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Abstract

Neurons in many brain areas exhibit high trial-to-trial variability, with spike counts that are 

overdispersed relative to a Poisson distribution. Recent work (Goris, Movshon, & Simoncelli, 

2014) has proposed to explain this variability in terms of a multiplicative interaction between a 

stochastic gain variable and a stimulus-dependent Poisson firing rate, which produces quadratic 

relationships between spike count mean and variance. Here we examine this quadratic assumption 

and propose a more flexible family of models that can account for a more diverse set of mean-

variance relationships. Our model contains additive gaussian noise that is transformed nonlinearly 

to produce a Poisson spike rate. Different choices of the nonlinear function can give rise to 

qualitatively different mean-variance relationships, ranging from sublinear to linear to quadratic. 

Intriguingly, a rectified squaring nonlinearity produces a linear mean-variance function, 

corresponding to responses with a constant Fano factor. We describe a computationally efficient 

method for fitting this model to data and demonstrate that a majority of neurons in a V1 

population are better described by a model with a nonquadratic relationship between mean and 

variance. Finally, we demonstrate a practical use of our model via an application to Bayesian 

adaptive stimulus selection in closed-loop neurophysiology experiments, which shows that 

accounting for overdispersion can lead to dramatic improvements in adaptive tuning curve 

estimation.

adamsc@princeton.edu.
A.S.C. and M.P. share first authorship.

HHS Public Access
Author manuscript
Neural Comput. Author manuscript; available in PMC 2019 June 11.

Published in final edited form as:
Neural Comput. 2018 April ; 30(4): 1012–1045. doi:10.1162/neco_a_01062.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Quantifying neural variability is crucial for understanding how neurons process and transmit 

information. This has motivated a large body of work that seeks to characterize the signal 

and noise governing neural responses to sensory stimuli. A simple but popular approach to 

this problem models neural spike counts using the Poisson distribution. Under this model, 

spike count mean and variance are equal. Deviations from this relationship are often 

characterized by the Fano factor, defined as the ratio of the spike count variance to the mean 

(Geisler & Albrecht, 1997; Eden & Kramer, 2010; Shadlen & Newsome, 1998). The Fano 

factor for a Poisson neuron is therefore equal to one. A Fano factor less than one indicates 

sub-Poisson variability, a condition referred to as underdispersion; a Fano factor greater than 

one indicates greater-than-Poisson variability, commonly known as overdispersion. A 

substantial literature has shown that Fano factors in a variety of brain areas differ 

substantially from one (Shadlen & Newsome, 1998; Gur, Beylin, & Snodderly, 1997; 

Barberini, Horwitz, & Newsome, 2001; Baddeley et al., 1997; Gershon, Wiener, Latham, & 

Richmond, 1998). Recent work has shown that not only do neural responses not obey a 

Poisson distribution; the overall mean-variance relationship is often not well characterized 

by a line, meaning the data are not consistent with a single Fano factor (Pillow & Scott, 

2012b; Gao, Busing, Shenoy, & Cunningham, 2015; Stevenson, 2016; Goris, Movshon, & 

Simoncelli, 2014; Wiener & Richmond, 2003; Moshitch & Nelken, 2014). Rather, the spike 

count variance changes nonlinearly with the mean.

Here we develop a flexible model for overdispersed spike count data that captures a variety 

of different nonlinear mean-variance relationships. Our approach extends recent work from 

Goris et al. (2014), which described overdispersed spike responses in the early visual 

pathway using a Poisson model with multiplicative noise affecting the trial-to-trial spike 

rate. This produces a quadratic relationship between mean and variance, so the Fano factor 

increases linearly with mean spike count.

By contrast, our model seeks to describe a more diverse range of mean-variance 

relationships while maintaining tractability for simulation and fitting. Our model, which we 

refer to as the flexible overdispersion model, consists of a stimulus-dependent term, additive 

gaussian noise, a point nonlinearity, and conditionally Poisson spiking (see Figure 1). This 

framework includes the multiplicative Goris model as a special case when the nonlinearity is 

exponential but includes the flexibility to exhibit other behaviors as well—for example, Fano 

factors that decrease with increasing spike rate, which arises for a rectified-linear 

nonlinearity, and constant slope linear relationships, corresponding to a constant Fano factor, 

which arises for a rectified squaring nonlinearity. We show that the model can be tractably fit 

to data using the Laplace approximation to compute likelihoods and requires fewer 

parameters than other models for non-Poisson spike count data such as the modulated 

binomial or generalized count models (Gao et al., 2015; Stevenson, 2016). We apply our 

model to the V1 data set presented in Goris et al. (2014) and show that a rectified power law 

nonlinearity provides a better description of most individual neurons than a purely 

multiplicative model.
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In addition to exploring the properties of our model, as fit to spiking data from V1 

recordings, we also explore the practical use of our model. As an example, we use our 

flexible overdispersion model to develop an application to adaptive stimulus selection in 

closed-loop experiments, also known as active learning, for characterizing multidimensional 

tuning curves. These methods seek to minimize the amount of time required to estimate 

tuning curves by selecting stimuli that are as useful or informative as possible about the 

tuning curve. We use the flexible overdispersion model in place of the standard Poisson 

model and demonstrate a marked improvement for tuning curve estimation for both 

simulated experiments and color-tuning maps in awake fixating monkeys.

2 Background: Fano Factor and the modulated Poisson Model

A popular model of neural responses uses the Poisson distribution to describe stimulus-

evoked spike counts (Brillinger, 1988; Chichilnisky, 2001; Simoncelli, Pillow, Paninski, & 

Schwartz, 2004; Paninski, 2004). The basic model specifies a stimulus-dependent spike rate 

λ(x) that drives Poisson firing. If we express λ(x) in units of spikes per bin, the probability 

of observing r spikes in a bin is given by

P(r ∣ x) = 1
r!λ(x)re−λ(x) . (2.1)

This model makes the strong assumption that the mean and variance are equal: 

var[r] = 𝔼[r] = λ(x), for any stimulus x. A sizable literature has shown that that assumption is 

often inaccurate, as spike counts in many brain areas exhibit overdispersion relative to the 

Poisson distribution, meaning that variance exceeds the mean (Shadlen & Newsome, 1998; 

Gur et al., 1997; Barberini et al., 2001; Pillow & Scott, 2012b; Gao et al., 2015; Goris et al., 

2014; Stevenson, 2016; Baddeley et al., 1997; Gershon et al., 1998; Tolhurst, Movshon, & 

Dean, 1983; Buracas, Zador, DeWeese, & Albright, 1998; Carandini, 2004).

A common approach to the phenomenon of overdispersion is to regard the Fano factor, 

F = var[r] ∕ 𝔼[r], as a constant that characterizes the generic degree of overdispersion in 

neural firing (Geisler & Albrecht, 1997; Shadlen & Newsome, 1998). However, this 

description is adequate only if spike count variance scales linearly with the mean. Recent 

work has shown that spike responses in four different early visual areas exhibit variance that 

grows superlinearly with the mean, meaning that overdispersion (and the Fano factor) 

increase with the firing rate, inconsistent with a single Fano factor (Goris et al., 2014). 

Moreover, the Fano factor falls short of providing a complete description of neural spike 

count statistics, as it does not specify a full probability distribution over spike counts. Such a 

description is necessary for quantifying information in neural population codes. In light of 

these shortcomings, we feel that the Fano factor should be set aside as the default statistic 

for characterizing neural overdispersion; rather, researchers should consider the full curve 

describing how variance changes as a function of mean.

