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Abstract
Salinity of water and soil are of the most important factors limiting the production of crops. Moreover, with the increasing 
population of the planet and saline fields worldwide there is no choice but to use saline soil and water in the near future. 
Therefore, to increase plant growth under saline stress condition, provision of sustainable and environmentally friendly 
management for the use of saline water and soil resources is necessary. The development of saline resistant plants is a potent 
approach to solve this problem. Generally, soil salinity negatively affects the plant growth through ion toxicity, oxidative 
stress, osmotic stress and ethylene generation. In recent years, scientists through genetic engineering techniques, which are 
based on molecular and physiological characteristics of plants, have made salt tolerance plants. However, the validation 
of the present technique is restricted to laboratory condition and it is not easily applied in the agronomy research under 
field environment. Another option would be to isolate and utilize salinity resistant microorganisms from the rhizosphere of 
halophyte plants, namely plant growth-promoting rhizobacteria (PGPR). The mechanisms of these bacteria includes; ACC-
deaminase and exopolysachared production, osmolite accumulation, antioxidant system activation, ion hemostasis and etc. 
In this review, we will discuss mechanisms of PGPR in producing tolerate plants under salt stress and how to improve the 
plant–microbe interactions in future for increasing agricultural productivity to feed all of the world’s people.

Keywords  Salinity stress · Plant growth promoting rhizobacteria (PGPR) · Plant–microbe interactions · Salt tolerance 
plants

Introduction

The world’s population is growing and food insecurity is 
an important issue. The global demand for food is undeni-
able, and this is one of the major problems of developing 
countries. Hence, population growth and declining land are 
threatening for sustainable agriculture (Shahbaz and Ashraf 
2013). The world’s population is 7 billion, and it is expected 
to reach 10 billion in 2070 (Goswami et al. 2016). Increase 
in demand for food causes the increase of cultivated land 

to produce more for the growing population. Increasing the 
cultivated area to grow more crops is partially impossible 
due to increasing pollution/wastes, urbanization, industriali-
zation, soil erosion and limited access to sustainable water. 
Therefore, increasing agricultural productivity is the only 
possible way for the coming years (Vaishnav et al. 2017).

To increase the yield of agricultural products, the follow-
ing interventions are suggested: (1) better management of 
agricultural lands; (2) excessive use of chemical fertilizers; 
(3) use of plant growth regulators (PGRs); (4) use of effec-
tive herbicides and pesticides; (5) to mechanize the agri-
cultural practices; (6) cultivating stress-resistant crops; (7) 
developing the cultivation of genetic modified (GM) crops; 
(8) developing the plant growth-promoting rhizobacteria 
(PGPR) (Glick 2014; Paul and Lade 2014; Ghorbanpour 
et al. 2013). Some of the above solutions are not efficient 
and cost-effective in the long run. Since our environment 
has limited resources, so any long-term effective approach 
to cultivate food must be sustainable and environmentally 
friendly.
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In addition, agricultural productivity is reduced due to 
environmental stresses such as salinity, drought, pH and 
temperature (Ladeiro 2012). Up to date, more than 800 
million hectares (6% of the world’s total land) is affected 
by salinity (FAO 2008). So, soil salinity is a very impor-
tant problem and more attention should be paid to the issue 
because it immediately inhibits growth and yield of plants 
(Yan et al. 2013). Plants based on the ability to grow in 
saline soils are classified into two types named glyco-
phytes and halophytes. Some of the halophytes survive 
through mechanisms such as excluding salts from roots 
and shoots, compartment of ion in organs, synthesize of 
the compatible solute adopted under salinity stress. How-
ever, the most of plants are grouped in glycophytes class. 
Thus, for overcoming this problem for a long run, plant 
breeding, and genetic engineering methods are applied to 
increase the crop yield, but they are expensive, and rarely 
field-practical. Moreover, engineered plants cannot be 
grown in different environments (Tang et al. 2014; Imam 
et al. 2016).

Recently, the use of plant growth-promoting rhizobacteria 
(PGPR) as an effective tool for agricultural operations has 
attracted considerable attention (Goswami et al. 2016). The 
rhizosphere of halophyte plants is a rich source of osmotic 
stress tolerant bacteria and application of these bacteria can 
affect the growth and yield of plants under stress positively 
(Jha and Saraf 2015). Rhizospheric bacteria of plants grown 
under ultra-saline ecosystems were investigated by Mapelli 
et al. (2013). The results showed that these bacteria were 
resistant to most environmental stresses and were capable of 
inducing plant growth root colonization. It means that halo-
phyte bacteria living in saline and dry ecosystems have the 
potential to stimulate plant growth under stress conditions.

These bacteria can increase the growth of different plants, 
enhance nitrogen fixation, produce hormones such as auxin, 
solubilize insoluble compounds phosphorus, potassium, zinc 
and silicon (Vaishnav et al. 2017; Ghorbanpour et al. 2016), 
improve the absorption of nutrients with changes in root 
shape, produce Siderophores to meet the iron needs under 
iron deficiency conditions, and reduce the negative effects 
of ethylene production in stress conditions through the pro-
duction of ACC-deaminase (Glick 2014; Choudhary et al. 
2015), control the plant pathogenic agents through the pro-
duction of HCN, chitinase, glucanase (Goswami et al. 2016), 
control the biotic and abiotic stress by volatile organic com-
pounds (VOCs) production (Tyagia et al. 2018) and induce 
systemic resistance (ISR) in the plants (Chaudhary and 
Shukla 2019), produce exopolysaccharides (EPSs) under 
salinity conditions (Choudhary et al. 2015), which chelate 
excessive amount of sodium ion around roots and increase 
root-soli stick and regulate water movement and facilitate 
root growth (Kim et al. 2013; Timmusk et al. 2014). There-
fore, screening and isolating PGPRs and exploiting their 

ability to stimulate plant growth under stress conditions is a 
much needed research area.

