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Abstract
Receptor-mediated cell mechanosensing plays critical roles in cell spreading, migration, growth, and survival. Dynamic force
spectroscopy (DFS) techniques have recently been advanced to visualize such processes, which allow the concurrent examina-
tion of molecular binding dynamics and cellular response to mechanical stimuli on single living cells. Notably, the live-cell DFS
is able to manipulate the force Bwaveforms^ such as tensile versus compressive, ramped versus clamped, static versus dynamic,
and short versus long lasting forces, thereby deriving correlations of cellular responses with ligand binding kinetics and mechan-
ical stimulation profiles. Here, by differentiating extracellular mechanical stimulations into two major categories, tensile force
and compressive force, we review the latest findings on receptor-mediated mechanosensing mechanisms that are discovered by
the state-of-the-art live-cell DFS technologies.
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Abbreviations
DFS Dynamic force spectroscopy
AFM Atomic force microscopy
BFP Biomembrane force probe
OT Optical tweezers
TCR T cell receptor
pMHC Peptide major histocompatibility complex
VWF von Willebrand factor

Introduction

Mechanical force has been long recognized for its versatile
roles in countless physiological processes. For example, it
triggers the touch and pain sensation through the skin cells
(Fig. 1a) (Maksimovic et al. 2014; Orr et al. 2006). The
contractile forces between endothelial cells tighten cell–
cell junction for the maintenance of vessel integrity
(Charras and Yap 2018; Hoffman and Yap 2015).
Adhesion forces enable leukocyte migration and traffick-
ing in inflammation and innate immune response
(Nordenfelt et al. 2016; Yeh et al. 2018) and platelet at-
tachment to the vascular surface in hemostasis and throm-
bosis under dynamic blood flow (Fig. 1b) (Feghhi et al.
2016; Kim et al. 2017; Lam et al. 2011). Furthermore, the
adaptation of local bone mass and architecture is also driv-
en by mechanical loading (Bacabac et al. 2004) (Fig. 1c).

External mechanical stimuli onto cells are received by cer-
tain receptors or molecular assemblies associated with cell
membrane (Tarbell et al. 2014) and subsequently converted
into biochemical signals to trigger cellular responses and
alter cellular behaviors (Chen et al. 2017a). In such
mechanosensing processes, the molecular assembly responsi-
ble for the presentation, reception, transmission, and transduc-
tion of the force signal can be regarded as a nano-machine
(Chen et al. 2017a), and the force signal is regarded as the
input, which correlates with the output—the triggered intra-
cellular signaling.
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Based on the form of external mechanical force at the
single-molecule level, such Bmechanosensing^ processes can
be categorized, in general, into two forms (Fig. 1d):

1. Tensile force exerted by pulling of cell surface receptors
via engaged ligands (Brockman et al. 2018). For example,
platelets sense hemodynamic tensile force in blood flow
and initiate thrombus formation, where platelet adhesion
and aggregation process is mediated by the molecular
interactions between platelet receptors (e.g., GPIb,
integrin α I Ibβ3) and plasma ligands (e.g., von
Willebrand factor (VWF), fibrinogen). In certain circum-
stances, the tensile force extrudes cell membrane into
tethers, which can stabilize cell adhesion under high shear
condition (Jackson et al. 2009; Roest et al. 2011; Sundd
et al. 2012).

2. Compressive force that applies tension to the membrane,
which can be exerted by cell–cell collision (Ju et al. 2018)
or cell compression onto the extracellular matrix (ECM)
(Pagliara et al. 2014).

DFS techniques, such as atomic force microscopy (AFM),
biomembrane force probe (BFP), and optical tweezer (OT),
have been invented to examine protein dynamics including
receptor–ligand interactions, protein conformational changes
and enzymatic cleavage (Chaudhuri et al. 2016; Neuman and
Nagy 2008). By utilizing an ultra-sensitive force transducer
(e.g., a cantilever in AFM, an aspirated red blood cell (RBC)
in BFP or a laser-induced gradient force trap in OT), DFS can
visualize single molecular behaviors under controlled me-
chanical stimulation waveforms (Chen et al. 2017a).

