
CardioClassifier: disease- and gene-specific computational 
decision support for clinical genome interpretation

Nicola Whiffin, PhD1,2,3,†, Roddy Walsh, MSc1,2, Risha Govind, MSc1,2, Matthew Edwards, 
MSc4, Mian Ahmad, PhD1,2, Xiaolei Zhang, MSc1,2, Upasana Tayal, BMBCh, MRCP1,2, 
Rachel Buchan, MSc1,2, William Midwinter, BSc1,2, Alicja E Wilk, BSc1,2, Hanna Najgebauer, 
PhD1,2, Catherine Francis, MA, MRCP1,2, Sam Wilkinson, BSc4, Thomas Monk, MSc4, Laura 
Brett, MPhil4, Declan P O'Regan, PhD, FRCR3, Sanjay K Prasad, MD, FRCP1,2, Deborah J 
Morris-Rosendahl, PhD1,4, Paul JR Barton, PhD1,2, Elizabeth Edwards, PhD1,2, James S 
Ware, PhD, MRCP1,2,3,*, and Stuart A Cook, PhD, MRCP1,2,5,6,*

1National Heart & Lung Institute, Imperial College London

2Cardiovascular Research Centre at Royal Brompton and Harefield NHS Foundation Trust, 
London, UK

3MRC London Institute of Medical Sciences, Imperial College London

4Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield NHS Foundation 
Trust, London, UK

5National Heart Centre Singapore, Singapore

6Duke-National University of Singapore, Singapore

Abstract

Purpose—Internationally-adopted variant interpretation guidelines from the American College 

of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. 

Here we developed CardioClassifier (www.cardioclassifier.org), a semi-automated decision-

support tool for inherited cardiac conditions (ICCs).

Methods—CardioClassifier integrates data retrieved from multiple sources with user-input case-

specific information, through an interactive interface, to support variant interpretation. Combining 

disease- and gene-specific knowledge with variant observations in large cohorts of cases and 

controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.

Results—We benchmarked CardioClassifier on 57 expertly-curated variants and show full 

retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation 

tool identified fewer than half as many clinically-actionable variants (64/219 vs 156/219, Fisher’s 

P=1.1x10-18), with important false positives; illustrating the critical importance of disease and 

gene-specific annotations.
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CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy 

cases, comparable with leading ICC laboratories. Through addition of manually-curated data, 

variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring 

additional user-input data.

Conclusion—CardioClassifier is an ICC-specific decision-support tool that integrates expertly 

curated computational annotations with case-specific data to generate fast, reproducible and 

interactive variant pathogenicity reports, according to best practice guidelines.
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Introduction

Inherited cardiac conditions (ICCs) represent a major health burden with a combined 

prevalence of ~1%1. Genetic testing is recommended to support the management of many 

ICCs, with roles in diagnosis (particularly valuable for identification of at-risk relatives), 

prognostication, and therapeutic stratification.

The principle challenge in genetic testing across all diseases is the interpretation of 

identified sequence variants. This requires evaluation of data from diverse sources, including 

clinical observations, computational data and data derived from the literature. Although 

existing tools aid collection of some of these data types, scientists and clinicians must often 

access multiple data sources whilst interpreting a single genetic variant.

The American College of Medical Genetics and Genomics (ACMG) and the Association for 

Molecular Pathology (AMP) recently released guidelines that aim to standardise variant 

interpretation2. These guidelines outline a set of evidence criteria to assess each variant 

against, along with how these might be weighted and combined to reach a classification. 

Studies have, however, shown that even when following the ACMG/AMP guidelines, 

interpretation can differ between different laboratories, with discordance in excess of 10%3. 

One key reason for this discordance is the structure of the ACMG/AMP guidelines, which 

are deliberately broad and lack specific thresholds, to allow adoption across the full 

spectrum of genetic disorders. As a result, the challenge to individual disease domains is to 

incorporate expert gene and disease-specific knowledge, to optimise variant interpretation 

and introduce consensus. Initiatives such as the Clinical Genome Resource (ClinGen)4, are 

working to define such disease- and gene-specific thresholds, although these are currently 

limited to pilot phases for specific gene-disease pairs.