Salinity stress

Hall (2001) stated that environmental stresses in natural 
ecosystems are any external limiting factor, which does not 
allow the plant’s productivity reaches real genetic poten-
tial. Today’s, increasing demand for plant products has been 
coupled with decreasing cultivated land because of limited 
water and soil resources, soil erosion, and so on.

A soil is considered saline when the electrical conductiv-
ity (saturated extract EC) is more than 4 dS m−1 (approxi-
mately 40 mM sodium chloride). This level of salt is criti-
cal to start reducing the productivity of many crops (Jamil 
et al. 2011). Various types of salts, such as sodium chlo-
ride (NaCl), sodium sulfate (Na2SO4), magnesium sulfate 
(MgSO4), magnesium chloride (MgCl2), are present in saline 
soils. However, NaCl is more damaging for plants than oth-
ers (Jamil et al. 2011). Salinity, indeed, is the accumulation 
of water-soluble salts, which included K+, Mg2+, Ca2+, Cl−, 
SO4

2−, CO3
2−, HCO3−, and Na+ ions. Depending on the soil, 

the concentration of soluble salts is different (Vaishnav et al. 
2017). Mineralization is the main source of soils salinity. 
Human activities such as irrigation of plants with saline 
water or evaporation of groundwater (due to inadequate 
precipitation, ions are not leached from the soil profile and 
the result is saline soil) are some other sources of soils salin-
ity (Vaishnav et al. 2017). It is estimated that 20% of the 
total cultivated land and 33% of the irrigated agricultural 
lands around the world are affected by salinity. If this trend 
continues, 50% of the cultivated land will be saline by 2050 
(Vaishnav et al. 2017).

Impact of salinity on plant growth

Salinity reduces growth and development by changing the 
biochemical and physiological processes of the plant such 
as leaf growth, root growth, water absorption, stomatal 
conductance and photosynthesis (Patil 2013). Among the 
above mentioned index, photosynthesis is closely related 
to plant growth and yield. This index includes the parts 
of CO2 that is assimilated, photosynthetic electron and 
proton transport rate (Tang et al. 2014). The presence of 
salts in the root zone creates osmotic (water deficiency) 
and ion stresses for plants (Paul and Lade 2014). Conse-
quently, some processes such as photosynthesis and cell 
division are affected under stressful condition (Yan et al. 
2013). Salt stress by reducing stomatal and mesophyll 
conductance and CO2 availability, decreases the photo-
synthetic activity. Moreover, salt stress indirectly can 
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affect photosynthesis by reducing chlorophyll and total 
carotenoid content. The photosynthesis rate is measured 
by weighing gas exchange and chlorophyll a fluorescence 
(Yan et al. 2013; Tang et al. 2014). Some plants change the 
photosynthetic pathway to cope with salinity stress. For 
example, Mesembryanthemum crystallinum by transform-
ing from C3 pathway to CAM adapts to water deficiency 
in saline condition. Atriplex lentiformis by shifting from 
C3 to C4 to cope with the salt stress (Tang et al. 2014). 
Gu et al. (2016) stated that the ratio of root biomass to 
shoot biomass is an indicator of plants tolerance to salinity 
stress. The greater value of this ratio, the higher resistance 
of plants to stress. Also, high concentrations of sodium 
and chloride, lead to ion-specific toxicity and ion imbal-
ance (Gu et al. 2016). Under these conditions, the absorp-
tion of K+, NO3, PO4

2−, Ca 2+, Mg2+ and consequently, 
the ratios of K+/Na+, Ca2+/Na+, Mg2+/Na+, PO4

2−/Cl− and 
NO3

−/Cl− decreases (Tester and Davenport 2003; Gu et al. 
2016). In addition, the production of reactive oxygen spe-
cies (ROS) (Yan et al. 2013; Tang et al. 2014) and the con-
centration of ethylene are increased under salinity stress 
condition (Patil 2013) (Fig. 1).

Development of salinity resistant plants

Different strategies are used to develop varieties that are 
resistant to salinity and economically valuable. Conven-
tional plant breeding methods, molecular methods (genetic 
engineering) and biological methods (biofertilizers) are 
some of these strategies (Vaishnav et al. 2017).

The conventional methods are money and time consum-
ing and (Agarwal et al. 2013a, b). Also, effective conduc-
tion of these methods is hard due to the complexity of 
genes’ function involved in salt stress (Yan et al. 2013). 
Biotechnologists use genetic engineering (such as gene 
transfer) to increase resistant plants. This technique relied 
on the exploration of new genes involved in salt-tolerance 
halophytes. A number of genes related to salinity response 
have been transferred to plants to create resistant varieties. 
These genes are involved in various types of processes, 
such as the diffusion of toxic ions in vacuole, the induc-
tion of antioxidant enzymes, the synthesis of new proteins 
and the accumulation of compatible soluble substances 
under salinity stress (Ashraf and Akram 2009). However, 

Fig. 1   The scenario of salinity stress and PGPR interactions in plant growth
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the genetic engineering technique has not been successful 
because these results often were obtained under labora-
tory condition and not in field (Yan et al. 2013). Salinity 
resistant plants also can be produced through pretreatment 
with specific chemicals. Nitric oxide (NO), K+ and Ca2+, 
NaCl pretreatment, ascorbic acid, H2O2, ethylene, para-
quat and glutamate, phosphorus and humic acid, silicon, 
sugars, hydrogen sulfide (H2S), proline, glycine betaine 
(GB), jasmonates (JA) and salicylic (SA) acid are some of 
these chemicals (Ben Rejeb et al. 2013; Yan et al. 2013). 
However, these are expensive and will create environmen-
tal problems in long time. Therefore, the use of chemicals 
as a cost-effective method in sustainable agriculture is not 
recommended. Other option is the use of plant growth pro-
moters (PGRs). This is a good way to increase agricultural 
productivity in saline areas. Today, bacteria are used to 
modify stressful conditions in agriculture (Shrivastava and 
Kumar, 2015).