The investigation of cell mechanosensing requires the ma-
nipulation of mechanical stimuli to cells and simultaneous
readout of the cells’ behavior change. In this regard, DFS
techniques that were widely used to study purified proteins
have been upgraded with the capability to manipulate single
living cells, enabling the examination of live-cell dynamics in
response to mechanical and biochemical stimulations (Su and
Ju 2018). In this review, we aim to discuss how the latest live-
cell DFS techniques enable us to examine the tensile and
compressive force-induced cell mechanosensing at the molec-
ular scale.

Tensile force-mediated cell mechanosensing

Receptor–ligand bonds under tensile force

The application of extracellular tensile force mainly relies on
the association of cell receptors with surface-immobilized li-
gands. Their relative movement produces the dragging tensile
force on the molecular bond (Fig. 1d). For instance, neutro-
phils and platelets adhere to the vascular surface via the bind-
ing of selectins, integrins, and other glycoproteins, which bear
dislodging forces from the arterial or venous blood flow. In the
absence of external force, a migrating cell exerts endogenous
tensile forces on the ECM via receptors (e.g., integrins) bind-
ing to immobilized ligands (Chen et al. 2017a; Fournier et al.
2010; Valignat et al. 2013). Even when the cell remains static,
actin retrograde flow could still mobilize adhesion receptors
for spatial reorganization (Comrie et al. 2015; Li et al. 2010;
Swaminathan et al. 2017), exerting tensile forces on the
bonds. The best example for this cell behavior can

Fig. 1 Mechanical forces in the cell physiological environments and their
molecular mechanisms. a Skin cells experience compressive forces from
the external touching and tensile forces pulled by adjacent cells. bWhite
blood cells and platelets form adhesions in blood vessels, where tensile
dragging force is generated by dislodging blood flow. Collision of blood
cells against the vessel wall or with each other generates compressive

force. c Osteocytes inside the bone are constantly subject to both tensile
and compressive force. d Tensile force is generated in cell–cell or cell–
matrix adhesions, which is transmitted via receptor–ligand bonds, where-
as compressive force is generated onto the cell membrane by cell–cell or
cell–matrix collision
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be observed in the cadherin-based adherent junctions in epi-
thelia and endothelia, where cell–cell adhesion couples the
contractile actomyosin cytoskeletons of cells together to gen-
erate tensile force and tissue-scale tension (Charras and Yap
2018).

In the DFS systems, the application of tensile force was
achieved by the programmed pulling of a formed receptor–
ligand bond, where the deformation of the elastic force trans-
ducer measures the force amplitude (Roca-Cusachs et al.
2017; Su and Ju 2018). By tuning the ligand coating density
and controlling the adhesion frequency below 20%, DFS is
able to, most likely, probe one bond at a time, thereby measure
the binding kinetics on single-molecule level (Liu et al. 2015).

Dynamic bonds and their roles in cell mechanosensing

A molecular bond can be regulated by mechanical force to
manifest catch (bond lifetime increases as force increases),
slip (bond lifetime decreases as force increase), and ideal
(bond lifetime is indifferent to force change) bond behaviors
(Liu et al. 2015). As a counter-intuitive phenomenon, catch
bond has been displayed by many adhesion receptors such as
selectins (Marshall et al. 2003), GPIb (Ju et al. 2013), integrins
(Chen et al. 2017b; Choi et al. 2014; Fiore et al. 2014; Kong
et al. 2009; Rosetti et al. 2015), Notch receptors (Luca et al.
2017), and cadherins (Manibog et al. 2014). While the exis-
tence of catch bond is still being identified more in the intra-
cellular protein systems (Akiyoshi et al. 2010; Huang et al.
2017; Lee et al. 2013) and its molecular mechanisms being
mode l ed , r ecen t s tud i e s s t a r t ed to un rave l i t s
physiological and pathological relevance:

The interactions of T cell receptor (TCR) with self-peptide
major histocompatibility complex (pMHC) ligands to induce
decision-making of Bkill^ and Bsurvival^ have been linked to
their catch and slip bonds (Liu et al. 2014; Sibener et al. 2018).
Negative selection (Bkill^) ligands were found to form coop-
erative trimolecular catch bonds (Bdynamic catch^) with TCR
and the co-receptor CD8 and stimulate T cell to exert force for
bond strengthening, whereas positive selection (Bsurvival^)
ligands can only form weak slip bonds with either TCR or
CD8 (Hong et al. 2018). Such a difference in the bond
strength, reflecting the ligand discriminative power of TCR,
has been proposed to affect the downstream signaling with the
final decision of thymocyte selection. In adaptive immunity,
cancer-associated somatic mutations of HLA-A2 suppress the
TCR–pMHC catch bond, suggesting a functional contribution
of TCR–pMHC catch bond to T cell immunological signaling
and functioning (Wu et al. 2019).

L-selectin on neutrophils interacts with E-selectin
expressed on endothelial cells via a catch bond. This interac-
tion triggers mechano-signaling that induces the activation
and clustering of β2 integrins on the neutrophil surface
(Block et al. 2012; Kuwano et al. 2010), whereas inhibition

of the catch bond avidly suppresses both the activation of β2

integrins and the assembly of focal adhesions (Morikis et al.
2017). In the context of platelet adhesion under high shear
condition, eliminating the GPIb catch bond with the type 2B
von Willebrand disease (VWD) mutations in VWF ligand
suppresses GPIb mechano-signaling (Ju et al. 2016), suggest-
ing an emerging concept that VWD-caused bleeding disorder
is likely contributed by the compromised platelet
mechanosensing in addition to the altered binding kinetics.
For integrin-mediated mechanosensing scenarios, the endo-
thelial surface molecule Thy-1 (CD90) forms a slip bond with
integrinα5β1 or syndecan-4 alone, but a trimolecular dynamic
catch bond in the presence of both receptors, the inhibition of
which suppresses FAK- and myosin II-mediated cell
mechano-signaling at focal adhesions (Fiore et al. 2014).
Besides, the abrogation of leukocyte integrin αMβ2 catch
bonds has been suggested as a potential cause of systemic
lupus erythematosus (SLE), as it dysregulates αMβ2 signaling
and impairs the negative regulations of autoimmune responses
(Rosetti et al. 2015).

Cell mechanosensing by distinct force waveforms

The tensile force applied to a cell receptor can adopt various
waveforms. The two most commonly used force waveforms
in DFS experiments are ramped and clamped forces. For a
ramped force waveform, the force is linearly loaded till bond
rupture without any durability (Fig. 2a), whereas for a
clamped force waveform, the force is linearly loaded but then
sustained at a constant level (Fig. 2b) (Chen et al. 2017a).

As a unique feature of DFS, it can apply various tensile
force waveforms on a living cell and examine the distinct
cellular response accordingly. Integrins appear to, in general,
allow cell activation by ramped forces (Fig. 2a). For single
integrin αIIbβ3-mediated platelet mechanosensing, repeated
and intermittent ramped force induces intermediate state
integrin affinity maturation towards full activation (Chen
et al. 2019). The repeated pulling of αIIbβ3 ensuing platelet
activation by thrombin can even trigger the procoagulant func-
tions of platelets with phosphatidylserine exposure and
microvesicle release (Pang et al. 2018) (Fig. 2a, left).
However, in the context of focal adhesions, the binding of
fibroblast α5β1 integrins to fibronectin can be avidly rein-
forced within a single-cycled pulling in less than 1 s
(Strohmeyer et al. 2017), suggesting that a single ramped
force on integrin is sufficient to trigger cell mechano-
signaling (Fig. 2a, right). Possibly as part of the mechanism,
the high forces reached by ramping can induce the unfolding
of integrin-linked cytoplasmic proteins like talin, vinculin, and
kindlin, thereby re-organizing the actin cytoskeleton, which
leads to integrin clustering and downstream biochemical sig-
nals (Elosegui-Artola et al. 2016; Holle et al. 2013; Sun et al.
2019).
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Distinct from integrin-mediated cell mechanosensing, a
single GPIb bond under a clamped force of > 2-s duration
triggers intracellular Ca2+ flux and induces integrin activation,
while ramped forces fail so (Ju et al. 2016) (Fig. 2b). For the
TCR system, in the absence of CD8 binding, the accumulation
of repeated clamped force cycles is required to trigger T cell
Ca2+ signaling (Liu et al. 2014) (Fig. 2c, left); however, when
CD8 is allowed to form trimolecular complex with TCR and
pMHC, repeated ramped forces are sufficient to trigger Ca2+

