and Zt , data are collected at pre-scheduled times; that is, the longitudinal
sampling is designed independently from Yt and Zt . This creates interval-censored
data in the sense that we do not observed values of Yt and Zt between two scheduled
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time points. This kind of data is also called panel data. We assume that the time of
death is observed exactly.

We explain the conditioning on the three-state progressive process by an example.
The three-state process Xt is defined by transitions 1 → 2, 1 → 3, and 2 → 3.
Assume data (y1, y2) and (z1, z2) are observed at times (t1, t2). Let p() be the generic
notation of a probability mass function. It follows that

p(y1, y2, z1, z2) =
∑

(x1,x2)∈{(1,1),(1,2),(2,2)}
p(y1, y2, z1, z2|x1, x2)p(x2|x1)p(x1).

(1)

The summation in (1) is defined for all possible latent-state combinations for (t1, t2)
taking into account that the process is progressive. Because count data are observed
at t1 and t2, we know that at these times the individual is alive.

We simplify (1) by assuming condition independence across time in the sense that

p(y1, y2, z1, z2|x1, x2) = p(y1, z1|x1)p(y2, z2|x2) (2)

Equations (1) and (2) illustrate the main modelling approach. It will be comprised
of three parts: state-dependent bivariate binomial distributions for p(y j , z j |x j ), for
j = 1, 2, an illness-death model for transition probabilities p(x2|x1), and a logistic
regression model for the initial distribution p(x1).

We could go one step further and assume independence between Yt and Zt con-
ditional on latent state. This would imply p(y j , z j |x j ) = p(y j |x j )p(z j |x j ), for
j = 1, 2. This assumption underlies some of the hidden multi-state models that are
discussed in the literature; see, for example, Jackson et al. (2016). Thiswill be explored
in the data analysis as a comparison to the bivariate approach.

2 Model

This section introduces the three submodels that define the encompassing hidden
Markovmodel for the bivariate longitudinal count data. The first model is the bivariate
binomial distribution of the count data conditional on the latent state. The secondmodel
is the stochastic Markov process for the two latent states and death. The third model
is the distribution of the initial state.

2.1 Bivariate binomial distribution

Altham (1978) introduced the following extension of the standard binomial distribu-
tion

p(Y = y) =
(m
y

)
py(1 − p)(m−y)θ y(m−y)

g(p, θ,m)
for y ∈ {0, 1, ...,m}, (3)
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where 0 < p < 1, θ > 0, and

g(p, θ,m) =
m∑

y=0

(
m

y

)
py(1 − p)(m−y)θ y(m−y).

For θ > 1 or θ < 1, the distribution defines under- or overdispersion, respectively,
relative to the standard binomial distribution.

The bivariate version of (3) is presented in Altham and Hankin (2012) and is given
by

p(Y = y, Z = z) =
(m
y

)
pyY (1 − pY )(m−y)θ

y(m−y)
Y

(m
z

)
pzZ (1 − pZ )(m−z)θ

z(m−z)
Z φyz

C
,

(4)

for y, z ∈ {0, 1, ...,m}, where 0 < pY , pZ < 1, θY , θZ , φ > 0, and

C =
m∑

y=0

m∑

z=0

(
m

y

)
pyY (1 − pY )(m−y)θ

y(m−y)
Y

(
m

z

)
pzZ (1 − pZ )(m−z)θ

z(m−z)
Z φyz .

It is possible to define this distribution for the case where the sample space for Y and
Z is not the same (replace the corresponding m by mY and mZ ).

For the three-statemodel in the next section, wewill specify two bivariate binomials
by conditioning on the two living states; that is, p(Y , Z |X = 1) and p(Y , Z |X = 2).
To manage the number of parameters, restrictions can be defined across these two
distributions. In the data analysis in Sect. 4, for example,we assume that the correlation
parameter φ is the same for the two distributions.