Plant growth promoting rhizobacteria 
(PGPR)

Various species of bacteria such as Pseudomonas, Azospiril-
lium, Azotobacter, Klebsiella, Enterobacter, Alcaligenesis, 
Arthrobacter, Burkholderia, Bacillus, Sarcina, Irvinia, Fla-
vobacterium and Rhizobium have been reported as PGPR 
(Egamberdiyeva 2005). These beneficial rhizobacteria are 
characterized by three intrinsic properties: (1) they are able 
to survive and tolerate soil environment; (2) they acquire the 
ability to compete with other micro-organisms through root 
colonization, growth and reproduction in root surface; (3) 
they are able to increase the growth rate of plants by growth 
promoting traits generation (Ahemad and Khan 2011). It 
was reported that Azopsirillum halopraeferens bacteria colo-
nized mangrove plant roots in saline water, with the ability 
to tolerate 3% sodium chloride, and increased the growth 
of the plants irrigated with saline water (sea water) (Rama-
doss et al. 2013). Similarly, Some Bacilli strains with 8% 
sodium chloride tolerance show growth stimulation. Mayak 
et al. (2004) reported that salinity resistant ACC-deaminase 
mediating bacteria moderated the negative effects of stress 
in plants through inducing plant growth stimulation. Salinity 
resistant bacteria not only can grow in the range of 1–33% 
sodium chloride but also can grow in the absence of sodium 
chloride (Ramadoss et al. 2013). Therefore, isolated bac-
teria from saline habitats can be good candidates to help 
ameliorate the negative effects of salinity stress in plants 
grown under stress conditions. It has been shown that bac-
teria secrete extracellular polymers, exopolysaccharide, into 
the environment (Tisdall 1994). These exopolysaccharides 
which called biofilms involved in the binding of bacteria 
to surfaces (Mah and O’Toole 2001). Biofilm is a complex 

of bacterial cells that can be linked to different living and 
non-living surfaces. It not only protects the microbe from 
the environmental stresses but also maintains moisture and 
protects the plants’ roots against pathogens physically and 
functionally (Minah and Hazarin Subair 2015). The asso-
ciation of rhizobacteria with the roots of plants is possi-
ble through the production of these biological polymers. 
Also, by growing and reproducing in the root surface micro 
space, they can compete with the native microflora of the 
soil. Exopolysaccharides have also been reported that play 
a role in the mobility of bacteria to compete with the native 
microflora of the soil (Liu et al. 2017).

PGPR mechanisms for increasing plant 
tolerance to salinity stress

PGPRs are involved in improving plants growth and toler-
ance to salinity stress through accumulating osmolytes, ion 
homeostasis, improvement of nutrient uptakes (N2 fixation, 
solubilizing of P, K, Zn and Si), producting of ACC deami-
nase, IAA, siderophere and exopolysaccharides, and chang-
ing in the antioxidant defense system (Fig. 1, Table 1)

Accumulation of osmolytes

The accumulation of salt ions around the root of plants 
causes osmotic stress under salinity stress, which finally 
results in osmotic imbalance. However, water retention 
and photosynthesis integrity are vital to reduce the nega-
tive effects of stress on plant growth (Iqbal et al. 2014). 
Water exchange between cell and environment is regulated 
by aquaporins (AQPs). AQPs play important roles in vari-
ous physiological processes, such as growth, development, 
and response to biotic and abiotic stresses. For example, 
aquaporins EgTIP2, TsTIP1;2 and SiTIP2;2, which were 
isolated from Eucalyptus grandis, Thellungiella salsuginea 
and Tomato plants, respectively, are induced under stress 
condition (Rodrigues et al. 2013; Wang et al. 2014; Xin et al. 
2014). Zhang et al. (2016) isolated a novel tonoplast intrin-
sic protein (TIP) gene from soybean and termed GmTIP2;3. 
GmTIP2;3 expresses all detected tissues, such as root, stem 
and pod, and the accumulation of GmTIP2;3 transcripts sig-
nificantly correlated with osmotic stresses, including 20% 
PEG6000 (polyethylene glycol) and 100 μM ABA (abscisic 
acid) treatments. So, GmTIP2;3 might play an important 
role in response to osmotic stress in plants. Also, under this 
condition, plants accumulate lots of metabolites, which are 
named as compatible (organic) solutes such as proline and 
glycinebetaine in the cytoplasm. These metabolites enhance 
plants’ resistance against salt stress through stabilizing the 
protein conformation, cytosolic pH, balance of cell redox 
condition, PSII and membrane integrity, and the activity of 
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enzymes (Yan et al. 2013; Tang et al. 2014). In contrast 
to many halophyte plants, glycophyte plants cannot accu-
mulate of enough amounts of compatible solutes. This is 
the major reason of these plants’ sensitivity to salt stress 
(Yan et al. 2013). It has been reported that PGPRs improve 
plants’ water relationships through the accumulation of 
osmolites such as proline and maintaining root hydraulic 
conductivity in inoculated plants (Choudhary 2012). Shukla 
et al. (2012), also, reported that soluble sugars besides pro-
line, was increased in PGPR inoculated plants. Studies have 
shown that inoculated plants with PGPRs were more fresh 
and had higher photosynthetic activity and biomass in com-
pare with plants which were not inoculated (Shukla et al. 
2012; Kumari et al. 2015).

