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Abstract
Hematopoietic stem cell (HSC) therapy is widely used to 
treat a growing number of hematological and non-hemato-
logical diseases. Cryopreservation of HSCs allows for cells to 
be transported from the site of processing to the site of clin-
ical use, creates a larger window of time in which cells can be 
administered to patients, and allows sufficient time for qual-
ity control and regulatory testing. Currently, HSCs and other 
cell therapies conform to the same cryopreservation tech-
niques as cells used for research purposes: cells are cryopre-
served in dimethyl sulfoxide (DMSO) at a slow cooling rate. 
As a result, HSC therapy can result in numerous adverse 
symptoms in patients due to the infusion of DMSO. Efforts 
are being made to improve the cryopreservation of HSCs for 
clinical use. This review discusses advances in the cryo-
preservation of HSCs from 2007 to the present. The preclini-
cal development of new cryoprotectants and new technol-
ogy to eliminate cryoprotectants after thawing are discussed 
in detail. Additional cryopreservation considerations are in-
cluded, such as cooling rate, storage temperature, and cell 
concentration. Preclinical cell assessment and quality con-
trol are discussed, as well as clinical studies from the past 
decade that focus on new cryopreservation protocols to im-
prove patient outcomes. © 2019 S. Karger AG, Basel

Introduction

Since the first transplantation of bone marrow in the 
1950s [1], hematopoietic stem cell transplantation 
(HSCT) has been successfully implemented as a treat-
ment for patients with hematologic cancers, such as leu-
kemia and lymphoma, and congenital or acquired dis-
eases of the hematopoietic system such as sickle cell dis-
ease [2, 3]. According to the Worldwide Network for 
Blood and Marrow Transplantation (WBMT), one mil-
lion HSCTs had been performed by the end of 2012 [4]. 
In addition to conventional uses of HSCT for the treat-
ment of hematologic malignancies, clinical uses have ex-
panded in recent years to include treatment of severe 
scleroderma [5], diabetes [6], metabolic disorders [7], 
and even delivery of gene therapy [7, 8]. 

There are three major sources of hematopoietic stem 
cells (HSCs), including bone marrow harvested by aspira-
tion from the cavity of the ilium (hipbone), peripheral 
blood obtained through leukapheresis, and umbilical 
cord blood (UCB) collected from the placenta after child-
birth [9]. HSCT can be performed with either autologous 
HSCs (obtained from the patient) or allogenic HSCs (ob-
tained from a donor), and both types of HSCs come with 
certain advantages and disadvantages. Autologous HSCs 
are free of the clinical risks of rejection and graft-versus-
host disease (GVHD); however, for hematologic cancer 
treatment, autologous bone marrow or peripheral blood 
may contain residual cancer cells, which could result in 
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relapse [2]. The major drawback of allogeneic HSCT is 
GVHD, which results in potentially very severe and life-
threatening skin, gut, and liver disease. Allogeneic HSCT 
also may lead to delays in immune reconstitution, which 
can result in increased rates of infection, treatment-relat-
ed mortality, and chronic GVHD [9–11]. Successful al-
logeneic HSCT also significantly relies on the availability 
of an appropriate donor source. For patients without 
matched siblings or relatives, finding a human leukocyte 
antigen-matching donor can be challenging and time 
consuming.

Cryopreservation of HSCs allows for more effective 
treatment of patients. Fresh HSCs, once harvested, are 
only viable for several hours to a few days, limiting their 
geographical reach. Frozen cells can be transported from 
the site of processing to a clinical site, extending both the 
geographical reach of viable cells and the genetic diver-
sity of cells available to patients. Freezing cells greatly ex-
tends their shelf life and allows for more rigorous quality 
controls and testing, resulting in improved safety of HSC 
therapy. Despite these benefits, the cryopreservation of 
HSCs poses several challenges, most notably a decline in 
cell viability after thawing and adverse reactions in pa-
tients due to cryoprotectants used. 

This review discusses advancements in the cryopreser-
vation of HSCs from 2007 to the present. Readers inter-
ested in advancements in HSC cryopreservation prior to 
2007 should read the review by Fleming et al. [12]. For a 
comprehensive review of the history of HSC cryopreser-
vation, readers can see reviews by Sputtek et al. [13–15]. 
In addition, a 2014 review focuses on detailed methods of 
cryoprotectant removal for cell therapies [16]. In this re-
view, new cryoprotectants and new technologies are dis-
cussed, as well as additional factors of the freezing process 
such as cell concentration, stability of cryopreserved cells, 
and cooling rate. Preclinical cell assessment is included as 
well as recent clinical studies involving HSCs cryopre-
served using emerging methods. 