2.2 Progressive illness-death process

Methods for multi-state models for longitudinal data are well established; see, for
example, Hougaard (1999) and Aalen et al. (2008). For the case where transition
times are interval-censored, see, for example, Kalbfleisch and Lawless (1985) and
Jackson (2011). The following follows the presentation in Van den Hout (2017), who
describes parametric time-dependent hazard models for interval-censored data.

Let qrs(t) denote the hazard for transition r → s at time t . Given time interval
(t1, t2], the cumulative hazard functions for leaving state 1 and 2 are given by

H1(t1, t2) =
∫ t2

t1
q12(u) + q13(u)du and H2(t1, t2) =

∫ t2

t1
q23(u)du,

respectively. Given that state 3 is an absorbing state and that the model is progressive,
if follows that q21(t) = q31(t) = q32(t) = 0. Transition probabilities prs(t1, t2) =
P

(
Xt2 = s|Xt1 = r

)
are given by
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p11(t1, t2) = exp
( − H1(t1, t2)

)

p12(t1, t2) =
∫ t2

t1
exp

( − H1(t1, u)
)
q12(u) exp

( − H2(u, t2)
)
du

p13(t1, t2) = 1 − p11(t1, t2) − p12(t1, t2)

p21(t1, t2) = 0 p31(t1, t2) = 0

p22(t1, t2) = exp
( − H2(t1, t2)

)
p32(t1, t2) = 0

p23(t1, t2) = 1 − p22 p33(t1, t2) = 1 .

Examples of hazard models for (r , s) ∈ {(1, 2), (1, 3), (2, 3)} are

Exponential model: qrs(t) = λrs λrs > 0
Gompertz model: qrs(t) = λrs exp(ξrs t) λrs > 0
Weibull model: qrs(t) = λrsτrs tτrs−1 λrs, τrs > 0 .

The framework is very flexible in the sense that the choice of parametric models
can vary across the transitions. For example, a hazard model can be defined that is
exponential for 1 → 3 and 2 → 3, and Gompertz for 1 → 2. Alternatively, we can
define a hazard model that is Gompertz for 1 → 3 and 2 → 3, andWeibull for 1 → 2.

For the exponential model, transition probabilities prs(t1, t2) can be derived in
closed form. For the time-dependent Gompertz and Weibull models, or for combina-
tions thereof, probabilities p12(t1, t2) are computed by numerical approximation of
the one-dimensional integrals; for the details see the appendix.

It is possible to fit the time-dependent models by using a piecewise-constant
approximation for the hazards. For example, the Gompertz model can be fitted in
the R-package msm by approximating qrs(u) for u ∈ (t1, t2] by qrs(t1); see Jackson
(2011). In what follows, we do not use this piecewise-constant approximation.

The parametric hazard models can be extended in a standard way to include effects
of covariates. As an example, if we would like to investigate the effect of covariate w,
then we can specify qrs(t) = λrs exp(ξrs t) exp(βrsw).

2.3 Initial distribution

As shown in the introduction, a model is needed to estimate the state prevalence; that
is, the initial distribution p(xt ) for time t > 0 and xt ∈ {1, 2}. We use the standard
logistic regression model

p(Xt = 2) = exp(η0 + η1t)

1 + exp(η0 + η1t)
. (5)

and define p(Xt = 1) = 1− p(Xt = 2). Covariates can be included in the usual way.
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3 Likelihood function and estimation

Estimation of model parameters is undertaken by maximising the log-likelihood func-
tion. Let i = 1, ..., N denote individuals, and ti j the time of the j th observation for
individual i , where j = 1, ..., ni . The count data at time ti j are given by pairs (yi j , zi j ).
Let yi = (yi1, ..., yini ), and y = (y1, ..., yN ). Define z in a similar manner. Let xi j
denote the state at ti j , which is latent except when death is observed.

Conditional on the effect of time t and possible covariates, we assume that the
three-state process is Markovian; that is, only the current state determines where the
process goes next. This allows us the decompose the probability mass function for a
series of states into univariate transition probabilities. For example, p(xi3, xi2|xi1) is
assumed to be equal to p(xi3|xi2)p(xi2|xi1).