Ion homeostasis

The increase in concentration of Na+ causes the decrease in 
the concentration of K+ in plant leaves under salt stress. As 
physicochemical properties between Na+ and K+ are similar, 
Na+ can compete with K+ for binding sites in process such 
as enzymatic reactions, protein synthesis and ribosome func-
tions. Homeostasis retention of ions concentration is vital 
in plant cells under salinity stress. So, plant cells have to 
exclude toxic ions such as Na+ from the cytoplasm and enter 
them into vacuoles. This process is mediated with transport-
ers such as the plasma membrane Na+/H+ antiporter SOS1 
and the tonoplast membrane antiporters NHXs. In other way, 
plants preserve Na+ in roots and prevent from Na+ flux to the 
shoots or leaves. In some halophytes, the concentration of 
toxic ions such as Na+ diluted in the leaves or stems. Further-
more, the HKT family act to maintain ion homeostasis. For 
example, TmHKT1, OsHKT1 and OsHKT1 are correlated 
with Na+ exclusion and a high K+/Na+ rate in the leaves of 
durum wheat, rice and Arabidopsis plants, respectively (Yan 
et al. 2013; Tang et al. 2014). In some cases, by engineering 
the genes of transporters and changes of the related genes 
expression level in the transgenic plants, plants tolerance to 
salinity stress was increased (Agarwal et al. 2013a, b). Gu 
et al. (2016) studied the capacity of salt tolerance in cab-
bage (Brassica oleracea L.) seedling supplemented with sea 
water. The results showed that the concentration of Na+ and 
Cl− increased and the concentration of K+, Ca 2+, Mg2+ was 
decreased under saline condition. In addition, the ratios of 
K+/Na+, Ca2+/Na+, Mg2+/Na+ were significantly higher in 
the up ground biomass than underground biomass. These 
researchers stated that the regulation of transporters and dis-
tribution of ions among cabbage seedlings organs was the 
main reason of the salinity stress tolerance. Based on these 
findings it can be concluded that the K+/Na+ ratio is a suit-
able index for evaluating salt tolerance in plants. As Tang 
et al. (2014) showed that the K+/Na+ ratio in glycophyte 
plants is very low in compare to halophytes. Also, microbes Ta
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can modify the absorption of nutrient elements (Cu, Zn, Mn, 
Fe, K, P, N) and toxic ions (Na, Cl) by plant roots through 
changing host plant physiology, decreasing the accumulation 
of toxic ions in leaves and improving the nutritional status 
of the plant. Zhang et al. (2008) reported that the inocula-
tion of Arabidobis talliana with B. subtilis GB03 reduced 
the effect of salinity stress by regulating HKT1 potassium 
transporter. This result indicates that this bacterium stimu-
lates the expression of a high-compatibility transporter for 
potassium ion (AtHKT1) in Arabidobis under salt stress. In 
a study, PGPR-inoculated plants had high potassium con-
tent and high efficiency in salt tolerance (Rojas-Tapias et al. 
2012). Similarly, inoculated pea plants by Variovorax para-
doxus 5C-2 bacterium increased total biomass, shoot K+/
Na+ ratio, photosynthetic efficiency (Fv/Fm) and maximum 
electron transport rate (ETR) under salt stress (Wang et al. 
2016). Ashraf et al. (2004) showed that Azospirillum inhib-
ited sodium flow into the root. In addition, corn plants had 
high K+/Na+ ratios under stress condition. Yao et al. (2010) 
showed that PGPR increased the absorption capacity of cal-
cium and magnesium and reduced the absorption of sodium.

The improvement of nutrient uptakes

The availability and absorption of nutrients depend on 
parameters such as soil pH, moisture, texture and the com-
position of its microorganisms. Most of the nutrients are 
absorbable in the 5-7 pH range. Under salinity stress, the 
formation of stable structures (through the bonding of cati-
ons and anions with various compounds), changes the pH 
of the soil so modifies the absorption of nutrients by plants. 
Phosphorus is present in both organic and inorganic forms 
in soils. It is required as an essential nutritional element for 
photosynthesis, energy transfer, biosynthesis of macromol-
ecules and respiration (Fernandez et al. 2007). The avail-
ability of P is low in most agricultural soils. The concentra-
tion of phosphorus ions in these soils varies in the range of 
0.1–10 μm, while the plant’s requirement of P for optimal 
growth is 1–5 μm (for herbaceous plants) and 5–60 μm 
(for plants that require high P). The phosphorus deficiency 
results in decreased plant yield (by 5–15%) (Zaidi et al. 
2009). It has been shown that the phosphorus fertilizers that 
are added to the soil are deposited in large amounts (about 
75–90%) as cation-metal complexes in the soil (Toro 2007). 
This leads farmers to add more fertilizer to soil, which has 
negative effects on environment. Phosphate solubilizing bac-
teria (PSB), belonging to the genus Bacillus, Pseudomonas, 
Achromobacter, Alcaligenes, Brevibacterium, Serratia, 
Xanthomonasand Rhizobium, have the ability to hydrolyze 
inaccessible phosphorus forms into absorbable form (Sindhu 
et al. 2010; Saghafi et al. 2018). In a study, Fluorescent 
Pseudomonad was screened for solubilizing of tricalcium 
phosphate based on the formation of a visible halo on the 