The introduction of guidelines, including the logic behind reaching each classification, 

opens the way for new computational solutions to facilitate their adoption and increase 

consistency. Indeed, publication of the guidelines has led to the emergence of interactive 

tools5,6, however, to date only one of these builds in automation7, and none incorporate 

expert disease-specific knowledge.
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Here, we describe CardioClassifier, a powerful new tool that utilises the framework outlined 

by the ACMG/AMP guidelines, to automatically annotate variants across 17 computational 

criteria. Each criterion has been individually parametrised for each gene-disease pair using 

expert disease-specific knowledge. Automated data are integrated with interactively added 

case-specific information to calculate variant pathogenicity in a fully interactive web-

interface that represents a comprehensive variant interpretation platform for ICCs.

Materials and Methods

The development and optimisation of CardioClassifier and is described in three sections:

1. Rule selection and optimisation – adapting and paramaterising ACMG/AMP 

criteria for ICCs

2. Code and implementation

3. Benchmarking CardioClassifier

Rule selection and optimisation

For each rule in the ACMG/AMP framework, we first evaluated whether the rule was 

applicable to the ICC under investigation and, where appropriate, defined more precisely the 

circumstances under which the rule would be activated. For seven computational criteria 

(PS1, PM4, PM5, PP3, BA1, BP3 and BP4), parameterisation is consistent across all gene-

disease pairs. For the remaining criteria, we have incorporated expert disease, gene and 

variant-type specific knowledge and data to define thresholds for activation. This includes 

determination of robust disease-specific maximum frequency thresholds taking into account 

the genetic architecture of each disease 8 (BS1 and PM2; Supplementary Table 1), and using 

large disease cohorts to define both 'mutational hotspots'9 (PM1; Figure 2a) and variants 

observed more frequently in cases when compared with population controls (PS4). As part 

of this development process, we compared rule activation in CardioClassifier to a set of 

variants manually curated as part of routine clinical service at the Royal Brompton Hospital 

(see Supplement). Full details of how each rule is parameterised can be found in the 

Supplement to this manuscript.

As most large reference populations, such as ExAC, are not comprehensively screened for 

health, disease-associated alleles may be observed at low frequency. This holds true for 

ICCs, which can be difficult to detect even with targeted investigation, as they often manifest 

later in life and exhibit incomplete penetrance. We have therefore modified PM2 so as not to 

inappropriately discard variants seen at very low frequencies in these reference datasets.

In addition, we have created extensions to three ACMG/AMP rules, to enhance 

interpretation of ICC variants. Firstly, we have modified PVS1 for the titin (TTN) gene, 

which has a role in up to 20% of dilated cardiomyopathy (DCM) cases15. We have 

previously shown that only TTN truncating variants (TTNtv) in exons constitutively 

expressed in the heart are robustly associated with DCM15. Additionally, it is unclear that 

the mechanism of action for these variants is truly loss of function (LoF). Instead of scoring 

all TTNtv equally and assuming an underlying LoF mechanism, we only score TTNtv 
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highly if they are in constitutive exons (proportion spliced in (PSI) > 0.9), and we reduce the 

strength of evidence by one level from very strong to strong (coded as PVS1_strong).

We also extended PS1 and PM5 to utilise known disease-causing variants in related genes/

proteins (paralogues) to identify residues intolerant to variation16 (Figure 2c). Where 

nothing is known about variants at the equivalent residue of the same gene, we use high 

confidence variants (i.e. same reference allele and M-coffee mapping score >3) as evidence 

if they affect the equivalent residue in a paralogue (with the same reference allele), either 

with the same substitution (rule PS1_moderate - Equivalent amino acid change as an 
established pathogenic variant in a paralogous gene), or a different substitution (rule 

PM5_supporting - Missense change at an amino acid residue where a pathogenic missense 
change has been seen in the equivalent residue of a paralogous gene). This analysis is 

currently restricted to the families of predominantly ion channel proteins associated with 

inherited arrhythmia syndromes for which this method has been previously validated16,17.