Let vector ψ contain all model parameters. Using the conditional Markov assump-
tion and the assumption about independence across time (see the introduction), the
likelihood function is given by

L(ψ |y, z) =
N∏

i=1

∑

xi∈Ωi

Lni × p(yini−1, zini−1|xini−2) × · · · × p(yi1, zi1|xi1)

×Kni × p(xini−1|xini−2) × · · · × p(xi2|xi1) × p(xi1),

where

Lni = p(yini , zini |xini )
Kni = p(xini |xini−1)

Ωi = {
all possible xi = (xi1, ..., xini )

∣∣xini ∈ {1, 2}}

⎫
⎬

⎭ if alive at tini ,

and

Lni = 1
Kni = ∑2

s=1 p(Xini = s|xini−1)qs3(tini )
Ωi = {

all possible xi = (xi1, ..., xini−1)
}

⎫
⎬

⎭ if death occurs at tini .

The logarithm of the likelihood function is maximised over the parameter space of
ψ to obtain the maximum likelihood estimates. The maximisation is undertaken using
the general-purpose optimiseroptim in the R software (RCore Team2013). Inoptim,
we choose the quasi-Newton method BFGS (developed in 1970 by Broyden, Fletcher,
Goldfarb and Shanno). The numerical integration needed to compute probabilities
p12(t1, t2) is implemented using the composite Simpson’s rule.

For efficient use of the general-purpose optimiser, all parameters with restricted
parameters space are transformed such that they can be estimated over an unrestricted
parameter space. For example, if 0 < ψ < 1, then define ψ = exp(γ )/(1 + exp(γ ))

and estimate ψ by estimating γ ∈ R. The delta-method may be used to estimate
the variance of ψ̂ given estimated variance of γ̂ . Alternatively, simulation may be
used by sampling from the asymptotic normal distribution of the maximum likelihood
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estimate; see Mandel (2013). For the above example this implies sampling values of
γ̂ and use these to derive the distribution of ψ̂ .

For the latent living states we parameterise the binomial distributions such that
state 2 is the state with a lower cognitive ability. We illustrate this for the bivariate
distribution p(Y , Z |X = x), where x ∈ {1, 2}. First we parameterise pY |x=1 =
exp(γ )/(1 + exp(γ )) for γ ∈ R, so that 0 < pY |x=1 < 1. Next we define

pY |x=2 = exp(γ − exp(ν))

1 + exp(γ − exp(ν))
, (6)

for ν ∈ R. This implies pY |x=1 > pY |x=2 > 0.We do the same for pZ |x=1 and pZ |x=2.

4 Analysis

4.1 Data

The English Longitudinal Study of Ageing (ELSA) is a multidisciplinary open cohort
study that features an extensive range of data from a representative sample of men
and women living in England who are aged 50 and over. Here we use longitudinal
data on cognitive function that are available in the waves 1-5 (2002-2011). Data from
ELSA can be obtained via the Economic and Social Data Service (www.esds.ac.uk).
For reasons of confidentiality, age is given in integers.

There are 11,932 individuals in the ELSA baseline sample. For the current analysis,
we sampled N = 1000 individuals randomly from the baseline conditional on three
restrictions. First, we restricted the sampling to individuals being 50 years or older at
the ELSA baseline (because participants’ partners are also sampled in ELSA, there are
individuals younger than 50 in the ELSAbaseline). Secondly, the sampling is restricted
to individual younger than 90 years at baseline without a censored age during follow-
up. Thirdly, the sampling is restricted to those who have at least two observations or
one observation and a time of death. The resulting subsample has 540 women and 460
men. Frequencies for number of observations per individual (including death) are 174,
146, 156, 516, and 8 for number of observations 2, 3, 4, 5, and 6, respectively. The
data are used for illustrative purposes only and should not be used to inform clinical
practice.