A recently proposed model for overdispersed spike counts in the early visual pathway is the 

modulated Poisson model, in which the stimulus-dependent Poisson spike rate is modulated 
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by a multiplicative stochastic gain variable on each trial (Goris et al., 2014). The model can 

be written as1

G PG(G), (2.2)

r ∣ G, x Poiss(Gλ(x)), (2.3)

where PG is the distribution of a (unobserved) stochastic gain variable G, which is assumed 

to have mean 𝔼[G] = 1, and variance var(G) = σG
2 . The conditional distribution of the 

response given the stimulus requires marginalizing over G,

P(r ∣ x) = ∫
0

∞
Poiss(Gλ(x))PG(G)dG, (2.4)

where Poiss(·) denotes the Poisson distribution (see equation 2.1). When G has a gamma 

distribution, this integral can be evaluated in closed form and results in a negative binomial 

distribution, a popular model for overdispersed spike counts (Pillow & Scott, 2012b; Goris 

et al., 2014; Linderman, Adams, & Pillow, 2016). (See appendix A for a derivation of this 

relationship.)

For any choice of PG, the constraint 𝔼[G] = 1 ensures that the gain variable has no effect on 

the marginal mean spike count, meaning that 𝔼[r ∣ x] = λ(x) as in the pure Poisson model. 

However, the variance exhibits a quadratic dependence on the spike rate, which can be 

derived using the law of total variance:

var[r ∣ z] = λ(x) + σG
2 λ(x) 2 . (2.5)

If the gain variable variance σG
2 = 0, meaning the gain variable is constant (G = 1), the model 

reverts to Poisson. However, for σG
2 > 0, it exhibits overdispersion that increases with firing 

rate, with the Fano factor given by

F =
λ(x) + σG

2 λ(x) 2

λ(x) = 1 + σG
2 λ(x) . (2.6)

Goris et al. (2014) showed that this model provides a more accurate description of mean-

variance relationships than the Poisson model for neurons from multiple visual areas (LGN, 

1Note that in contrast to Goris et al. (2014), we define λ(x) in units of spikes per bin, removing the bin size Δ from the ensuing 
equations.
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V1, V4, and MT). However, as we will show in the following, the quadratic relationship 

between variance and mean imposed by the Goris model does not accurately apply to all 

neurons.

3 The Flexible Overdispersion Model

Our flexible overdispersion model for overdispersed spike counts consists of a stimulus-

dependent term g(x), additive gaussian noise n, and a nonlinear function f that transforms 

(g(x) + n) to a firing rate, followed by Poisson firing. Mathematically it can be written as

r ∣ x, n Poiss( f (g(x) + n)), n 𝒩(0, σn
2), (3.1)

where f is a nonnegative, monotonically increasing nonlinearity that ensures nonnegative 

firing rates. The joint distribution over spike count and latent noise is therefore a product of 

Poisson and gaussian distributions,

P(r, n ∣ x) = P(r ∣ n, x)P(n) = 1
r! f (g(x) + n)re− f (g(x) + n) 1

2πσn
e

−n2

2σn
2

dn . (3.2)

This flexible overdispersion model can be interpreted in terms of a noisy subthreshold 

membrane potential that is transformed by an output nonlinearity to drive Poisson spiking 

(cf. Carandini, 2004). In this interpretation, g(x) is the stimulus tuning curve of the 

membrane potential, σn
2 is the variance of noise affecting the membrane potential, and f(·) is 

a rectifying output nonlinearity that converts membrane potential to firing rate.

To obtain the probability of a spike count given the stimulus, we marginalize this distribution 

over the unobserved noise n:

P(r ∣ x) = ∫
∞

∞
P(r, n ∣ x)dn . (3.3)

Figure 1 shows a diagram illustrating the model and several example choices for the 

nonlinearity f(·).

The choice of nonlinearity f(·) allows the model the flexibility to produce different forms of 

overdispersion, that is, mean-variance curves with different shapes. When f(·) is exponential, 

we recover the Goris model framework with multiplicative noise, since exp(g(x) + n) = 

exp(g(x)) · exp(n), meaning the noise multiplicatively modulates with the stimulus-induced 

Poisson firing rate exp(g(x)). However, as we will show, other choices of f(·) lead to 

different overdispersion curves from the quadratic mean-variance curve implied by 

multiplicative noise, as depicted in Figure 2.
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3.1 Spike Count Mean and Variance.

To characterize the overdispersion quantitatively, we need to compute the spike count mean 

and variance as a function of the stimulus drive, or stimulus-induced membrane potential, 

which we denote z = g(x) for notational convenience. The mean spike count, which we 

denote λ(z), can be computed via the law of iterated expectations,

λ(z) = 𝔼[r ∣ z] = 𝔼[ f (z + n)] = ∫
−∞

∞
f (z + n)Pn(n)dn, (3.4)

where Pn = 𝒩(0, σn
2) is the gaussian distribution of the noise variable n.

The spike count variance, denoted σr
2(z), can be calculated using the law of total variance as

σr
2(z) = 𝔼 var[r ∣ z, n] + var 𝔼[r ∣ z, n]

= 𝔼[ f (z + n)] + var[ f (z + n)]
= λ(z) + 𝔼[ f 2(z + n)] − λ(z)2,

(3.5)

where the expectation in the last line is taken with respect to the gaussian noise distribution 

𝒩(0, σn
2). When σn

2 = 0, the last two terms cancel, and the model reverts to Poisson, with 

variance equal to the mean λ(z).

For arbitrary choices of f, the spike count mean and variance have no closed-form expression 

and must be computed by numerical integration. However, for several simple choices for f, 
we can evaluate these quantities analytically or approximate them closely using the delta 

method (see Table 1).

3.2 Capturing Different Forms of Overdispersion.

To illustrate the model’s flexibility, we consider several specific choices for f, namely, 

exponential, and rectified power functions, f(z) = ⌊z⌋p for p = {1/2, 1, 2}, where ⌊z⌋ = 

max(z, 0). Figure 2 shows the different mean-variance relationships produced by these four 

different choices for f, at three different values of noise level σn
2. This demonstrates that 

simple nonlinear transforms that grow at different rates can capture important classes of 

behavior.

For concave nonlinearities like the rectified square root, f(z) = ⌊z⌋0.5, the spike count 

variance is actually larger at low spike rates than at high spike rates, and the Fano factor 

drops rapidly to 1 with increasing spike rate (see Figure 2, column 1). Such responses are 

thus highly overdispersed at low spike counts but indistinguishable from Poisson at high 

spike counts. A linear-rectified nonlinearity, f(z) = ⌊z⌋, on the other hand, produces linear 

variance-mean curves with unit slope but with a positive intercept that grows with noise 

variance σn
2. Although they exhibit a constant degree of overdispersion relative to Poisson, 
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such neurons have a falling Fano factor because the ratio of variance to mean is smaller at 

high firing rates (see Figure 2, column 2). Interestingly, a rectified squaring nonlinearity, f(z) 

= ⌊z⌋2, gives rise to linear variance-mean curves with slopes that vary as a function of noise 

variance σ2. This is the only model of the four considered that generates a constant Fano 

factor across spike rates (see Figure 2, column 3).

For the exponential nonlinearity, f(z) = exp(z), both the spike count mean and variance can 

be calculated analytically by exploiting the fact that exp(n) has a log-normal distribution (see 

Table 1). As noted above, this corresponds to the multiplicative noise setting considered by 

Goris et al. (2014) and exhibits variance that grows quadratically as a function of mean (see 

Figure 2, column 4). However, we will show in section 5 that this model behaves very 

differently from the multiplicative model with a gamma-distributed gain variable (i.e., which 

produces negative-binomial distributed spike counts discussed in Goris et al., 2014). This 

indicates that all multiplicative noise models are not equal; differences in the distribution of 

the multiplicative noise variable can give rise to major differences in higher-order moments, 

which in turn can produce very different fits to data.