We have previously shown paralogue annotation to be informative for over one third of 

novel SNVs17, and independent validation has shown a high specificity and PPV compared 

with other sources of evidence18,19. To determine the effect of these criteria on variant 

classification (before inclusion of any case-level or functional data that cannot be 

computationally predicted) we used 48 clinically curated (i.e. not literature only or research) 

missense variants from ClinVar identified as ‘Pathogenic’ or ‘Likely Pathogenic’ for LQTS 

from one or more submitter with at least one review status star, and compared 

CardioClassifier interpretations with and without paralogue data. Paralogue data were 

available for 11/48 (22.9%) variants and resulted in a potential change of class from variant 

of uncertain significance (VUS) to Likely Pathogenic for 63.6% (7/11) of these 

(Supplementary Table 2).

Code and implementation

CardioClassifier is implemented server-side in perl and PHP. Uploaded variant data is 

annotated by the Ensembl variant effect predictor (VEP)10 and converted to a table using the 

tableize_vcf.py script within LOFTEE (https://github.com/konradjk/loftee). Protein altering 

and splice site variants (coding ±8bps) are analysed for a set of 40 genes associated with 

inherited cardiac conditions (Table 1). We look to continuously expand this list, focusing on 

curated genes robustly implicated in disease, emerging from community efforts such as 

ClinGen4.

The classifier automatically assesses each variant for 17 rules across three distinct data 

categories, as defined by the ACMG/AMP guidelines2. It also consults an internal 

knowledge base of additional evidence, grouped by ACMG rule, either derived from 

community curation efforts or manually curated internally. The output is displayed on a PHP 

webpage that allows the user to interact and add (or remove) additional levels of evidence.

Benchmarking

Datasets—In order to test CardioClassifier extensively we used data from the following 

sources:
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1. ClinVar – all variants identified as ‘Pathogenic’ or ‘Likely Pathogenic’ by 

multiple submitters with no conflicting data (i.e. no reports of ‘Benign’, ‘Likely 

Benign’ or ‘Uncertain Significance’) for hypertrophic cardiomyopathy (HCM; 

n=158), dilated cardiomyopathy (DCM; n=16), long QT syndrome (LQTS; 

n=18), catecholaminergic polymorphic ventricular tachycardia (CPVT; n=1), 

Brugada syndrome (Brs; n=4) or arrhythmogenic right ventricular 

cardiomyopathy (ARVC; n=22) were extracted from the 20161201 release of 

ClinVar11 using publically available scripts12.

2. 57 protein-altering variants in MYH7 that have been expertly curated by the 

ClinGen Inherited Cardiomyopathy expert panel (https://www.ncbi.nlm.nih.gov/

clinvar/submitters/506161/).

3. A prospective dataset of 327 HCM cases and 625 healthy volunteers recruited to 

the NIHR Royal Brompton cardiovascular BRU, all phenotypically characterised 

using cardiac MRI. Samples were sequenced using the IlluminaTruSight Cardio 

Sequencing Kit1 on the Illumina NextSeq platform. This study had ethical 

approval (REC: 09/H0504/104+5) and informed consent was obtained for all 

subjects.

Comparison with existing resources—We compared the performance of 

CardioClassifier against the generic tool InterVar7, to assess the importance of our disease-

specific annotations. We used the ClinVar dataset of 219 variants described above as a test 

dataset.

InterVar scripts were downloaded from GitHub (https://github.com/WGLab/InterVar) and 

individually run for each disease using an engineered VCF file. To ensure a fair comparison, 

we edited the ‘disorder_cutoff’ to be equivalent to the thresholds used to activate BS1 in 

CardioClassifier. All other settings were left as default and no additional evidence was 

uploaded. We compared both the final classifications and the individual rules that were 

activated by each tool.