We analyse longitudinal count data for the test of verbal learning and recall. For
this test, people are required to learn a list of 10 common words, and are asked to
recall the words immediately (Y ) and later on in the interview (Z ). This is a common
test in studies of ageing. For example, it is also used the US Health and Retirement
Study (website: hrsonline.isr.umich.edu).

As to be expected, individuals remember more words in the direct recall compared
to the delayed recall. The top panel of Fig. 1 shows the sample distribution of Y and Z
at the baseline. The distribution clearly shifts to the left, from the sample mean 5.44
for Y to the sample mean 3.92 for Z . One would expect a high correlation between Y
and Z given that these concern the recall of the same words, and this is confirmed by
the Spearman correlation which is 0.67 for the observations at baseline.
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Fig. 1 ELSA count data. Bottom for a random subset of 30 individuals

The bottompanel of Fig. 1 shows the longitudinal scores onY and Z for a subsample
of 30 individuals. The 30 trajectories illustrate that theword recalls are noisy processes.
Nevertheless, already in the depicted trajectories there is some evidence of a decline
in cognitive function when people get older.

During the follow-up, 195 of the 1000 individuals die. A dropout rate of 19.5% is
too high to ignore in the data analysis, especially if the process of interest is associated
with ageing. This motivates the inclusion of a death state in the stochastic process.

4.2 Models

We will discuss a series of models for the ELSA data. The information criterion by
Akaike (AIC, Akaike 1974) is used to compare the models. Given that ELSA is an
epidemiological study on ageing, we choose age as the time scale.

In all models, the initial distribution for the two living states is described by the
logistic regression (5) which includes age as a covariate. For the state-dependent
distribution we distinguish three options: two independent binomial distributions, two
independent extended binomial distributions (3), and the bivariate extended binomial
distribution (4).

For the three-state model, we consider exponential (E), Gompertz (G), and Weibull
(W) hazards. The models are denoted by using the letters for the transitions 1 → 2,
1 → 3, and 2 → 3 respectively. For example, GWW denotes a Gompertz hazard for
1 → 2, and Weibull hazards for death.
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For the exponential model EEE , it is clear that the bivariate binomial distribution
outperforms the other two options for the state-dependent distribution; see the AICs
in Table 1. This is as expected, given the correlation between the immediate recall and
the delayed recall.

Given that decline of cognitive function is correlated with age, one would expect
that time-dependent hazardsmodels are better than the exponential hazardmodel. This
is confirmed by the results in Table 1. For the bivariate binomial distribution, using
the Gompertz model GGG yields a substantial lower AIC compared to EEE : AIC =
29646 and AIC = 29732, respectively. The same holds for the Weibull modelWWW
with AIC = 29651.

As reported in Table 1, we investigated a range of models, including models with
different parameter assumptions for the three hazards. The lowest AIC is 29636 for
a model with three Gompertz hazards (GGG). This model has age (denoted by t) and
gender (denoted by x = 0 for women, and x = 1 for men) as predictors for the initial
distribution; that is,

p(Xt = 2) = exp(η0 + η1t + η2x)

1 + exp(η0 + η1t + η2x)
.

The three Gompertz hazards are extended by including gender as covariate:

hrs(t) = exp(βrs + ξrs t + αrs x) for (r , s) ∈ {(1, 2), (1, 3), (2, 3)}.

The state-dependent distributions are bivariate binomials, where the dispersion param-
eters θY and θZ , and the correlation parameter φ are assumed to be the same for the
two latent states. This overall model has 19 parameters; Table 2 presents the estimates
and their estimated standard errors.

As expected, the effects of age (the ξs) are positive and indicate that an older age is
associated with a higher risk of progressing through the states. For the three transition
hazards, only the estimated hazard for 2 → 3 indicates a difference between men and
women, with the former being at a higher risk (hazard ratio exp(α23) = 1.694).