It is also worth noting that a model with latent gaussian noise and exponential nonlinearity is 

also the default model considered in an extensive literature on factor or latent linear 

dynamical system models for multivariate spike count data (Macke et al., 2011; Buesing, 

Macke, & Sahani, 2012; Archer, Koster, Pillow, & Macke, 2014; Rabinowitz, Goris, Cohen, 

& Simoncelli, 2015; Ecker, Denfield, Bethge, & Tolias, 2016; Gao, Archer, Paninski, & 

Cunningham, 2016; Zhao & Park, 2017). The majority of this literature, however, has 

focused on capturing covariance across time or across neurons and has devoted less attention 

to the issue of how count variance grows with mean for single neurons.

While solutions given in Table 1 and Figure 2 are useful for building intuition, in practice it 

makes sense to choose a parameterized function whose parameters can be adapted to capture 

a variety of behaviors. For the general case f(z) = ⌊z⌋p, p > 0, p ≠ 1 we can use the delta 

method to derive the approximate variance as

var[r ∣ z] ≈ 1 + p2σn
2 λ(z)

z2 λ(z) . (3.6)

Note that when p2σn
2z−1 ≈ e

σn
2

− 1, this expression for the variance mimics the mean-variance 

relation achieved by the exponential nonlinearity (see Table 1). Thus, for larger powers of p 
> 2, the rectification nonlinearity can reasonably approximate superlinear mean-variance 

relationships.

In addition, as optimizing these parameters to fit neuron firing counts will require 

calculating various derivatives, a smooth function is also beneficial for stability in the fitting 

process. We find that a useful alternative to the rectified power function given above is the 

soft-rectification power function—a soft rectification raised to a power p:
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f (z) = (log(1 + exp(z)))p . (3.7)

By fitting both p and the unknown latent variance σn
2, we find that this model is rich enough 

to capture a wide variety of overdispersion behaviors.

Finally, we note that despite λ(z) and σr
2(z) often requiring numerical integration to obtain, 

we can guarantee certain properties on the parametric curve, as parameterized by z. First, we 

can guarantee that both λ(z) and σr
2(z) are smooth functions of z (although the derivatives 

may be discontinuous). Second, so long as the function f(·) is positive and monotonically 

increasing, λ(z) is also a monotonically increasing function of z. This indicates that σr
2(z) can 

truly be considered a function of λ(z) since each value of λ(z) maps onto only one value of 

σr
2(z). No similar guarantee could be made for σr

2(z), however, indicating that local minima 

can exist in the mean-variance relation. Local minima occur when the function f(·) has 

regions that are concave and have small derivatives, as occurs for f(z) = ⌊z⌋p (see Figure 2). 

In fact, if f(·) were constructed to have multiple concave regions with small derivatives, 

multiple local minima and maxima could be present in the mean-variance relationship. 

Finally, we note that since 𝔼[ f 2(z + n)] ≥ 𝔼[ f (z + n)]2, we always have σr
2(z) ≥ λ(z), indicating 

that while the amount of overdispersion may vary significantly, our model always produces 

greater-than-Poisson spike count variance.

4 Model Fitting

In order to apply the flexible overdispersion model to neural data, we need a tractable 

method for fitting the model parameters. Consider a data set composed of a set of stimuli X 
= {xi} and the measured spike counts of a single neuron R = {rij} where rij denotes the jth 

response of the neuron to stimulus xi, for i ∈ {1, …, N}. The model parameters θ consist of 

a stimulus-dependent term for each stimulus, denoted zi = g(xi), the noise variance σn
2, and 

(optionally) the exponent p governing the soft-rectification power nonlinearity. (We consider 

the variable p to stand for any parameters governing the nonlinearity, although for the 

exponential nonlinearity, there are no additional parameters to fit.)

The likelihood is given by a product of conditionally independent terms, one for each spike 

count:

P(R ∣ X, θ) = ∏
i, j

P(ri j ∣ zi, σn
2, p) = ∏

i, j
∫

∞

∞
P(ri j, ni j ∣ zi, σn

2, p)dni j , (4.1)

where θ = {{zi}, σ, p} is the full set of model parameters, and P(ri j, ni j ∣ zi, σn
2, p} is the joint 

distribution of the spike count rij and latent noise nij for the jth response to stimulis xi, which 

is given by a product of Poisson and gaussian distributions (see equation 3.2).
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Because the integral over the latent noise n is intractable, we compute the likelihood using 

the Laplace approximation. This method uses a surrogate gaussian distribution to 

approximate the posterior of each n given r around its mode,

P(n ∣ r, θ) ≈ Plapl(n ∣ r, θ) = 1
2πσ2exp − (n − n)2

2σ2 , (4.2)

where mean n is the mode of P(n∣r, θ), which we find via a numerical optimization of log 

P(r, n∣θ) for n, and variance σ2 is the inverse of the Hessian (second derivative) of the 

negative posterior log likelihood,

1
σ2 = ∂2

∂n2 −log(P(r, n ∣ z, θ))

= 1
σn

2 + ∂2

∂n2 −r log f (z + n) + f (z + n) ,

(4.3)

evaluated at mode n = n. If f is exponential, equation 4.3 simplifies to 

σ2 = σn
2 ∕ (1 + σn

2exp(z + n)).

To evaluate the likelihood, we can replace the true posterior with the Laplace approximation 

to obtain a tractable form for the joint distribution, P(r, n ∣ θ) ≈ P(r ∣ θ) · Plapl(n ∣ r, θ). We 

can then solve this expression for the desired likelihood, yielding

P(r ∣ θ) ≈ P(r, n ∣ θ)
Plapl(n ∣ r, θ) , (4.4)

where the numerator is the exact joint probability of r and n given θ, and the denominator is 

the approximation to the posterior over n given r. Evaluating the right-hand side at n = n
(where the Laplace approximation is most accurate) gives the following expression for the 

likelihood:

P(r ∣ θ) ≈ 1
r! f (z + n)re− f (z + n) σ

σn
e

−n2 ∕ 2σn
2

. (4.5)

Note that the parameters of the Laplace approximation, n and σ2, are functions of θ, since 

they depend on numerical optimization of P(n, r∣θ) for n at a given θ. Thus, maximum 

likelihood parameter estimation, which involves maximizing the log of equation 4.1 for θ, 

requires that we update these per response parameters defining the gaussian distribution for 

each noise term nij given rij and θ every time we change θ.
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To demonstrate that this method yields an accurate approximation to the log likelihood, we 

compare the true computed log likelihood (via numerical integration) with the Laplace 

approximation. Figure 3 depicts the log-likelihood landscapes for different spike counts (r ∈ 
{0, 2, 10, 50}) for both the numerically integrated log likelihood and the Laplace 

approximation. The ratio between numerically computed and Laplace-based log likelihoods 

(right-most column) demonstrates that errors are greatest at small spike counts (where the 

Poisson likelihood deviates most severely from the gaussian), but is negligible even in this 

regime for the exponential nonlinearity.

We can use the above methodology to address the particular case where f(·) is the soft 

rectification raised to a power (θ = {zi, σn
2, p}) or an exponential function (θ = {zi, σ2}). Full 

details about evaluating and maximizing the log-likelihood using the Laplace approximation 

are provided in appendix B.

5 Results: V1 Spike Counts

To test the ability of the flexible overdispersion model to capture the variability of real 

neurons, we fit to data collected from macaque primary visual cortex V1 (Graf, Kohn, 

Jazayeri, & Movshon, 2011), one of the data sets considered in Goris et al. (2014). This data 

set contained five recording sessions with multielectrode array recordings of neural 

population responses to 72 distinct visual grating orientations. A total of 654 neurons were 

recorded, and each orientation was presented 50 times. Trials consisted of drifting grating 

stimulus presentations for 1280 ms, with a 1280 ms rest period in between. From this data 

set, we chose the 112 well-tuned neurons for model fitting. Well-tuned neurons were 

determined as in previous studies by applying a threshold to the difference between the 

minimum and maximum mean firing rate over all stimuli orientations (Graf et al., 2011).