Pikovskaya agar (Naik et al. 2008). This bacterium solubi-
lizes the phosphorus compounds by releasing low molecu-
lar weight organic acids, such as gluconic acid, citric acid, 
succinic acid, propionic acid, and lactic acid (Choudhary 
2012). In addition, this bacterium solubilizes soil miner-
als by secretion of hydrogen ions into the rhizosphere (by 
reducing pH) (Khan et al. 2006). Salinity leads to depletion 
and sedimentation of absorbable phosphorus. In the study 
of Shukla et al. 2012 and Vaishnav et al. 2017, insoluble 
phosphate solubilizing bacteria solubilize sedimentary 
phosphorous in hydroponic MS medium and increased the 
phosphorus availability for plants under salinity stress. Also, 
PGPR can fix nitrogen through symbiosis and non-symbio-
sis mechanisms. In symbiotic fixation method, the bacteria 
form the node in the host roots and the fixed nitrogen is 
estimated to be approximately 65% of the total biological 
processes of the fixed nitrogen (Rajwar et al. 2013). The 
other group of nitrogen-fixing bacteria is not specific to 
the plant (Oberson et al. 2013). Azospirillum, Azotobacter, 
Burkholderia, Herbaspirillum, Bacillus and Paenibacillus 
(Goswami et al. 2016) are examples of free bacteria. It is 
reported that the amount of nitrogen fixed by these bacteria 
is about 20–30 kg h−1 year−1. Species belonging to the Azo-
tobacter and Azospirillum are widely used in agricultural 
practices. Strains of these bacteria not only fix nitrogen but 
also produce hormones such as indole acetic acid (IAA), 
gibberellin and cytokinin, which all result in increased plant 
growth (Oberson et al. 2013). Therefore, nitrogen fixation is 
an important feature of PGPRs which provides nitrogen for 
plants. Nitrogen-fixing strains are very important in agricul-
ture and have been traded for about 20 years as fertilizers 
(Goswami et al. 2015; Heulin et al. 2002).

Fe acts as a cofactor in 140 biochemical catalytic 
enzymes. This element is in the form of ferric (Fe3+) and 
forms insoluble hydroxides and oxyhydroxides which are not 
absorbable for plants and microorganisms (Ma et al. 2011). 
The accessibility of ferric iron decreases more in saline soils 
because solubility of the ferric form reduces with increasing 
pH (Thomine and Lanquar 2011). Plants have two strate-
gies to absorb iron. The first strategy involves the release 
of iron chelating organic compounds which maintain iron 
in the form of a solution and makes it available to the plant. 
The solved Fe, then, is reduced and absorbed by the enzy-
matic system of the cell membrane of the plants. The second 
strategy involves absorption of the iron-organic compound 
by the plant so that iron is reduced and absorbed inside the 
plant (Goswami et al. 2016). Microorganisms use different 
mechanisms for accessing iron, among which Siderophores 
are studied more. Siderophores are iron chelating agents that 
have been proven in various bacteria and are important in 
increasing plant growth and protecting against plant patho-
gens (Scavino and Pedraza 2013). PGPRs produce Sidero-
phores in the rhizosphere. Plants absorb Fe from siderophore 
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(through destruction of chelate or direct absorption) (Raj-
kumar et al. 2010). Sharma and Johri (2003) reported that 
GRP3A and PRS siderophore generating strains of Pseu-
domonas spp. increased seed germination and growth of 
corn plants under iron deficiency stress. Pandey et al. (2005) 
identified P. aeruginosa GREC1 as a siderophore produc-
ing bacterium. The bacterium increased Brassica campestris 
growth in field condition.

Potassium, as a non-renewable source, is an essential 
nutrient ingredient for plants and plays an important role 
in plant metabolism. In addition, potassium improves the 
quality of the crop production, because it plays a role in 
grain filling, and disease resistance which leads to increased 
plant resistance to stress (Sindhu et al. 2010). The key role of 
potassium as osmotic regulator is in cellular turgidity, regu-
lating the opening and closure of stomata, as well as main-
taining water balance in plants under stressful environments 
(Dubey 2005). This element exists mainly in three different 
forms in the soil. Usable potassium, stabilized potassium, 
and mineralized potassium (mica, orthoclase, and illite) are 
these three forms. The concentration of potassium in the soil 
solution is very low (1–2%), and the major part of potas-
sium (98%) is insoluble in soil, rock and minerals. Common 
potassium compounds in soil are feldspar and mica (98-90%) 
(Sindhu et al. 2010). Although soluble and exchangeable 
potassium are considered as two absorbable forms for plants, 
studies have shown that both stabilized and structural potas-
sium may take part in supplying plants required potassium 
(Rasouli Sadagiani et al. 2016). One of the strategies for 
using these potassium sources is the use of potassium 
solubilizing microorganisms (KSBs). Many researchers 
have studied the bio activation of non-exchangeable potas-
sium sources of soil by KSBs and have shown that non-
exchangeable potassium can contribute to the availability 
of potassium as a valuable resource (Vaishnav et al. 2017). 
KSBs solve potassium-containing minerals (mica, illite and 
orthoclase) by producing citric, oxalic, tartaric, succinic, 
and alpha-ketogluconic acids. These acids solubilize potas-
sium ores directly or by chelating silicon ions (Parmar and 
Sindhu 2013). In another study, the possible reasons for the 
solubilization of potassium from non-exchangeable sources 
through production of organic and mineral acids, sidero-
phore, and exopolysaccharides are mentioned (Ghorbanpour 
et al. 2014). Meena et al. (2014) stated that KSBs play an 
important role in increasing potassium absorption by plants 
and reducing the use of chemical fertilizers. In this regard, 
two strains of KSBs (KNP413 and KNP414) with high abil-
ity to solubilize potassium minerals, are used as potassium 
fertilizer in China (Hu et al. 2006). In another study, three 
strains of B. mucilaginosus, Azotobacter chroococcum and 
Rhizobium sp. were studied a mica solvent, they showed the 
ability to increase potassium absorption by wheat and corn 
plants (Singh et al. 2010).