The parameters for the state-dependent distributions for the direct recall (Y ) and the
delayed recall (Z ) are estimated using transformations, among which the transforma-
tion (6). Table 2 presents the parameters as used in the definition of the distributions
and with estimated standard errors derived by simulation (see Sect. 3). Given that θY
and θZ are both larger than 1, the state distributions are more peaked than the standard
binomial. Parameter φ controls the dependence between the distributions of Y and Z
within each state, with Y and Z being independent iff φ = 1. Although more can be
said about the interpretation of φ (see Altham and Hankin 2012), in practice the best
option is to look at graphs and at the estimated means.

Figure 2 nicely shows the difference in the fitted state-dependent bivariate binomial
distributions for Y and Z . Comparing the distributions for state 1 and 2, we see that
the distribution for state 2 is shifted to the lower scores on Y and Z . Numerically
this is confirmed by the expected value of the fitted distributions. For state 1, we
have E[(Y , Z)|X = 1] = (6.37, 5.19), and for state 2 we have E[(Y , Z)|X = 2] =
(4.36, 2.60).
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Table 2 Estimated model parameters for the Gompertz hazard model GGG, the logistic regression for the
initial distribution, and the bivariate binomial state-dependent distribution

Parameter Estimate Parameter Estimate

β12 − 7.554 (1.494) pY |x=1 0.310 (0.012)

β13 − 6.169 (0.488) pZ |x=1 0.118 (0.007)

β23 − 6.045 (0.482) pY |x=2 0.219 (0.008)

ξ12 0.149 (0.062) pZ |x=2 0.063 (0.005)

ξ13 0.096 (0.023) θY 1.138 (0.009)

ξ23 0.103 (0.015) θZ 1.040 (0.007)

α12 − 0.502 (1.347) φ 1.391 (0.015)

α13 − 0.035 (0.363) η0 − 3.318 (0.293)

α23 0.527 (0.176) η1 0.166 (0.014)

η2 0.463 (0.219)

Estimated standard errors within brackets

Fig. 2 Fitted state-dependent bivariate binomial distributions for Y (direct recall) and Z (delayed recall).
Left-hand side: conditional on state 1. Right-hand side: conditional on state 2

The shift to the lower scores is additionally illustrated by the marginal distributions
in Fig. 3. This graph also shows that the marginal distributions of the delayed recall
(Z ) are more distinct than those of the direct recall (Y ). This implies that the delayed
recall is better at discriminating the two latent cognitive states.

4.3 Prediction

Of specific interest is the ability to infer on the latent state given observed scores. Let
yi = (yi1, ..., yini ) and zi = (zi1, ..., zini ) be the observed count data for individual i
at times (ti1, ..., tini ). To predict the latent state at t ≥ tini , we can compute

p(Xt = 1|yi , zi ,ψ = ψ̂) =
∑

xi∈Ωi

p(Xt = 1|xi , yi , zi ,ψ = ψ̂)p(xi |yi , zi ,ψ = ψ̂)
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Fig. 3 Fitted marginal state-dependent bivariate binomial distributions for Y (direct recall) and Z (delayed
recall). Left-hand side: conditional on state 1. Right-hand side: conditional on state 2

=
∑

xi∈Ωi

p(Xt = 1|xi ,ψ = ψ̂)
p(yi , zi |xi ,ψ = ψ̂)p(xi |ψ = ψ̂)

∑
x∗
i ∈Ωi

p(yi , zi |x∗
i ,ψ = ψ̂)p(x∗

i |ψ = ψ̂)
,

where vector ψ̂ contains the estimatedmodel parameters, andΩi = {
all possible xi =

(xi1, ..., xini )
}
.

We illustrate this prediction for three individuals (A, B, and C , say) for whom we
assume that we have yearly test scores at age 70 up to 74. The scores are made up and
are given by the following (y, z)-pairs for the successive years:

for A : (8, 5), (7, 6), (8, 5), (7, 6), (8, 5),

for B : (7, 4), (6, 3), (7, 4), (6, 3), (5, 4),

for C : (7, 6), (6, 5), (5, 4), (4, 3), (3, 2).

These scores were specified such that A represents an individual with very good recall,
C represent an individual whose scores show a decreasing trend, and individual B is
more or less in the middle of these two trends.