We fit the model parameters using the Laplace-approximation-based method described in 

section 4 for both the soft-rectification-power function (soft-rect-p; see equation 3.7) and the 

exponential nonlinearity. For comparison, we also fit the data with the negative-binomial 

(NB) model from Goris et al. (2014). All model fits had 72 parameters {zi} to describe the 

stimulus drive for each orientation and a noise variance parameter σn
2, and one extra 

parameter p for the model with the soft-rect-p nonlinearity. Example mean-variance curves 

(as well as example draws from the model with the inferred parameters) are plotted against 

the true data in Figure 4. While for some neurons the negative binomial model and our 

model resulted in near-identical mean-variance curves, for other neurons, the flexibility of 

the soft-rectification function produced better qualitative fits. The fact that our model is a 

log-likelihood fit means that the justification for the mean-variance curves might not be 

completely apparent from the means and variances of the data. This quality is apparent in 

neurons 3 and 4 in Figure 4, where the data plotted as mean-variance plots seem ambiguous 

as to what model parameters might be appropriate, but the mean Fano factor plots below 

indicate that the model should capture the trend of the data to have lower Fano factors at 

higher firing rates, a property that our model cap-tures. Figure 5 depicts the range of mean-

variance relationships inferred for a sampling of neurons in the data set. The range of curves 

observed for even this single data set implies that a single mean-variance relationship is 
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insufficient to capture the entire range of neural variability. Figure 5 further emphasizes this 

point by showing histograms of the inferred parameters (in the case of soft rectification, this 

includes the latent noise standard deviation σn and the soft-rectification power p).

We quantified the performance of different models by comparing the Akaike information 

criterion (AIC) across all three fits (power soft rectification, exponential, and negative 

binomial). The calculated AIC values, displayed as histograms in Figure 6, demonstrate that 

the softrect-p model provided the best fit for the majority of neurons, achieving the highest 

AIC values for 83.4% of the 112 neurons analyzed. This result indicates that despite the AIC 

penalization for requiring an additional parameter, the softrect-p fit best modeled 

approximately 83% of the tuned V1 neurons in the Graf data set. Interestingly, we also note 

that the exponential nonlinearity model, a model commonly used as an inverse link function 

in machine learning and neuroscience (Nelder & Baker, 1972), was a worse model for 

65.8% of the neurons according to AIC, even having performed worse than the NB model 

(as shown in Figure 6). This result may seem contrary to the fact that the model with 

exponential nonlinearity belongs to the same class of multiplicative-noise models as the 

negative binomial and thus also exhibits a quadratic mean-variance curve. Figure 4 

demonstrates this behavior, showing that data fits to both quadratic models can still differ 

significantly in their curvature. The implication here is that while the full mean-variance 

curve may provide basic overdispersion properties, it is insufficient to describe a neural 

spiking model. Specifically, model fitting with a full probabilistic model implies 

assumptions on higher-order moments that will affect the mean-variance curve fit.

To emphasize the potential insufficiency of the mean-variance curve as a model summary, 

Figure 7 shows an example case where the exponential nonlinearity yielded a very different 

mean-variance curve than the negative binomial model, despite the fact that both are 

multiplicative noise models defined by a stochastic gain variable with a mean of 1. 

Specifically, for this neuron, both the exponential and NB models seem to have significantly 

overestimated the variance as a function of the mean. The exponential fit overestimation was 

so extreme that the curve for the exponential fit is barely visible in the mean-variance plot. 

After ruling out potential numerical or approximation error with the Laplace approximation 

technique, we observed that while the mean-variance curves did not match the data, the full 

count distributions did seem to match the data. The upper-right and upper-left plots show 

that overall, both models fit the data distributions for both high and low mean spike counts. 

Plotting the spike count distributions on a log scale, however, shows that despite matching 

the data well at low firing rates, both models have higher tails than what would be expected. 

These heavy tails contributed directly to the overfitting of the spike count variance. In fact, 

the exponential nonlinearity’s spike count distribution has a much heavier tail than even the 

NB model, correlating with how the exponential nonlinearity model nonlinearity modeled 

the variance to a higher degree. To understand why the erroneous fits were obtained, we 

observe that up to a certain value of spike counts, the tails of the data distribution actually 

look heavy-tailed. In fact the log distributions shown in the lower-left and lower-right panels 

of Figure 7 do follow the data. Thus, heavy tails stemmed from matching the data in the 

maximum likelihood (ML) estimation. Unlike the data, however, our models are unbounded, 

indicating that heavy tails could have an impact on the model variance calculations in ways 

that would not affect the data fits. This analysis demonstrates that attempting to fit the 
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higher-order moment of the model (as ML-type methods do) may be detrimental to 

accurately fitting the mean-variance curve.

6 Application: Adaptive Closed-Loop Experiments

While improved models of neural spiking processes are important from a basic scientific 

understanding standpoint, these models also have applications as replacing the Poisson 

model as a front-end in data analysis and efficient recording methods. To illustrate one of the 

potential uses of the flexible overdispersion model, we developed an application to adaptive 

stimulus selection for closed-loop neurophysiology experiments. Such methods, known as 

active learning in machine learning and adaptive optimal experimental design in statistics, 

seek to select stimuli based on the stimuli and responses observed so far during an 

experiment in order to characterize the neuron as quickly and efficiently as possible 

(Lindley, 1956; Bernardo, 1979; MacKay, 1992; Chaloner & Verdinelli, 1995; Cohn, 

Ghahramani, & Jordan, 1996; Paninski, 2005). Adaptive stimulus selection is particularly 

useful in settings where data are limited or expensive to collect and can substantially reduce 

the number of trials needed for fitting an accurate model of neural responses (Paninski, 

Pillow, & Lewi, 2007; Benda, Gollisch, Machens, & Herz, 2007; Lewi, Butera, & Paninski, 

2009; DiMattina & Zhang, 2011, 2013; Bölinger & Gollisch, 2012; Park & Pillow, 2012; 

Park, Weller, Horwitz, & Pillow, 2014; Pillow & Park, 2016).

Here we introduce a method for adaptive stimulus selection for estimating a neuron’s 

multidimensional tuning curve, or firing rate map, under the flexible overdispersion model. 

Our method involves computing the posterior distribution over the tuning curve given the 

previously observed responses in an experiment and selects the stimulus for which the value 

of the tuning curve has maximal posterior variance. We illustrate the performance gain using 

this adaptive learning method for estimating color tuning curves of V1 neurons recorded in 

awake, fixating monkeys (Park et al., 2014). For simplicity, we use the exponential 

nonlinearity f(z) = exp(z), which has the advantage of having analytical expressions for the 

mean and variance of the spike count given an input level z and noise variance σn
2.

6.1 GP Tuning Curve Model with Flexible Overdispersion.

Building on prior work (Rad & Paninski, 2010; Park et al., 2014; Pillow & Park, 2016), we 

model tuning curves by placing a GP prior over the input function g(x). Here g(x) can be 

considered a log of the tuning curve plus a constant, since the tuning curve (expected spike 

count given a stimulus) for the exponential nonlinearity is λ(x) = exp(g(x) + 1
2σn

2) (see Table 

1).

The GP specifies a multivariate normal distribution over the input function values {g(x1), …, 

g(xn)} at any finite collection of stimulus values {x1, … xn}, namely:
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g(x1)
⋮

g(xn)
𝒩

m(x1)
⋮

m(xn)
,

k(x1, x1) ⋯ k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xnxn)
, (6.1)

where m(x) is the mean function, specifying the a priori mean of the function values, and 

k(x, x′) is the covariance function, specifying the prior covariance for any pair of function 

values g(x), g(x′). Here we use a zero mean function, m(x) = 0 and a gaussian or radial basis 

function (RBF) covariance function,

k(x, x′) = ρ exp −‖x − x′‖2

2δ2 , (6.2)

which is controlled by two hyperparameters: the marginal prior variance ρ and length scale 

δ. Increasing ρ increases the expected prior range of tuning curve values (i.e., increasing the 

spread between minimal to maximal log firing rates), while increasing δ increases its degree 

of smoothness. Functions g(·) sampled from a GP with this covariance function are 

continuous and infinitely differentiable.