Zn is an essential nutrient element for plants, which plays 
an important role in the enzymes synthesizing auxin. It also 
takes part in biochemical reactions, stability of biological 
membranes, the activity of oxidative and carbonic anhy-
drase enzymes (Broadley et al. 2007). The average amount 
of zinc in the earth’s crust is less than 89 mg/kg, which 
is very low compared to other minerals such as iron and 
manganese. Although some soils have enough amount of 
zinc, most of plants are not able to absorb it. Research has 
shown that about 30 percent of the world’s soils are zinc 
deficient (Kochian 2000). Due to the problem of salinity 
in arid and semi-arid soils, zinc deficiency is a major prob-
lem. It seems that the Zn deficiency is the most common 
phenomenon in calcareous soils (Rashid and Ryan 2004). 
Many factors, such as soil texture and calcareousity, pH, soil 
water content, organic matter affect Zn availability in soils 
(Alloway 2008). This element is found in soils in forms of 
sphalerite (ZnS), smithsonite (ZnCO3), zincite (ZnO), zinc 
oxide (ZnSO4), franklinite (ZnFe2O4) andhopeite (Zn3(PO4)2 
4H2O) (Vaishnav et al. 2017). Plants absorb Zn mainly in 
the form of Zn2+, zinc hydrate, and organic zeolite (Alaghe-
mand et al. 2018). The use of Zn-containing fertilizers such 
as zinc sulfate and zeolite, zinc-efficient cultivars, as well 
as microorganisms with the ability to provide Zn for the 
plant, is some of the most important methods to provide 
Zn for plants. Increasing Zn absorption by rhizobacteria is 
rarely studied. However, reports indicate that potential rhizo-
bacteria have increased Zn absorption potential (Tariq et al. 
2007; Biari et al. 2008; Subramanian et al. 2009). These 
microorganisms can increase the solubility of low soluble 
Zn compounds and make their Zn accessible for other organ-
isms. They employed various mechanisms: reducing soil pH 
(through releasing organic acids such as gluconic acid and 
2-Ketogluconic acid and proton secretion) (Koide and Kabir, 
2000; Subramanian et al. 2009), chelating (through produc-
ing glutane compounds such as siderophore and EDTA) 
(Tariq et al. 2007), altering root system (improve root growth 
and absorption) (Vaishnav et al. 2017). The efficiency of 
Zn solubilizing bacteria has been investigated in various 
Zn sources (Abaid-Ullah et al. 2015). Tariq et al. (2007) 
found that zinc solubilizing bacteria have a positive effect 
on growth and grain yield in rice seedlings by increasing the 
absorption of this element in the plants. In another study, it 
has been shown that Serratia sp. has a high ability to solu-
bilize ZnO (compared to other zinc sources) and is able to 
increase wheat yield under different climates (Abaid-Ullah 
et al. 2015).

Silicon (Si) is not an essential element but it affects the 
growth and health of plants. Plants have different abilities to 
absorb Si (1–10%) (Cherif and Belanger 1992). This element 
can increase the productivity and quality of crops. Also, it 
increases the production of certain antioxidant enzymes in 
plants. The effect of silicon on plant yield may be due to its 
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sedimentation in leaf width, ability to increase leaf strength, 
increase chlorophyll content per leaf area, and increase the 
efficiency of photosystem II. Therefore, the application 
of soluble silicon to produce higher concentrations of the 
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) 
enzyme in the leaf is required. Rubisco regulates carbon 
dioxide (CO2) metabolism as it plays an important role in 
controlling carbon dioxide stabilization in plants (Sonobe 
et al. 2011). Silicon is a bioactive element that helps to 
alleviate living and non-living stresses. Several studies 
have shown that the use of silicon dioxide (SiO2) increases 
the resistance to environmental stresses in plants such as 
wheat, rice, sugarcane, tomato, cucumber, citrus and barley 
(Bélanger et al. 2003; Ma and Yamaji 2006). Recently, Si 
fertilizer has been widely used to increase agricultural pro-
ductivity. However, due to the high price of this fertilizer, 
there are many attempts to reduce the use of it (Ng et al. 
2016). Although, Si is the most abundant element on the 
surface of the earth its presence with other elements makes 
it unavailable for plants root to absorb (Vasanthi et al. 2012). 
Si can be solubilized through the aeration of the rocks or the 
biological activity of microorganism and plants root. There-
fore, the use of Si solubilization bacteria (SSBs) potential 
to solubilize Si is a good method (Ng et al. 2016). SSBs 
release Si from silicate minerals by producing organic acids 
(2-ketogluconic acid) and polysaccharides (Joseph et al. 
2015). The bacteria also increase the solubilization of sili-
cates by proton production, organic ligands, hydroxyl, anion, 
exopolysaccharides and enzymes (Malinovskaya et al. 1990; 
Hiebert and Bennett, 1992; Barker et al. 1998). Orthosilicic 
acid (H4SiO4) is the soluble form of Si and can be absorbed 
by the root of the plants (Rodrignes and Datnoff, 2005). In 
addition, Si sediments in the forms of silica gel in epidermal 
and scleroderma cells. These bacteria not only increase the 
fertility of the soil (through the release of phosphorus and 
potassium, etc.), but also enhance the defense mechanisms 
of the plants by solubilizing insoluble forms of silicates 
(Vasanthi et al. 2012). Although microorganisms are abun-
dant in soil totally the number of SSBs in the soil is very 
low. Therefore, the use of effective SSBs strains is neces-
sary to increase the fertility of soils, especially in stressful 
conditions.