Code and tool availability

CardioClassifier is available at www.cardioclassifier.org, with a free license for non-

commercial use. The code and data used to produce this manuscript are available at: https://

github.com/ImperialCardioGenetics/CardioClassifierManuscript.

Results

Semi-automation leads to high quality and reproducible variant interpretation

CardioClassifier provides a simple-to-use web interface that takes as input either individual 

variant details or a single sample VCF (Supplementary Figure 1). Users select one of 11 

cardiac disorders, and this determines which pre-specified validated disease genes are 

analysed. Where a diagnosis is uncertain (e.g. sudden cardiac death or complex 

cardiomyopathy), a wider analysis can be performed for genes associated with a broader 

phenotype (e.g. all cardiomyopathies, or all arrhythmia syndromes; Table 1), or for all 40 
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ICC genes parameterised. Details of the key features of CardioClassifier can be found in 

Table 2.

Each variant is annotated for up to 17 computational criteria, with results output to a grid 

representing the ACMG/AMP framework (Figure 1). The variant report is interactive, 

allowing a user to add additional case-level evidence to generate and refine a final 

classification (Supplementary Figure 2). The report is transparent, with all supporting 

evidence displayed along with links out to eight external resources that are commonly used 

for interpretation of ICC variants: the ExAC browser14, Ensembl, the UCSC genome 

browser, ClinVar, PubMed, Google, the Beacon Network (https://beacon-network.org) and 

the Atlas of Cardiac Genetic Variation (ACGV)9.

Highly curated datasets of disease cases and healthy controls aid annotation and filtering

As well as publically available data for both cases and population controls, CardioClassifier 

incorporates data from three highly-curated in-house datasets sequenced with the Illumina 

TruSight Cardio sequencing panel1. Counts from 877 DCM, 327 HCM cases, and 1383 

healthy volunteers, all rigorously phenotyped using cardiac MRI, are used to annotate 

variants in genes associated with these disorders.

Some genomic regions, especially those that are repetitive or with high GC content, are not 

fully covered by standard exome sequencing used by major reference datasets. Specifically, 

12.5% of sample bases across our 40 ICC genes are covered at <20x (Supplementary Figure 

3) in the ExAC dataset. In contrast, our control set has 99.9% of sample bases covered at 

>20x, allowing accurate identification of common and low-frequency variants and platform 

specific errors, across all regions of interest (rule BS1). As this dataset is derived from the 

Illumina TruSight Cardio sequencing panel, users uploading variants derived from different 

sequencing panels should consider comparison with a local dataset to identify platform 

specific errors.

In addition to these in-house data, we display counts from published clinical cohorts for 

HCM9,20, DCM9,21, LQTS22 and Brugada syndrome23. These data are also used to assess 

individual variants for enrichment in cases over controls (rule PS4).

Results show high concordance with manually curated and gold-standard data

We compared CardioClassifier to 57 gold-standard, manually curated protein-altering 

variants in MYH7 that have been expertly curated by the ClinGen Inherited Cardiomyopathy 

expert panel24. Of 222 rules activated by ClinGen for these 57 variants, 157 represented 

computationally accessible data (from 9 ACMG/AMP rules) that were fully retrieved by 

CardioClassifier. CardioClassifier concordantly activated 137/157 rules (87.3%; Figure 3; 

Supplementary Table 3). The discrepancies fall across 3 rules; PP3 (in silico prediction 

algorithms; n=12), PS4 (prevalence in affected individuals statistically increased over 

controls; n=7) and PM5 (same amino acid residue as known Pathogenic variant; n=1). 

CardioClassifier imposes a more stringent threshold on PP3 (allowing only one of eight in 
silico prediction algorithms to be discordant), and differences in PS4 and PM5 are due to the 

increased availability of proband data to the ClinGen team (not available from public 

repositories). In all cases, CardioClassifier successfully returned all available data.
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We then tested the ability of the links within the CardioClassifier report to inform activation 

of the 61 case-level data points activated by the ClinGen team. These links allowed us to 

manually collate 50/61 (82.0%) individual data points (Supplementary Table 3) with 

differences again in the availability of proband data (6 PS4_supporting, 1 PS4_moderate, 1 

PS2, 1 BS4 and 2 PP1_moderate). After addition of this clinical data, we reached an 

identical classification to the ClinGen team for 50/57 (87.7%) variants (Figure 3a).