We combine the GP prior with the likelihood from the flexible overdisperion model (see 

equation 3.3) to obtain a complete model for Bayesian adaptive stimulus selection. The 

complete tuning curve model can therefore be summarized:

GP prior: g 𝒢𝒫(0, k), (6.3)

Latent noise: n 𝒩(0, σn
2), (6.4)

Conditionally Poisson spiking: r ∣ x, n Poiss(exp(g(x) + n)) . (6.5)

The necessary steps in our stimulus selection algorithm include include updating the 

posterior over g(·) after each trial, updating hyperparameters using the Laplace 

approximation-based marginal likelihood, and selecting the stimulus for which the tuning 

curve has maximal posterior variance.

6.2 Inference and Laplace Approximation.

The tuning curve inference problem here is similar to that of fitting the flexible 

overdispersion model (see section 4), except that we have added a prior over the values of 

g(x) that encourages smoothness and shrinks them toward zero. After each trial, we 

maximize marginal likelihood under the Laplace approximation to update the 
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hyperparameters (ρ, δ) governing the GP prior’s scale and smoothness, as well as the noise 

variance σn
2.

Let 𝒟t = {(x1, r1), …, (xt, rt)} denote the data set after t trials, which is simply a paired list of 

stimuli and spike counts collected so far in the experiment. For the purposes of our 

derivation, let z = [g(x1), …, g(xt)] denote the stimulus input values for the observed 

stimulus set X = [x1, …, xt], and let n = [n1, …, nt] and r = [r1, …, rt] be the unobserved 

gaussian input noise and observed spike counts on each trial, respectively.

The first step in the inference procedure is to maximize the log of the joint posterior over z 
and n, also known as the total-data posterior, after each trial:

P(z, n ∣ 𝒟t, ϕ) ∝ ∏
i = 1

(t)
Poiss(ri ∣ exp(zi + ni)) P(z ∣ ρ, δ)P(n ∣ σn

2), (6.6)

where P(z ∣ ρ, δ) = 𝒩(0, K) is the GP-induced gaussian prior over the function values (see 

equation 6.1) with covariance matrix Kij = k(xi, xj), and P(n ∣ σn
2) = 𝒩(0, σn

2I) is the 

distribution of the (unobserved) overdispersion noise for each trial. The full set of 

hyperparameters is denoted ϕ = {σn
2, ρ, δ}.

This optimization is simplified by considering a change of variables to take advantage of the 

fact that the Poisson likelihood relies only on the sums of zi + ni for each trial. Therefore, let 

us define

s = z + n (6.7)

so that s represents the total input to f(·) on each trial and the latent noise is now n = s − z.

The total-data log posterior can now be written in terms of s and z:

log P(s, z ∣ 𝒟t) = log P(𝒟t ∣ s) + log P(s ∣ z) + log P(z) + const

= r⊺log( f (s)) − 1⊺ f (s) − 1
2σn

2 (s − z)⊺(s − z)

− 1
2z⊺K−1z + const,

(6.8)

where 1 is a length-t vector of ones and const denotes constants that are independent of s and 

z. Note that the total-data log posterior is quadratic in z, meaning that the conditional 

maximum in z given s can be obtained analytically:

Charles et al. Page 14

Neural Comput. Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



zmap ∣ s = 1
σ2K + I

−1 1
σ2Ks . (6.9)

We can substitute this expression for z in equation 6.8 to obtain the profile log-likelihood:

log P(s ∣ 𝒟t) = r⊺log( f (s)) − 1⊺ f (s)

− 1
2S⊺(K + σn

2I)−1s + const,

(6.10)

which we can optimize efficiently to obtain the MAP estimate:

smap = arg max
s

log P(s ∣ 𝒟t) . (6.11)

Note the vector s grows by one element after every trial, but this optimization can be made 

efficient by initializing the first t − 1 elements of the vector to its value from the previous 

trial. The joint optimum of the total data log posterior can be obtained by plugging smap into 

equation 6.9 to obtain zmap, and setting nmap = smap − zmap.

The Laplace approximation of the total data posterior can then be computted as

Plapl(z, n ∣ 𝒟t, ϕ) = 𝒩
zmap

nmap
,

L + K−1 L

L L + 1
σn

2 I

−1

, (6.12)

where the blocks of the inverse covariance come from the negative Hessians of the total data 

log posterior:

− ∇z ∇z log P(z, n ∣ 𝒟t) = L + K−1, (6.13)

− ∇z ∇n log P(z, n ∣ 𝒟t) = L, (6.14)

− ∇n ∇n log P(z, n ∣ 𝒟t) = L + 1
σn

2 I, (6.15)
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where L = − ∇z ∇z log P(𝒟t ∣ z, n) = diag[exp(z + n)] is a diagonal matrix with second 

derivatives from the Poisson term, all evaluated at z = zmap and n = nmap.

From the joint gaussian posterior, equation 6.12, we can compute the marginal posterior over 

z, the tuning curve inputs at the stimuli in our training set:

P(z ∣ 𝒟t) ≈ 𝒩(zmap, Λ), Λ = (K−1 + (L−1 + σn
2I)−1)

−1
. (6.16)

For stimuli not in our training set, denoted x* (e.g., candidate stimuli for the next trial), we 

can compute the marginal posterior distribution over the input value z* = g(x*) using the 

gaussian identities that arise in GP regression (Rasmussen & Williams, 2006):

P(z∗ ∣ x∗, 𝒟) ≈ 𝒩(μ
x∗, σ

x∗
2 ), (6.17)

where

μ
x∗ = k ∗ ⊺K−1zmap, (6.18)

σ
x∗
2 = k(x∗, x∗) − k ∗ ⊺(L−1 + K + σn

2I)−1k∗, (6.19)

where ki
∗ = k(xi, x∗) is the GP covariance function evaluated at the ith presented stimulus xi 

and test stimulus x*.

6.3 Hyperparameter Optimization.

To optimize hyperparameters ϕ = {σn
2, ρ, δ} governing the GP prior and the over-dispersion 

noise, we use the Laplace approximation to compute the marginal likelihood,

P(𝒟t ∣ ϕ) ≈
P(𝒟t ∣ z, n)P(n ∣ σn

2)P(z ∣ ρ, δ)
Plapl(z, n ∣ 𝒟t, ϕ) , (6.20)

evaluated at z = zmap and n = nmap, where the denominator is the gaussian approximation to 

the posterior, equation 6.12. This gives
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log P(𝒟t ∣ ϕ) ≈ r⊺log f (smap) − f (smap) − 1
2zmap

⊺K−1zmap

− 1
2σn

2nmap
⊺nmap − 1

2 log ∣ K ∣ − 1
2 log ∣ σn

2I ∣

+ 1
2log ∣ J ∣ ,

(6.21)

where smap = zmap + nmap, and J is the covariance matrix of the Laplace approximation in 

equation 6.12, with determinant given by ∣ J−1 ∣ = ∣ L(K−1 + 1
σn

2 I) + 1
σn

2K−1 ∣.

Figure 8 shows the consequences of overdispersed spike responses on the estimation of 

tuning curves and their hyperparameters. We generated a 2D firing rate map as a mixture of 

gaussian bumps (left), and simulated spike counts from the flexible overdispersion model 

(with exponential nonlinearity) at a random collection of 2D locations. We then performed 

inference using either the Poisson model (center) or the flexible overdispersion model 

(right). We found that the Poisson estimate suffered from systematic underestimation of the 

GP length scale, resulting in an estimate that is significantly rougher than the true map. In 

essence, the Poisson model attributes super-Poisson variability of the responses as reflecting 

structure in the firing rate map itself rather than noise, thus necessitating a shorter length 

scale δ.