as well (Pryshchep et al. 2014) (Fig. 2c, right).
These observations indicate that each receptor-mediated

mechanosensing system has distinct force waveform sensitiv-
ity, which might be relevant to their respective physiological
roles. The requirement of a single durable bond for GPIb
mechanosensing ensures rapid hemostatic function of platelets
at sites of vascular injury. The immediate signaling process of
fibroblast α5β1 integrins may serve as a mechanism for the
quick development of stable focal adhesions. By comparison,
the accumulation of multiple bonds in TCR triggering, which
reviews the binding kinetics in a comprehensive fashion, en-
sures maximal accuracy in pMHC recognition and right deci-
sion for immune response.

Membrane compressive force-mediated cell
mechanosensing

In contrast to tensile forces, which are far more widely and
extensively studied in the mechanobiology field, the biologi-
cal effects of compressive force and the mechanisms of its
reception, transmission, and transduction in cells are less de-
fined. Yet at the cellular level, the significant role of compres-
sive force has been demonstrated in several biological scenar-
ios (Fig. 3a). For example, in developmental biology, com-
pression caused by normal morphogenetic movements during
mesoderm invagination induces signaling to control the for-
mation of the dorso-ventral axis in the early gastrula-stage
Drosophila melanogaster embryo (Farge 2003). In oncology,
compressive force on spheroids of murine mammary carcino-
ma cells regulates their proliferation and death (Cheng et al.
2009). In stem cell biology, compressive force on naive mouse
embryonic stem cells undergoing a transition towards differ-
entiation expands their nuclei (Pagliara et al. 2014). In plant
biology, compressive stress orients microtubules in
Arabidopsis leaves (Jacques et al. 2013) and prescribes cyto-
skeleton behavior in Arabidopsis cotyledon pavement cells

Fig. 2 Distinct force waveform-mediated mechanosensing mechanisms
in various molecular systems. a Repeated ramped forces on platelet
integrin αIIbβ3 can trigger platelet-activating signaling including intracel-
lular Ca2+ signal (Chen et al. 2019), phosphatidylserine (PS) exposure,
and microvesicle release (Pang et al. 2018), whereas on fibroblasts, a
single ramped force onα5β1 is sufficient to trigger intracellular activating
signals (Strohmeyer et al. 2017). bA durable clamped force event triggers

GPIb-mediated platelet mechanosensing, leading to intracellular Ca2+

mobilization (Ju et al. 2016). c ATCR requires repeated durable bindings
to pMHC and accumulated clamped forces to trigger intracellular Ca2+

(Liu et al. 2014); however, the co-binding of Tcell surface CD8 to pMHC
changes the requirement, allowing repeated ramped forces to trigger Ca2+

as well (Pryshchep et al. 2014)

314 Biophys Rev (2019) 11:311–318



(Sampathkumar et al. 2014). In dental bone biology, compres-
sive stress which constantly exerts on periodontal ligament
cells triggers a series of biochemical activities to support os-
teoclastogenesis, such as an increase of prostaglandin E2 pro-
duction and cyclo-oxygenase 2 expression (Kanzaki et al.
2002; Nakajima et al. 2008). Similar compressive stresses also
induce the production of inflammatory cytokines and their
receptors in osteoblasts (Koyama et al. 2008).