Figure 4 shows the predicted probability to be in state 1 for the three individuals.
Note that death is a competing risk in this prediction, so it is not the case that P(Xt =
1) = 1 − P(Xt = 2), for t representing a higher age than 74.

The graph shows that we can classify individuals into the latent states given past
observations. For example, at age 74 and using 0.5 as cut-point, we would classify A
and B in state 1, and C in state 2. The graph also shows that the model can be used in
practice to plan future health care. For individual B, for example, the model predicts a
classification in state 2 from about age 79 and onward (using again 0.5 as cut-point).
If there are interventions to delay cognitive decline, then for B such an intervention
should be planned in the next five years.
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Fig. 4 Predicted probability to be in latent state 1 for three individuals. Prediction is based on the fitted
model and specified yearly test scores at age 70 up to 74; see Sect. 4.3. Thin lines for 90% confidence bands

The 90% confidence bands in Fig. 4 show that a classification such as above is
subject to substantial uncertainty. In general, adding covariates in the submodels may
help to reduce this uncertainty up to some extent.

4.4 Validation

As acknowledged in the literature, model validation for time-dependent multi-state
processes is severely hamperedwhen transitions are interval-censored and observation
times vary across individuals; see, for example, Gentleman et al. (1994) and Titman
(2009). This problem also holds for the models reported here where we use a three-
state process which is latent for the two living states. However, observed death times
are exact, and this can be used to check part of the model. The idea is to fit Kaplan-
Meier survival curves where the time scale is the study time and death is defined as the
event. These curves are then compared to the model-based prediction conditional on
the observed data at the baseline of the study. This will not validate all aspects of the
model, but it can be used as a heuristic tool to check observed and predicted survival
(Gentleman et al. 1994).

The method in the previous section can be used to undertake the model-based
prediction. Denote the time scale of the study in years as t∗, with t∗ = 0 at the
baseline. Using the same notation as before, let yi1 and zi1 be the observed count data
at t∗ = 0, for all i ∈ {1, ..., N }. The model-based survival at time t∗ > 0 is

p(Xt∗ = 3|yi1, zi1,ψ = ψ̂),
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Fig. 5 Comparison of Kaplan-Meier survival curves (step function) and model-based predicted survival
conditional on baseline score with the thick line for the median of the model-based individual curves (grey
lines)

which is to be compared with the Kaplan-Meier survival curves. To do this, we first
sample the latent baseline state at t∗ = 0 using p(Xt∗=0 = 1|yi1, zi1,ψ = ψ̂) for all
i = 1, .., N . Next we compute the Kaplan-Meier survival curves and the model-based
survival conditional on the sampled baseline state.

Figure 5 shows the comparison. Variation in the model-based individual curves is
due to individual variation at baseline with respect to age, gender, and the scores on
Y and Z . The regular yearly steps in the Kaplan-Meier survival curves are caused by
the fact that age is only available in integers for reasons of confidentiality.

Given that only baseline test scores are used, and that the baseline state is latent, the
comparisons in Fig. 5 give some confidence in the fitted model. At least with respect
to fitting observed and right-censored death times, the model performs well.

5 Conclusion

In biostatistics, it often the case that the process of interest is latent and that it is inves-
tigated via observable response variables. A process of interest in ageing research
is change of cognitive function in the older population. Response variables in this
case can be scores on cognitive tests. For an application in ageing research with two
longitudinal test scores, our approach consists of assuming two latent states for cog-
nitive function and specifying bivariate state-specific distributions for the test scores.
In addition, we include death as a third state in our model to take into account possible
correlation between change of cognitive function and mortality.

For the response variable, we specify bivariate state-dependent distributions which
allow modelling the correlation between two responses even after conditioning on the
latent state. In the application, the state-dependent distribution is a bivariate extension
of the well-known univariate binomial distribution. In the data analysis, it was shown
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that a fitted distribution can be explored both numerically and graphically. Goodness
of fit and prediction was discussed and illustrated as well.