6.4 Adaptive Stimulus Selection Method.

To adaptively select stimuli during an experiment, we search for the stimulus for which the 

posterior variance of the tuning curve is maximal. This approach, commonly known as 

uncertainty sampling, is motivated by the idea that we would like to minimize posterior 

uncertainty about the tuning curve at all points within the stimulus range.

To recap, the tuning curve given the input function g(·) is the expected spike count given a 

stimulus:

λ(x) = 𝔼[r ∣ x, g(x)] = ∫ f (g(x) + n)P(n ∣ σn
2)dn = exp g(x) + 1

2σn
2 . (6.22)

However, during inference from data, we have uncertainty about g(·), which is characterized 

by the (approximate) gaussian posterior derived in the previous section (see equation 6.17). 

To compute the posterior mean and variance over the tuning curve λ(x*) at any candidate 

stimulus x*, we have to transform the posterior distribution over g(x*) through the 

nonlinearity f.

Letting z* = g(x*) as before, the mean and variance of the tuning curve given by
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𝔼[λ(x∗) ∣ 𝒟t] = ∫ e
z∗ + 1

2σn
2
P(z∗ ∣ 𝒟t)dz∗ = exp μ

x∗ + 1
2σn

2 + 1
2σ

x∗
2 (6.23)

var[λ(x∗) ∣ 𝒟t] = ∫ exp(2z∗ + σn
2)P(z∗ ∣ 𝒟t)dz∗ − (𝔼[λ(x∗) ∣ 𝒟t])

2

= (exp(σ
x∗
2 ) − 1)[λ(x∗ ∣ 𝒟t)]

2,

(6.24)

with stimulus-specific mean and variance μx* and σ
x∗
2  given in equations 6.18 and 6.19. In 

practice, our method involves computing posterior variance (see equation 6.24) for a grid of 

candidate stimuli {x*} and selecting the one for which the posterior variance is largest:

xt + 1 = arg max
x∗

var[λ(x∗) ∣ 𝒟t] . (6.25)

6.5 Results: Adaptive Stimulus Selection for Color Tuning Curves.

We applied our method to the problem of estimating color tuning functions for V1 neurons 

recorded in awake, fixating monkeys under two paradigms. In the first paradigm, Gabor 

patches (gaussian windowed sinusoidal gratings) were drifted across the receptive field. The 

orientation, spatial frequency, and direction of drift in each Gabor patch were tailored to 

each neuron. In the second paradigm, gaussian-smoothed rectangular bars drifted across the 

receptive field. The length and width of the bar, as well as its direction of drift, were tailored 

to each cell. Figure 9 shows a schematic illustration of the stimulus space, the raw 

experimental data, and the adaptive stimulus stimulus selection protocol.

In interleaved trials, individual V1 neurons were tested with stimuli that were chosen either 

adaptively (using our method; see Figure 9C) or nonadaptively. In nonadaptive trials, 

stimulus selection was independent of responses. In adaptive trials, stimulus selection was 

based on the posterior variance of the firing rate map in the overdispersed GP-Poisson 

model. Results showed that the adaptive method yielded faster convergence and more 

accurate firing map estimates than the nonadaptive method. As shown in Figure 10, the 

estimates of the Poisson model are much coarser than would be expected. As a result, the 

flexible over-dispersion model achieved on average a four-times-higher likelihood on test 

data compared to the Poisson model.

In the closed-loop design, we selected the stimulus that had the highest posterior variance of 

firing rate map in each trial. In the open-loop design, we sampled the stimuli uniformly. In 

Figure 11, we show the estimated tuning functions from the drifting bar paradigm using all 

data collected from adaptive and non-adaptive designs, as well as estimates using a quarter 

of the data collected from each design. The estimates obtained using the closed-loop design 

look more similar to the estimates obtained using all the data. Finally, we computed the 
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average prediction error using data collected from each design. The closed-loop method 

achieved substantially lower prediction error and faster convergence than the open-loop 

method.

7 Discussion

We have presented a flexible model for super-Poisson spike count responses and 

demonstrated both its properties when fit to V1 spiking data and its practical use by applying 

the new model to closed-loop neurophysiology experiments. Our model, which introduces 

extra-Poisson variability via a gaussian noise term added to the stimulus response level and 

passed through a nonlinearity, provides flexibility in accounting for neural overdispersion 

and permits efficient model fitting. We find that this model better fits individual mean-

variance relationships for neurons in V1. Furthermore, we find that when used as a 

likelihood in lieu of the Poisson likelihood, our model can significantly improve closed-loop 

estimation of color tuning curves in V1.

7.1 Relationship to Previous Work.

A wide variety of other approaches to overdispersed spike count distributions have been 

proposed in the recent literature. These include mixtures of Poisson distributions (Wiener & 

Richmond, 2003; Shidara, Mizuhiki, & Richmond, 2005) and the Twiddle distribution, 

which is characterized by a polynomial mean-variance relationship var[r] = α(𝔼[r])ρ for some 

α and ρ (Moshitch & Nelken, 2014; Koyama, 2015; Gershon et al., 1998). Although these 

models offer substantial improvements over models that specify a single Fano factor, they 

are still restricted in the forms of overdispersion they can capture, and in some cases they are 

more difficult to connect to mechanistic interpretations (i.e., how such counts might be 

generated). In contrast to these approaches, recent work on neural partitioning and negative 

binomial spike counts (Onken, Grünewälder, Munk, & Obermayer, 2009; Goris et al., 2014; 

Pillow & Scott, 2012a) instead seeks more descriptive, interpretable models of 

overdispersion via hierarchical (or doubly stochastic) modeling.

Other methods to quantify neural overdispersion rely on describing more general count 

distributions, such as the Bernoulli or Conway-Maxwell-Poisson (COM-Poisson) 

distributions (Zhu, Sellers, Morris, & Shmueli, 2017; Sellers, Borle, & Shmueli, 2012), 

rather than layering on top of the Poisson distribution (Gao et al., 2015; Stevenson, 2016). 

These models may be limited by requiring many additional parameters (Gao et al., 2015) or 

may require that the mean-variance curves be monotonically increasing (Stevenson, 2016), 

reducing the model’s ability to explain neurons that exhibit higher variance at lower means. 

While completely replacing the Poisson distribution is satisfying in that the mean-variance 

relationship is no longer restricted at any stage by Poisson behavior, we feel that layering 

additional variability inside the Poisson rate is more intuitive (Goris et al., 2014). 

Specifically, we find that such hierarchical models can isolate variables responsible for 

overdispersion and allow mechanistic theories to attempt to explain these factors.

Our model can be considered as a significant generalization of the mixture-of-Poisson 

models (Wiener & Richmond, 2003; Shidara et al., 2005), as our model is essentially an 

infinite mixture of Poissons, as well as a generalization of prior work using latent 
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hierarchical dispersion variables (Goris et al., 2014). In terms of the power law models of 

(Moshitch & Nelken, 2014; Koyama, 2015), our model also includes as a subset any power 

law where the exponent is between one and two (i.e., var[r] = a(𝔼[r])ρ for 1 ≤ ρ ≤ 2). 

Although our model is incapable of achieving ρ > 2 or ρ < 1, the achievable range of ρ 
includes experimentally observed values in the literature, for example, ρ ≈ 1.3 (Shadlen & 

Newsome, 1998) or 1.1 ≤ ρ ≤ 1.5 for cat auditory cortex (Moshitch & Nelken, 2014). 