New Cryoprotectants 

Cryopreservation solutions are specialized solutions 
that contain additives, more commonly known as cryo-
protectants, that help cells survive the stresses of freezing 
and thawing. Dimethyl sulfoxide (DMSO) is the current 
gold standard for cell cryopreservation and is the most 
commonly used cryoprotectant for HSCs. The cryopro-
tective action of DMSO results from specific molecular 
interactions. Water and DMSO interact strongly and 
these interactions result in unique behavior during freez-
ing [17]. For example, solutions of water and DMSO have 
far lower freezing points than the pure constituents. Mo-
lecular dynamic simulations suggest that DMSO alters 

the structure and function of the cell membrane produc-
ing pores at sufficient concentrations [18]. In addition, as 
a low-molecular-weight cryoprotectant, DMSO has col-
ligative properties, meaning that the presence of DMSO 
molecules in the solution depresses the freezing point 
[19].

However, DMSO may be unsuitable for cryopreserva-
tion of cells intended for human use due to its toxicity in 
patients, resulting in a wide range of adverse events. In 
mice, the LD50 of intraperitoneal injections of 25% 
DMSO is 15.4 g/kg [20]. In humans, a recent review ar-
ticle found numerous DMSO-related side effects, ranging 
from cardiac arrest and respiratory stress to epileptic sei-
zures [21]. Multiple studies have noted adverse patient 
reactions following infusion of DMSO-preserved HSCs, 
ranging from mild events like nausea and vomiting to 
life-threatening conditions such as cardiac arrhythmia 
[22–24].

A simple way of decreasing adverse reactions to DMSO 
infusion is to use lower concentrations of DMSO. A 2013 
preclinical study, followed by two clinical trials, looked at 
three DMSO concentrations (10, 7.5, and 5%) for cryo-
preservation of HSCs [25–27]. Preclinical results showed 
a decrease in nucleated cell recovery for concentrations of 
DMSO below 10%, but found the highest number of col-
onies formed from cells frozen in 7.5% DMSO [25]. A 
subsequent clinical study compared 7.5 and 10% DMSO 
among two groups of patients. Reduction of DMSO re-
sulted in faster leukocyte recovery, but the frequency of 
adverse events was unchanged between the two groups 
[26]. In the following 2018 clinical study, autologous pe-
ripheral blood stem cell (PBSC) transplants of cells frozen 
at all three DMSO concentrations were performed in 150 
patients [27]. In this study, reduction in DMSO concen-
tration had no impact on engraftment, but adverse reac-
tions such as nausea, fever, and tachycardia were lowest 
in patients who received cells that had been frozen in 5% 
DMSO [27]. These results suggest that decreasing the 
concentration of DMSO to 5% could become the new 
standard in HSC cryopreservation.

Another method for DMSO reduction involves de-
creasing the amount of DMSO and adding another com-
ponent. A study by Hayakawa et al. [28] used 5% DMSO 
and 5% pentastarch in the cryopreservation of UCB. Cells 
in 5% DMSO with pentastarch had higher post-thaw vi-
ability than cells frozen in 10% DMSO [26]. McCullough 
et al. [29] explored the use of hydroxyethyl starch (HES) 
mixed with DMSO at different ratios to enhance cryo-
preservation of PBSCs. Sputtek et al. [30] found that 5% 
DMSO in the presence of 6% HES is sufficient for cryo-
preservation of peripheral blood progenitor cells. In sim-
ilar studies, HES and dextran have been mixed with 
DMSO to improve the cryopreservation outcome of 
HSCs [28, 31–33]. Chen et al. [31] compared cryopreser-
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vation of UCB under multiple conditions, including 10% 
ethylene glycol and 2% DMSO, 10% DMSO with 2% dex-
tran, and 2.5% DMSO with 30 mmol/L trehalose. Post-
thaw comparison of cell viability, colony-forming units 
(CFUs), and apoptosis found 2.5% DMSO with trehalose 
to be most successful at maintaining the differentiation 
potential and cell viability.

There is considerable interest in the development of 
alternatives to DMSO. Studies suggest that sugars interact 
directly with the cell membrane during freezing [34, 35]. 
The addition of sugars to solutions containing DMSO 
also results in changes in ice patterns that are observed 
[36]. Sugars such as trehalose and sucrose have gained 
popularity in the cryopreservation of HSCs and satisfying 
cryopreservation outcomes have been broadly demon-
strated. Trehalose and sucrose have been evaluated to 
preserve HSCs from UCB and have achieved similar re-
sults to those preserved in 10% DMSO solution in terms 
of the clonogenic potential of progenitor cells, cell viabil-
ity, and numbers of CD45+/33+ cells [37]. The use of  
0.3 M sucrose with 5% DMSO resulted in a better func-
tional capacity of hematopoietic stem and progenitor 
cells compared to those cryopreserved in 10% DMSO 
with 10% fetal bovine serum [38]. Cryopreservation of 
PBSCs with only trehalose showed improved cell survival 
compared to cells cryopreserved in 10% DMSO with 90% 
fetal bovine serum [39].