The underlying progressive three-state model that we use, is very flexible with
respect to the specification of the time-dependency. Although the chosen model spec-
ifies Gompertz distributions for all three transition hazards, we have also explored
hazard models with both Gompertz and Weibull hazards.

The fitting of the three-statemodel is computationally intensive because some of the
transition probabilities are estimated by numerical integration. An alternative would
be to use a piecewise-constant approximation of the time-dependent hazards, but the
performance of such an approximation would rely heavily on the time grid that is
used. Of course, the numerical integration also relies on a grid-based approximation.
However, the latter is used to compute one entry in the transition matrix, whereas the
former is a piecewise-constant approximation of the whole matrix. Ultimately, both
approaches will produce the same results when fine-tuned. We prefer the numerical
integration because it is more directly aimed at the quantity that we need to estimate
and it is easier to fine tune.

In our hidden Markov model, we assume independence across time and use a
bivariate distribution to model possible correlation between response variables. In
the current context, where we have longitudinal data clustered within individuals, an
alternative would be to use a model with individual-specific random effects. These
random effects can be used to capture possible dependence across time or dependence
between response variables. For discrete-time hiddenMarkovmodels, examples of this
approach can be found in Altman (2007) and Maruotti (2011). These mixed hidden
Markov models are computationally intensive because the random-effects structure
requires numerical integration or simulation-based methods. Continuous-time mixed
hidden Markov models can be developed in a similar vein, but will extend the com-
putational challenge.

We have used the bivariate generalisation of the binomial distribution as introduced
byAlthamandHankin (2012).Because thefitting themodel is undertaken by a general-
purpose optimiser, it is relatively easy to use other distributions. For example, other
bivariate generalisations of the binomial distribution are presented in Marshall and
Olkin (1985) and Biswas and Hwang (2002). The distribution by Altham and Hankin
(2012) was chosen not only because it extends the binomial distribution from univari-
ate to bivariate in a natural way, but also because the extension includes parameters
for both over-dispersion and under-dispersion relative to the corresponding binomial
distribution.

We hope that our approach will help to maximise the use of available data in
longitudinal studies, where it is customary to collect data on multiple cognitive tests,
and, consequently, improve knowledge about the processes investigated.
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Appendix

Transition probabilities are presented given a specification of the hazards in the three-
state progressive model; see also Van den Hout (2017, Chapter 3) for some of the
following details.

As before, letters are used to denote the hazard distribution in the order 1 → 2,
1 → 3, 2 → 3. For example, GWW denotes a Gompertz hazard for 1 → 2, and
Weibull hazards for death.

For the model GGG, it follows that

p11(t1, t2)=exp

(
−

(
λ12

ξ12
(exp(ξ12t2) − exp(ξ12t1)) + λ13

ξ13
(exp(ξ13t2) − exp(ξ13t1))

))
,

and p22(t1, t2) = exp(−λ23
ξ23

(exp(ξ23t2) − exp(ξ23t1))). For WWW , we have

p11(t1, t2) = exp
(

−
(
λ12(t

τ12
2 − tτ121 ) + λ13(t

τ13
2 − tτ131 )

))
,

and p22(t1, t2) = exp
(−λ23

(
tτ232 − tτ231

))
. For WGG, if follows that

p11(t1, t2) = exp
(
−

(
λ12(t

τ12
2 − tτ121 ) + λ13

ξ13
(exp(ξ13t2) − exp(ξ13t1))

))
,

and that p22(t1, t2) is the same as for GGG. For GWW , we get

p11(t1, t2) = exp
(
−

(
λ13(t

τ13
2 − tτ131 ) + λ12

ξ12
(exp(ξ12t2) − exp(ξ12t1))

))
,

with p22(t1, t2) the same as inWWW .
For all the models above, probability p12(t1, t2) is derived by a numerical approxi-

mation of the integral. Finally, we have p13(t1, t2) = 1− p11(t1, t2) − p12(t1, t2) and
p23(t1, t2) = 1 − p23(t1, t2).
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