Interestingly, however, our analysis demonstrates that power-law-type characterizations 

might still be insufficient for assessing neural overdispersion. In particular, our model 

exploration indicates that a full discussion of the firing statistics should also include the full 

count distributions (see Figure 7). Our results demonstrated that our model more accurately 

captures the variation in V1 neural responses, as compared to both traditional and more 

recent Poisson-based models.

7.2 Interpretation and Future Directions.

The origins of neural response variability are still a subject of debate (Renart & Machens, 

2014; Masquelier, 2013), and we admit that our model does not attempt to explain how 

overdispersion arises. Our model only implies that the unknown nuisance variable is well 

modeled by an addition of stimulus-dependent drive and gaussian noise, followed by a 

nonlinearity and Poisson spike generation. In terms of the nonlinearity used, we found that 

the single-parameter power soft-rectification function was flexible enough to account for a 

large range of neural behavior, despite its reliance on a single parameter. The inference cost 

for the flexible overdispersion model therefore remains modest and is, moreover, justified by 

the substantial gain in model expressibility (e.g., as shown by the AIC results in Figure 6). 

Other nonlinearities are certainly possible in this framework, and the general properties we 

describe in section 3 guarantee that aside from perhaps requiring numerical integration, the 

model will be well behaved (i.e., the variance-mean curve will remain a proper function). 

For example, we found that the exponential nonlinearity allowed for more computationally 

efficient calculations for the closed-loop inference procedure.

While we focus here on explaining super-Poisson behavior of neural firing, we note that our 

model does not attempt to account for the underdispersion sometimes observed in certain 

neural circuits, such as retina or auditory cortex, that exhibit higher degrees of response 

regularity (DeWeese & Zador, 2002; Kara, Reinagel, & Reid, 2000; Gur et al., 1997; 

Maimon & Assad, 2009). Comparable flexible models for underdispersed spike counts 

therefore pose an important open problem for future work. In terms of neural populations, 

our model focuses only on explaining the spiking process for a single neuron. The increasing 

number of simultaneously recorded neurons thus poses the future challenge of explaining 

correlations in overdispersion between neurons (e.g., Goris et al., 2014). Such population 

overdispersion models would carry through the benefits of more accurate spike count 

models that we observe here for single-neuron closed-loop experiments to cases where entire 

populations are analyzed simultaneously. Finally, we note that we have modeled spike 

counts using a single time bin size, corresponding roughly to the window during which each 

stimulus was presented. We have therefore not addressed how spike count variability varies 

with time binning, which may be important for understanding population coding of 

information on different timescales. In preliminary work, we have found that fits to spike 
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counts in smaller time bins yield different parameters for the model in Goris et al. (2014) 

and flexible overdispersion model than those we have shown here (Charles & Pillow, 2017). 

Therefore, an important future direction for future research will be to extend current 

overdispersion models to provide a single, consistent account for spike count variability in 

arbitrary time bin sizes.
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Appendix A: Modulated Poisson and the NB model

Here we review the connection between the modulated Poisson model introduced by Goris 

et al. (2014) and the negative binomial model. The modulated Poisson model was introduced 

generally as having a Poisson rate λ(x) modulated by a stochastic gain G with a distribution 

satisfying 𝔼[G] = 1 and var(G) = σG
2 . The general mean-variance relationship of the marginal 

spike counts under this model was shown to always satisfy a quadratic relationship (i.e., 

var[r ∣ x] = λ(x) + σG
2 λ(x)2). However, fitting the model parameters to data required additional 

assumptions about the distribution of G. In particular, Goris et al. used a gamma distribution, 

which makes the integral over G analytically tractable, producing a negative binomial 

distribution over spike counts.

To see this connection formally, we can write the model, substituting z = λ(x) for the 

stimulus-dependent firing rate:

G Gamma 1
σG

2 , σG
2 , (A.1)

r ∣ G, z Poiss(Gz), (A.2)

where 1 ∕ σG
2  and σG

2  correspond to the shape and scale parameters for the gamma 

distribution, which ensures 𝔼[G] = 1 and var[G] = σG
2 . The spike count r then has a negative 

binomial distribution:

r ∣ z NB 1
σG

2
σG

2 z

σG
2 z + 1

. (A.3)
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The derivation of the negative binomial PMF from a Poisson distribution with a gamma prior 

can be obtained via the following straightforward integration:

P(r ∣ β, p) = ∫
0

∞
PPoisson(r ∣ z, G) ⋅ PGamma(G ∣ β, θ)dλ

= ∫
0

∞ (Gz)r

r! e−Gz ⋅ Gβ − 1e−Gθ−1

θβΓ(β)
dG

(A.4)

= zr

θβr!Γ(β)∫0

∞
Gβ + r − 1e−G(θ−1 + z)dG (A.5)

= zr

r!θβΓ(β)
1

θ−1 + z

β + r
Γ(β + r) (A.6)

= Γ(β + r)(θz)r

r!Γ(β)(1 + θz)β + r (A.7)

= Γ(β + r)
r!Γ(β)

θz
1 + θz

r
1 − θz

1 + θz
β
, (A.8)

which for β = σG
−2 and θ = σG

2  results in the above NB distribution.

Appendix B: Parameter Optimization Using Laplace Approximation

The general method we present for estimating the parameters of the nonlinearity that 

modulates neural spiking is outlined in algorithm 1. For a particular nonlinearity (i.e., the 

soft rectification raised to a power in equation 3.7, these steps can be written more explicitly. 

Here we fit data using both the exponential nonlinearity, for which the fitting algorithm is 

provided in algorithm 3, and the power-soft-rectification nonlinearity, corresponding to the 

model fitting in algorithm 2). Note that the estimation of σ0
2 and the gradient descent steps 

for θ and z can be accomplished analytically; however, the estimation of n0 would typically 

need to be calculated numerically.
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Figure 1: 
Illustration of the flexible overdispersion model. (Left) Model diagram. A stimulus-

dependent term g(x) plus a latent zero-mean gaussian random variable with variance σn
2 is 

transformed by a rectifying nonlinearity f(·), whose output drives Poisson spiking. (Right) 

The nonlinearity controls the relationship between the stimulus strength and firing rate and 

allows different forms of overdispersion. Example nonlinearities include hard rectification 

raised to a power and the exponential function, which can all be approximated with soft-

rectification function raised to a power (see equation 3.7). Soft-rectification versions are 

shown as dashed lines, with the power p = 3 used to approximate the exponential 

nonlinearity.
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Figure 2: 
Variance-mean curves for four different choices of nonlinearity f, each at three different 

levels of noise variance σn
2. The top row shows variance as a function of mean, while the 

bottom row shows Fano factor versus mean. Note that only the squaring nonlinearity (third 

column) produces responses of (approximately) constant Fano factor, that is, constant-slope 

variance-mean curves that pass through the origin. The exponential nonlinearity (fourth 

column) exhibits variance that grows quadratically with the mean, as shown in Goris et al. 

(2014), and thus has monotonically increasing Fano factor.
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Figure 3: 
Comparison of exact and Laplace approximation-based evaluation of model likelihood 

function under exponential nonlinearity. Left two columns: Image plots show log-likelihood 

function log p(r ∣ z, σn
2) for spike counts r = 0, 2, 10, and 50 as a function of transformed 

parameters e
z + 0.5σn

2
 (mean spike count) and (e

σn
2

− 1) (overdispersion variance for Goris 

model). The third column shows horizontal slices through the two surfaces at different 

overdispersion levels (colored traces for exact; black dashed traces for Laplace), showing the 

two surfaces are virtually indistinguishable on the scale of the log-likelihood values. The last 

column shows the ratio between the true (numerically computed) and Laplace-based log 

likelihood, showing there is less than a 0.01% error in the approximation across the entire 

range of parameter settings at these spike counts. We note that the approximation error is 

greatest at low spike counts, where the Poisson log likelihood is most nongaussian.
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Figure 4: 
Example fits to V1 neurons. Each column shows data from a single neuron, with the upper 

plot showing variance versus mean and the lower plot showing the Fano factor versus mean. 