CardioClassifier has higher sensitivity and specificity than non-specific interpretation 
tools

In February 2017 InterVar, and its companion web-server winterVar, became the first tools to 

automatically populate criteria from the ACMG/AMP guidelines7. Whilst these tools were 

crucial steps forward in application of the framework, they aim to support interpretation 

across the full spectrum of human genes and disorders.

To determine the added value of the disease- and gene-specific annotations included in 

CardioClassifier, we compared CardioClassifier to InterVar using a set of 219 variants 

identified as ‘Pathogenic’ or ‘Likely Pathogenic’ on ClinVar, with high confidence, across 

six ICCs. Based on automatically-retrieved data only, InterVar identified 64/219 (29.2%) 

variants as Likely Pathogenic or Pathogenic, while CardioClassifier identified over double 

this number as clinically actionable (156/219) with a sensitivity of 71.2% (Supplementary 

Table 4). For both tools, sensitivity would be increased further through user addition of 

clinical and functional data.

Despite the lower sensitivity of InterVar, there are occasions where the tool activates rules 

inappropriately in the absence of gene-specific knowledge. Firstly, InterVar activates PVS1 

in the TTN gene, regardless of protein location, when it is recognised that truncating variants 

in exons not constitutively expressed in the heart are not associated with DCM, and are 

commonly found in demonstrably healthy controls15. Consequently, InterVar will categorise 

rare variants in these regions as ‘Likely Pathogenic’ when they are highly unlikely to be 

disease causing.

Secondly, InterVar activates rule PP5 (reputable source identifies the variant as Pathogenic) 

for 89.5% of the variants as they are reported as ‘Pathogenic’ in ClinVar. The ACMG 

guidelines state that this rule should only be activated when the evidence supporting the 

classification is unavailable, yet this evidence is often contained within the appropriate 

ClinVar submission. Full details of the rules activated by both tools are shown in Figure 3b.

To ensure the higher sensitivity of CardioClassifier was not due to over-activating rules, we 

also tested a set of 67 ‘Benign’ and ‘Likely Benign’ variants from ClinVar across the same 

six ICCs. CardioClassifier identified 61/67 (91.0%) of these as Benign and the remaining 6 

as VUS. Conversely, InterVar identified 41/67 (61.2%) as Benign with 22 as Likely Benign 

and 4 as VUS. Here InterVar activates BS2 when a variant is seen in the 1000 genomes 

dataset, which we believe is inappropriate for ICCs which do not fit the important caveat of 

‘full penetrance expected at an early age’. We do acknowledge, however, that InterVar was 

developed for severe congenital and very-early onset developmental disorders with nearly 

100% penetrance.
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Diagnostic yield in HCM cases matches previous reports

To investigate the clinical utility of CardioClassifier we used a dataset of 327 HCM cases. In 

66 cases (20.2%) we identified a Pathogenic (n=11) or Likely Pathogenic (n=55) variant, 

with a further 76 cases (23.2%) harbouring a VUS. To determine the proportion of these 

VUSs likely to become clinically actionable after the addition of case-level data, we 

calculated the excess of VUSs in cases over the background level of rare and presumably 

benign VUSs in 625 healthy volunteers (HVOLs). Based on a background level of 9.7%, we 

calculate a case excess of VUSs of 13.5%. Combining this with the 20.2% of cases with a 

Pathogenic or Likely Pathogenic variant, overall, 33.7% of cases have a potentially clinically 

relevant variant (Supplementary Figure 4a), comparable to previous reports20.