Production of indole acetic acid (IAA)

One of the general mechanisms of plant adaptation to deal 
with stress is a change in root morphology. Hormones play 
important roles in this process. IAA is the most common 
type of auxin hormone in plants which plays many roles such 
as cell division and development, specialization of plant cells 
and tissues, seed germination, development of root system, 
control of chloriferation processes, and formation of roots. 
It also stimulates the lateral roots and affects photosynthesis, 

mediates the formation of pigments and enhances the toler-
ance of plants to stress conditions (Aeron et al. 2011). About 
80% of rhizobacteria produce IAA. IAA producing rhizo-
bacteria affect the root system through increasing the size, 
weight, branching and root surface. All of these changes lead 
to an increased ability to absorb food from the soil, and ulti-
mately improved plant growth (Etesami et al. 2015; Saghafi 
et al. 2018). Different PGPRs have different pathways for 
IAA synthesis. IAA is produced by rhizobacteria through 
l-tryptophan dependent (use of tryptophan as a precursor 
to IAA synthesis) and independent pathways (Jha and Saraf 
2015). The positive effect of IAA mediating bacteria on the 
growth of different plants under salinity and drought stresses 
has been proven (Paul and Lade 2014; Ghorbanpour et al. 
2011). For example, the canola (Brassica napus L.) seedling 
inoculated by IAA producing Rhizobium Leguminosarum 
b.v phaseoli showed improved growth condition under salt 
stress (Saghafi et al. 2018). Similarity, Triticum aestivum 
seedling inoculated by IAA producing Azospirillum sp. and 
Rhizobium leguminosarum bacteria increased the uptake of 
nutrients and water and lateral root formation under drought 
stress (Hussain et al. 2018; Barnawal et al. 2019). Since phy-
tohormone production is a general characteristic of PGPR, it 
is necessary to consider the selection of microbial inoculants 
with high potential of producing these hormones (especially 
IAA) to reduce negative effects of stresses (Table 1).

Production of ACC deaminase

Ethylene regulates processes such as root growth and root 
hairs formation, germination, seed dormancy, fruit ripen-
ing, flower senescence and leaf abscission. The hormone 
also plays roles in responding to environmental stresses and 
contributes to crop yields reduction by reducing the growth 
of stems and roots. Ethylene, which is produced under vari-
ous environmental stresses such as high temperatures, flood-
ing, drought, the presence of toxic metals, organic pollut-
ants and high salinity, is called “stress ethylene” (Etesami 
et al. 2015; Jha and Saraf 2015). Plants respond to stress 
through producing 1-amino-cyclopropane-1-carboxylic 
acid (ACC), a precursor of ethylene production (Glick et al. 
2007). ACC is secreted into the rhizosphere and is again 
absorbed by the roots and eventually converted to ethylene. 
The accumulation of ethylene prevents root growth, which 
consequently limits the water and nutritive elements absorp-
tion. Therefore, any factor that can modify the concentra-
tion of ethylene can regulate the growth and development 
of plants. PGPRs with the ability to use plant ACC as a 
source of nitrogen and energy in the rhizosphere, divide it 
into ammonia and α-ketobutyrate. They prevent the accu-
mulation of ethylene and provides a healthy root system 
to cope with environmental stresses (Siddikee et al. 2010). 
Glick et al. (1998) presented a model to describe the role 
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of ACC-deaminase producing bacteria in improving plant 
growth. When ACC is secreted from plant roots, it hydro-
lyzes by the ACC-deaminase producing bacteria. Therefore, 
ACC concentration is reduced outside the root and ACC is 
more secreted. Consequently, the level of ACC in plants is 
decreased that results in a reduced amount of ethylene. The 
efficiency of ACC-deaminase producing bacteria to enhance 
the growth of tomato and rice under salt stress was proven 
(Bal et al. 2013; Mayak et al. 2004) and some examples are 
mentioned in Table 1. Siddikee et al. (2010) reported that the 
salinity resistant bacteria accompanied with different ACC 
deaminase producing strains of Bacillus, Brevibacterium, 
Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, 
Oceanimonas, Corynebacterium, Arthrobacter and Micro-
coccus, increase plant growth potential under salinity stress. 
In addition, saghafi et al. (2018) reported that the applica-
tion of Sinorhizobium mellilote and Rhizobium legominoza-
roum b.v phaseoli with ability to ACC deaminase produc-
tion, improved the growth parameters and nutrient uptake 
in canola plants (Brassica napus L.) under salinity stress. 
Furthermore, these strains restricted the uptake of Na.

Production of Exopolysaccharides (EPs)

Stresses change physicochemical and biological proper-
ties of soil so affect microbial activity and yield produc-
tion directly, and the soil structure indirectly. The produc-
tion of exopolysaccharides by microbes keeps them from 
environmental fluctuating conditions. EPs are produced by 
soil microbes in the form of viscose materials. They can 
be absorbed into clay levels due to the mechanism of cati-
onic bridges, hydrogen bond, Van der Waals forces and ani-
onic attraction. In this way, they can form protective layer 
around the aggregates (Sandhya et al. 2009). EPs create a 
micro-environment, which maintains water and slow down 
the dehydration in compare with surrounding environment. 
Therefore, EPs protect the bacteria and roots of the plant 
against stress (Karimi et al. 2018). Also, the production of 
EPs by bacteria in saline soil can affect the plants productiv-
ity as they improve aggregate generation and physicochemi-
cal properties of soil (Minah and Hazarin Subair 2015). EPs 
producing bacteria can reduce damaging ion availability in 
saline conditions, by chelating excessive sodium ions around 
roots (Choudhary et  al. 2015). The decrease in sodium 
absorption is probably due to the occupation of the root zone 
with soil, which prevents sodium from moving to the stem 
(Ashraf et al. 2004). Thus they can increase the growth of 
plants under salinity stress conditions (Table 1).