Empirical spike count mean and variances (blue dots) were computed for over 50 repetitions 

for each of 72 different oriented grating stimuli (Graf et al., 2011). For each neuron, we fit 

three different models by maximum likelihood using all 50 × 72 = 3600 spike count 

responses. The negative binomial model (red line) and flexible overdispersion model with 

exponential nonlinearity (yellow) both had 73 parameters (an input level for each of the 72 

orientations, and the noise variance σn
2), while the flexible overdispersion model with soft-

rectification power nonlinearity (yellow) had 74 parameters (including power parameter p). 

For all four neurons shown, the flexible overdisperion model with soft-rectification power 

(soft-rect-p) nonlinearity achieved the best model fit as measured by the Akaike information 

criterion (AIC). The different distributions of the data in each figure show significant 

diversity in neural spiking, even within V1. When the mean-variance data behavior is 

decidedly not quadratic (neurons 2, 3, and 4), the soft-rect-p model can adapt to the wide 

range of statistics. The soft-rec-p model can even capture subtle effects, such as Fano factors 

decreasing at higher firing rates (neurns 3 and 4). Interestingly, when the data behavior does 

look quadratic (neuron 1), the soft-rect-p automatically recovers the quadratic behavior 

modeled by the NB and Exp models. While in this case the soft-rect-p model still had the 

best AIC score, the difference from the NB AIC value for this example is only 3, indicating 

that both models approximately recover the same behavior.
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Figure 5: 
Fits of the hierarchical overdispersion model with soft-rectified power nonlinearity. (Left) 

Selected variance-mean curves obtained from fits to individual neurons in V1 (each trace 

represents the mean-variance relationship for a single neuron). Curves are colored in order 

of increasing exponent power p (lighter lines have higher p). (Center) Histogram of the 

distribution of inferred soft-rectification power parameters p for neurons in V1 demonstrates 

the required flexibility in fitting overdispersion behavior. (Right) The distribution in inferred 

latent noise standard deviations σn shows the range in the amount of overdispersion noise in 

the population of V1 neurons.
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Figure 6: 
Model comparison between negative binomial (NB) and flexible overdispersion model with 

exponential and soft-rectification power nonlinearity using AIC. The soft-rectification power 

(with fitted power p) performed best for 82% of the neurons, while the NB model performed 

best for 13.5% (left panel). Pairwise comparisons (middle and right panels) show the 

distribution of AIC differences across all neurons for pairs of models, in agreement with the 

overall comparison results.
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Figure 7: 
Heavy tails can cause significant model mismatch when fitting overdispersed models. An 

example neuron where model fits (left) produced significant overestimation of the variance. 

The extreme case here produced an NB fit (red curve) with higher variance and an 

exponential fit (purple curve) that barely reaches the data points (blue dots indicate mean 

and variance over the 50 trials per stimulus) in the mean-variance plot. Both fits, however, 

seem to match the basic statistics of the data when viewed as a distribution. Specifically, 

when restricted to the stimuli trials eliciting either low or high levels of activity (right plots; 

bottom plots for low activity and top pots for high activity), we see that the fits did match the 

spike count distributions (linear y-axis scale on the left and logarithmic scale on the right for 

clarity) over the support where data were available. The tails of the model distributions, 

however, differed significantly in both cases, indicating that the model fits are imputing the 

distribution of spike counts in unobserved counts. Thus, the inherent bias of the models 

manifested as the observed model mismatch.
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Figure 8: 
Proof-of-concept experiments on simulated data show that accounting for super-Poisson 

firing statistics can increase accuracy in recovering unknown firing maps. The true simulated 

firing map (left) drove a model with overdispersed spiking. We used the simulated spike 

counts to infer the underlying firing rate map using a Poisson response model (center) and 

the flexible overdispersion model (right). The center plot demonstrates how the Poisson 

assumption can impair estimates of tuning curve smoothness; accounting for overdispersed 

spike count statistics improves the estimate substantially by allowing for more accurate 

estimation of the GP length-scale hyperparameter δ that governs smoothness.
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Figure 9: 
Schematic of stimulus space, data, and adapative stimulus selection method. (A) The 

stimulus on each trial was a drifting Gabor patch, aligned with the cell’s preferred 

orientation, whose color varied from trial-to-trial. The axes of this space are the inputs to 

long (L), medium (M), and short (S) wavelength-sensitive cones. The center of this space 

represents a neutral gray stimulus with no spectral modulation. (B) Example data for one 

cell. The stimulus on each trial was uniquely defined by three numbers (cone contrasts for L, 

M, and S in the upper-diagonal half-cube) and produced a spike count responsemeasured 

over 667 ms. (C) Schematic of the adaptive stimulus selection procedure. On each trial, we 

presented stimulus xt and recorded spike response rt. Next, we updated the posterior over the 

tuning curve g using the full data set collected so far, 𝒟t. Finally, we computed the posterior 

variance of the tuning curve, var(λ(x∗) ∣ 𝒟t), for a grid of points x* spanning the stimulus 

space, and selected the point with maximal variance as the stimulus for the next trial.
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Figure 10: 
Comparison of tuning curve estimates under the GP-Poisson model and GP-flexible-over-

dispersion model. (Left) A 2D slice through the 3D color tuning curve for a V1 cell 

corresponding to the L-M plane (with S = 0) under Poisson (left) and flexible overdispersion 

model (right). The flexible overdispersion achieved a 25-times-higher likelihood for the test 

data set of 76 trials (763 total trials, 90%-10% split for cross-validation), corresponding to 

4.3% higher per trial likelihood, and exhibited a smoother estimate (larger length scale δ, as 

observed in Figure 7). (Right) The test log likelihood from 10 V1 cells, averaged over 10-

fold cross validation. Each dot represents the log likelihood of the data collected from each 

cell. On average, the flexible overdispersion model achieved a four-times-higher test 

likelihood than the Poisson model, indicating its greater suitability for application to closed-

loop experiments.
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Figure 11: 
Closed-loop versus open-loop designs of neurophysiology experiments. (a) Contour plot of 

the estimated firing rate maps of four different V1 cells. Purple dots indicate stimuli selected 

by each experimental paradigm.(b) Average prediction error as a function of the amount of 

data. The closed-loop method achieved 16% higher prediction accuracy compared to the 

open-loop method.
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Table 1:

Spike Count Mean and Variance for Specified Nonlinearities.

Nonlinearity Mean λ(z)
Variance σr

2

f (z) = z
1
2

π
2σn −2zexp( − z2

2σn
2 )Υ(z, σn

2) ≈ λ(z) + σn
2 1

λ(z)2

f(z) = ⌊z⌋
σn
2π exp( − z2

2σn
2 ) + zΦ z

σn
≈ λ(z) + σn

2

f(z) = ⌊z⌋2

σnz

2π exp( − z2

2σn
2 ) + (z2 + σn

2)Φ z
σn

≈ (1 + 4σn
2)λ(z)

f(z) = exp(z) exp(z + 1
2σn

2) λ(z) + (exp(σn
2) − 1)λ(z)2

Notes: Here Φ(·) denotes the normal cumulative density function and Υ(z, σn
2) = ∑i = 0

3 ai(z)BI(
2i − 1

4 , z

4σn
2 ) with BI(·, ·) denoting the 

modified Bessel function of the first kind and weighting coefficients a0 = −z2, a1 = z2 + 2σn
2

, a2 = z2, a3 = 1. To calculate the approximate 

variances for f(z) = ⌊z⌋p, we used the delta method (valid for small σn
2

) to obtain a general approximation: var[r ∣ z] ≈ λ(z) + σn
2 f ′(z)2.
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