Manual curation of known variants

In addition to automatic retrieval of computational data, CardioClassifier will store curated 

case-level data entered by users, or pre-populated by active curation. We have primed this 

‘knowledge base’ with data from 120 fully curated cardiomyopathy variants, comprising the 

57 expert panel curated MYH7 variants and the most commonly observed variants for the 

major cardiomyopathies; HCM, DCM and ARVC, defined as those occurring six or more 

times in the ACGV resource (reflecting a HCM case frequency of ~1/1000)9. There were 84 

such recurrent variants in ACGV, together representing 39.5% (1,258/3,186) of all identified 

variants. We curated 63 that had not already been assessed by the expert panel.

After manual curation of the literature and ClinVar for reports of segregation, de novo 

occurrence and functional characterisation, 34 variants were classified as Pathogenic, 13 as 

Likely Pathogenic and 7 as VUS (Supplementary Table 5; Supplementary Figure 4b). The 

annotations for these 120 variants, accounting for at least 40% of variants identified in 

Caucasian cardiomyopathy cases, are stored in CardioClassifier, ensuring these variants are 

correctly classified without further user-input.

Discussion

We describe CardioClassifier, an automated and interactive web-tool to aid clinical variant 

interpretation across a wide range of ICCs. To the best of our knowledge this represents a 

unique disease-specific solution that automates data retrieval, incorporates gene- and 

disease-specific knowledge to refine rule application, is pre-loaded with curated data on 

prior observations (in health or disease), and integrates evidence according to the widely-

adopted framework from ACMG/AMP. The tool is transparent, with all the information 

incorporated into interpreting each variant displayed along with the final classification. It is 

also flexible, and designed to be fully interactive, with the user able to add and remove 

evidence specific to the patient/family of interest.

The strength of CardioClassifier is its disease-specificity. The ACMG/AMP rules are 

intentionally non-specific to allow adoption in any disease domain. To harness the full power 

of this framework, the rules need to be applied in a disease- and gene-specific manner25. We 

have defined criteria and thresholds for each ACMG/AMP rule that are specific to the 

disorder of interest, and demonstrate the power and effectiveness of this approach over a 
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recently released genome-wide interpretation interface. Incorporation of disease-specific 

knowledge is limited by current data, and the power of this tool will increase over time as 

new data become available.

On-going community initiatives, such as the Clinical Genome Resource (ClinGen), are 

defining consensus disease and gene-specific standards for modifications to the 

ACMG/AMP guidelines, and it is our intention to continue to develop CardioClassifier to 

utilise these standards as they become available.

We believe the main limitation to the effectiveness of any computational solution is the 

retrieval of clinical and patient-specific data that is seldom available as fully structured data 

for programmatic retrieval. CardioClassifier combines pre-populated computational data 

with interactive addition of case and variant specific evidence in a structured format to 

overcome this hurdle. Our growing variant knowledge base will add to available structured 

representation of this crucial case-level data. Future development of CardioClassifier will 

streamline data-sharing, expanding our knowledge base and sharing it with the community 

via submission to the ClinVar database. This increasing knowledge base relies on 

researchers and clinicians in the field supporting data-sharing initiatives, and facilitating 

direct ClinVar submission from CardioClassifier for the benefit of the ICC community is a 

development priority.

A further limitation to CardioClassifier in its current form is the restricted prediction of 

impact on splicing. This arises for two main reasons; firstly, CardioClassifier uses the 

Ensembl variant effect predictor to annotate variants, which annotates bases within 8 base-

pairs of the exon/intron boundary as splice-site, but will miss more distal bone-fide splice 

site variants. Secondly, we currently have not incorporated any in silico splice-site prediction 

algorithms, due to limitations around availability, licensing and accuracy. These issues will 

be addressed in a future release.

CardioClassifier is designed to work seamlessly with data from any sequencing platform in 

standard VCF format, whether targeted sequencing (e.g. Illumina TruSight Cardio1), or 

targeted analysis of exome/genome-wide data. This is a crucial step in broadening the 

availability of genetic testing for ICCs, and standardising variant interpretation in this field. 