Change in the antioxidative defense system

Plants exposed to stressful condition produce reactive 
oxygen species (ROS) such as radical superoxide (O2

·−), 

hydrogen peroxide (H2O2), radical hydroxyl (OH·), and alka-
line radicals (Zhang et al. 2018). ROS react with proteins, 
lipids and DNA and leads to oxidative damage and impairs 
the general functions of plant cells (Johnson et al. 2003; Yan 
et al. 2013). To cope with these damages, plants use their 
antioxidant defense systems, which include enzymatic and 
non-enzymatic components. By increasing the activity of 
these components, the plant’s defense mechanisms try to 
prevent the accumulation of ROS and the oxidative stress 
(Miller et al. 2010). The enzymatic components include 
peroxidases (POX), superoxide dismutase (SOD), catalase 
(CAT), ascorbate peroxidase (APX), glutathione reductase 
(GR), dehydroascorbate reductase (DHAR), monodehy-
droascorbate reductase (MDAR), glutathione peroxidases 
(GPX), glutathione s-trasferanse (GST), etc. Non-enzymatic 
components include glutathione, tocopherol, anthocya-
nins, phenolic compounds (Such as flavonoid, lutein, tan-
nin), ascorbic acid etc. (Yan et al. 2013; Kaushal and Wani 
2015). There is a positive correlation between the level of 
these enzymes oxidative activity condition in plants such 
as cotton, citrus, foxtail millet, purslane, sugar beet, pea 
and plantago under stress. (Rasool et al. 2013; Tang et al. 
2014). Recently, some saline resistant plants were produced 
through transferring and modifying the expression of the 
genes of some antioxidant enzymes (such as APX, GST, 
GPX, MnSOD, Cu/ZnSOD, DHAR, SOD, DHAR1, MDAR, 
AmMDAR and katE). Also, the overexpression of antioxi-
dant enzymes such as SOD, CAT and APX in transgenic 
plants increased the tolerance of plants to oxidative stresses 
(Agarwal et al. 2013a, b; Tang et al. 2014). Using PGPR 
to induce the overexpression of antioxidant enzymes pro-
duction is the other method. Studies have shown that the 
use of PGPR leads to increased activity of plant defense 
enzymes such as POX, SOD, CAT, APX and GR (Nautiyal 
et al. 2008; Chakraborty et al. 2013; Karimi et al. 2018). 
Hemida and Reyad (2018) inoculated the Carthamus tinc-
torius plants with two PGPRs namely Bacillus cereus and 
Bacillus aerius under salinity stress. The results showed 
that in inoculated plants the activity of CAT, APX and GR 
enzymes, also glutathione and ascorbic acid was signifi-
cantly higher than control plants.

Conclusions and future prospects

The negative effects of salt stress on plants are related 
to osmotic stress, Na+ toxicity, nutritional imbalance and 
oxidative stress. Halophyte plants can ameliorate these 
adverse effects by accumulating compatible organic sol-
utes such as glycinebetaine and proline, activating antioxi-
dant system, and increasing K/Na ratio in the cytosol. As 
most of the agricultural crops are glycophytes, improving 
plant salt tolerance is important. There are three methods 
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to do this: conventional breeding, genetic engineering and 
application of chemical materials. Due to the complexity 
of the function of salt stress responding genes the effi-
ciency of conventional breeding method is very low. There 
are many studies that claimed the success of genetic engi-
neering in producing some salt tolerant plants. Biotech-
nologists transferred some of genes involved in salt toler-
ance mechanism such as osmolite and antioxidant genes to 
Arabidopsis and Tobacco as model plants. However, most 
of these projects were successful just under controlled and 
abnormal laboratory condition. In addition, chemicals are 
expensive and will create environmental problems in long 
time. So, scientists should focus on the cost effective and 
echo-friendly approaches.

The presence of wild plants in soils affected by salinity 
is considered as good potentials to increase susceptible 
ones. Obviously, the rhizospheric soil of these plants can 
be a rich source for the growth-enhancing bacteria. We 
hope that isolation, purification, identification of these 
bacteria and inoculation of agricultural plants with them 
will increase salinity tolerance and productivity of the 
plants. PGPR can ameliorate the negative effects of salin-
ity on plants through several mechanisms such as ACC-
deaminase and EPs production, osmolite accumulation, 
antioxidant system activation, improvement of K+/Na+, 
Ca2+/Na+, Mg2+/Na+ (Fig. 1). However, to ensure food 
security of growing population of the world, it is necessary 
to understand the complexity of PGPR-plant interaction. 
Plant–microbe interaction involves various proteins and 
signaling pathways. The conventional biochemical and 
genomics methods are insufficient to study and determine 
the exact role of metabolites and signaling molecules. 
Recently, large-scale omics tools such as transcriptom-
ics, proteomics and metabolomics are routinely used to 
understand the cellular processes, genetic control, and 
signaling networks involved in plant responses to envi-
ronmental stresses (Imam et al. 2016 and 2017; Basu et al. 
2018). Furthermore, through employing omics tools along 
with gene editing technique we can improve PGPR-plant 
interactions under salt stress. For example, by applying 
gene editing technique in PGPR bacteria, IAA and ACC-
deaminase production of these bacteria improved and con-
sequently, plants’ salinity tolerance was increased (Basu 
et al. 2018). Despite of the efficiency of gene editing tech-
nique, these questions must be answered: are engineered 
microbes safe in environmental condition? and can they 
survive under natural condition? However, further research 
is necessary to explore some new PGPRs in the future.
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