In this context, we have recently used BFP to provide the
first evidence demonstrating that compressive force can be
sensed by platelets to upregulate integrin αIIbβ3 binding (Ju
et al. 2018). These experimental results support the previous
rheological and modeling studies demonstrating that RBCs
push and subject platelets to collision forces (compression),
thereby promoting platelet thrombus formation (Tokarev et al.

2011; Tovar-Lopez et al. 2013). However, the exact mecha-
nism of how compressive forces exerted on the platelet mem-
brane lead to integrin αIIbβ3 activation remains elusive.

The first possibility may be related to the force-through-
filament principle as the compression force is sensed by the
cytoskeleton rather than plasma membrane (Fletcher and
Mullins 2010). In response to the external compression force,
the platelet cytoskeleton might undergo local remodeling,
leading to integrin activation (Fig. 3b). Indeed, compressive
force has been shown to alter the growth of branched actin
filaments at the leading edge of crawling cells (Chaudhuri
et al. 2007).

The second possibility is in accordance with the force-
through-lipid model which has been established for
mechanosensitive ion channels, i.e., MscL (Cox et al. 2017).

Fig. 3 Membrane compressive force induced integrin activation. aA cell
under compressive force. b Local compressive force rearranges the actin
cytoskeleton, via the integrin cytoplasmic adaptor protein talin,
propagating lateral force to induce integrin tail separation and
activation. c Local membrane tension induced mechanosensitive ion

channel opening, leading to Ca2+ influx and subsequent intracellular
signals that activate the integrin. d Local compression of glycocalyx by
extracellular matrix (ECM) enables ligand engagement of nearby integrin
receptors. It also creates opposing elastic force, which transmits to pull on
the integrin via a bound ligand and induces integrin activation
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In this scenario, compression force normal to the membrane is
converted into tension in the membrane, which may trigger
the opening of Ca2+ ion channels and induce integrin activa-
tion (Fig. 3c). This is consistent with the observation that
chelating extracellular calcium reduced αIIbβ3-dependent
compressive force sensing on platelets (Ju et al. 2018).

The third possibility is demonstrated in endothelial
mechanotransduction that the glycocalyx, a layer of
glycoprotein–polysaccharide complex on the cell surface,
can be compressed by RBCs and leukocytes (Weinbaum
et al. 2007). Glycocalyx can extend > 100 nm from the cell
surface (Hattrup and Gendler 2008), a distance far exceeding
the axial length of bent (< 11 nm) and extended integrins (>
20 nm) (Chen et al. 2012; Ye et al. 2010), thereby burying the
ligand binding site of integrins. Therefore, it is likely that
compressive force compresses glycocalyx on platelets and
exposes αIIbβ3 for adhesive function. Moreover, considering
that the external compressive force is most likely dynamic, the
length of the compressed glycocalyx would consistently fluc-
tuate, which can exert pulling force on the ligand-engaged
integrin (Fig. 3d) to accelerate its extension and activation
(Chen et al. 2012, 2017b). Recently, it has been demonstrated
that local compression of the glycocalyx near integrin adhe-
sive contacts promotes integrin clustering and focal adhesion
maturation (Paszek et al. 2009, 2014). The current single-cell
glycocalyx imaging technique can be utilized to examine this
mechanism for future studies (Scrimgeour et al. 2017).

Conclusion

The new biomechanical nanotools prompted the field of
mechanobiology into a new era, which allow the researchers
to investigate cell mechanosensing at the single-cell and
single-molecule level. Under this background, combining
live-cell DFS analysis with intracellular signaling readouts
can reveal the inner-working of each mechanosensing nano-
machine, which will undoubtedly expand our knowledge of
many physiological and pathological processes. Ultimately,
under the concept of Bmechanomedicine^, the mechanics/
engineering-based principles and technologies, such as live-
cell DFS, and its discovered molecular insights, could all be
repurposed to the diagnosis, treatment, control, and cure of
various human diseases (Guo et al. 2018; Naruse 2018).
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