Furthermore, we hope that in demonstrating the clinical utility of our disease-specific 

approach, we will encourage others to develop similar tools across other disease specialties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Example variant report output by CardioClassifier.
A grid is output for each individual variant. Rules highlighted in colour are activated for the 

variant and rules in grey on a white background are assessed but not activated. A user can 

click on a rule to manually add or remove a piece of evidence. All evidence used to assess 

the variant is displayed under the grid along with links out to external resources. An overall 

classification for the variant using the ACMG/AMP logic is displayed in the top left corner. 

*EF - etiological fraction; the prior probability that a variant, identified in a case, is 

Pathogenic9.
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Figure 2. Examples of disease-specific optimisation of ACMG/AMP rules.
(a) Missense variants within a sub-portion of MYH7, when identified in a HCM patient, 

have a 97% prior probability of being Pathogenic (etiological fraction; EF=0.97). We 

activate PM1 for missense variants in this region. Here we use MYH7:c.2221G>T as an 

example (labelled with a black bar). (b) Truncating variants in TTN are only known to cause 

DCM when found in exons constitutively expressed in the heart (proportion spliced in (PSI) 

> 0.9). We activate PVS1_strong for these variants. Here we use TTN:c.86641delC as an 

example (labelled with a black bar). (c) Variants that have been identified as Pathogenic in 

paralogous genes may identify residues that are intolerant to variation. We have created two 

modified rules, PS1_moderate and PM5_supporting to incorporate this evidence. Here we 

use KCNQ1:p.T311I as an example. KCNQ2:p.T276I is associated with Ohtahara 

syndrome. We activate PS1_moderate for KCNQ1:p.T311I which is the equivalent missense 

change (i.e. same reference and alternate amino acids) in a different member of the same 

protein family.
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Figure 3. Validation of CardioClassifier
(a) Comparing CardioClassifier to a set of 57 MYH7 expert panel curated variants. Rules 

were split into those that can be computationally annotated and those that are 'case-level' and 

require manual input. CardioClassiifer was run using an 'All Cardiomyopathy' test to reflect 

the spectrum of phenotypes caused by variants in MYH7. *Of the computational rules, 3 

were removed from the comparison as they represent draft modifications to the ACMG 

framework by the ClinGen Cardiovascular domain working group that were not published at 

the time of this work, and not yet implemented in CardioClassifier. Specifically, truncating 
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variants in MYH7 activate a new rule PVS1_moderate. Additionally, for variants classified 

as Benign by frequency alone (BA1) CardioClassifier does not assess any further rules, 

leading us to remove an additional data point from the comparison as we would not expect it 

to be retrieved. (b) Counts of individual rules activated by CardioClassifier and InterVar for 

219 variants identified as Pathogenic or Likely Pathogenic in ClinVar. Only pathogenic 

evidence rules and rules activated by one of the tools at least once are shown.

Whiffin et al. Page 15

Genet Med. Author manuscript; available in PMC 2019 June 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Whiffin et al. Page 16

Table 1
Details of gene-disease pairs currently analysed by CardioClassifier.

The disease class column details the larger sub-panels relating to broad disorder types that each disease and 

gene set are within.

Disease Disease Class Genes Total Genes

DCM Cardiomyopathy LMNA, TNNT2, SCN5A, TTN, TCAP, MYH7, VCL, TPM1, TNNC1, RBM20, 
DSP, BAG3 12

HCM Cardiomyopathy MYH7, TNNT2, TPM1, MYBPC3, PRKAG2, TNNI3, MYL3, MYL2, ACTC1, 
CSRP3, PLN, TNNC1, GLA, FHL1, LAMP2, GAA 16

ARVD/C Cardiomyopathy DSP, PKP2, DSG2, DSC2, JUP 5

RCM Cardiomyopathy TNNI3 1

ncCM Cardiomyopathy MYBPC3, MYH7 2

Noonan syndrome Cardiomyopathy RAF1, SOS1, PTPN11, KRAS 4

Long QT syndrome Arrhythmia KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2 5

Brugada syndrome Arrhythmia SCN5A 1

CPVT Arrhythmia RYR2 1

Marfan syndrome Aortopathy FBN1 1

FH - LDLR 1
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