In addition to its benefits as an extracellular cryopro-
tectant, trehalose can be transported into cells to further 
its cryoprotective potential. Trehalose, a disaccharide of 
glucose, is approved for human use and has been demon-
strated to have no adverse symptoms up to 50 g delivered 
orally [40]. As trehalose is membrane impermeable, 
methods of active loading of trehalose into cells using tre-
halose-containing liposome or cell surface receptor have 
been developed to increase the preservation outcome of 
human blood cells [41] and hematopoietic stem/progen-
itor cells during lyophilization [42]. A study of cord blood 
cryopreservation observed the benefits of trehalose both 
inside and outside the cell by transporting it across the 
cell membrane via liposome. Post-thaw viability by 
7-aminoactinomycin D (7-AAD) showed that the opti-
mal post-thaw survival occurred for cells frozen with both 
intra- and extracellular trehalose as well as 2.5% DMSO. 
However, intra- and extracellular trehalose without 
DMSO also showed high viability, equivalent to the cur-
rent standard of 10% DMSO [43]. 

Changing ice pattern formation can influence the 
freezing response. As a result, there is interest in molecules 
that alter the freezing of water. Several small-molecule ice 
recrystallization inhibitors (IRIs) have been demonstrated 
as effective cryoprotectants for HSCs and UCB [44, 45]. 
IRIs are carbon-linked antifreeze glycoprotein analogues. 
IRIs were capable of reducing the average ice crystal size 

and a positive correlation between smaller ice crystal size 
and increased post-thaw function of HSCs was validated 
[44]. Another category of molecule that has been studied 
is Rho-kinase-associated inhibitor. This molecule acts on 
the Rho-kinase pathway, which plays a role in a wide range 
of cellular phenomena but principally the function of the 
cytoskeleton. It is worth mentioning that ROCK inhibitor 
Y-27632 should be used with caution for the cryopreser-
vation of HSCs. Although ROCK inhibitor Y-27632 has 
been demonstrated to enhance the survival of human em-
bryonic stem cells following cryopreservation [46], other 
studies have discovered that ROCK inhibitor Y-27632 
negatively affects the expansion/survival of both fresh and 
cryopreserved cord blood-derived CD34+ hematopoietic 
progenitor cells [47]. 

The studies described above demonstrate interest in 
the development of alternatives to DMSO for the preser-
vation of HSCs. As we understand more about cryopro-
tective agents and the manner by which they act, our abil-
ity to develop alternatives to DMSO increases. Ideally, a 
replacement to DMSO would maintain high levels of 
post-thaw recovery, be non-toxic to cells, and reduce or 
eliminate adverse reactions in recipients of the cells. 
These characteristics would improve the workflow and 
safety of HSC-based products.

New Technology

Removal of DMSO from cryopreserved HSCs before 
infusion could reduce the adverse effects of HSCT. The 
classical method of DMSO removal is based on the cen-
trifugation of immediately thawed cell products [48]. 
Cells are centrifuged, the supernatant is removed and re-
placed with fresh solution, and the process is repeated. 
Traditional washing is labor-intensive and results in cell 
loss [12], but has been shown to reduce DMSO-related 
toxicity in patients. A study conducted by Akkök et al. 
[49] found that patients who received autografts that were 
manually washed experienced significantly fewer adverse 
effects, but platelet engraftment time increased by 2 days. 
Several commercially available washing devices such as 
CytoMateTM, SepaxTM, and Lovo have been developed to 
automate the washing procedure, and high recovery of 
viable CD34+ cells with good engraftment potential after 
automated washing has been demonstrated in various 
studies using these washing devices [50–54]. 

Other than well-established washing devices, new 
methods of DMSO removal without dependence on cen-
trifugation are being developed, including filtration by 
spinning membrane [16], DMSO extraction through dif-
fusion in microfluidic channels [55, 56], and dilution 
through hollow-fiber membranes [57]. Spinning mem-
brane filtration allows for cell suspension to undergo vol-
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ume reduction and end in a reduced volume of fresh so-
lution [50]. While there is a low risk of contamination 
with this method, it can be expensive and cells are lost due 
to clumping [16]. Microfluidics can be used to remove 
DMSO from small samples using parallel streams of a cell 
suspension and a wash solution [12]. This method works 
well for small volumes but is difficult to scale up [16]. For 
larger cell volumes, hollow fiber membranes can be used 
for DMSO removal. Hollow fiber devices consist of a large 
cylindrical tube filled with thousands of thin hollow fi-
bers. To remove DMSO from a cell suspension, the sus-
pension flows through the thin fibers, while a washing 
solution flows through the larger tube in the opposite di-
rection. DMSO is then transported out of cells and washed 
away [57]. 

While washing may be a good alternative for patients 
with a history of DMSO toxicity, additional problems 
may arise. Conventional, centrifuge-based methods for 
washing are time-consuming, result in cell losses which 
can prolong platelet engraftment, and pose a risk of cell 
contamination [27, 49, 58]. To alleviate these issues, alter-
natives to washing include freezing cells in a lower con-
centration of DMSO or diluting the thawed product be-
fore infusion. 

Additional Considerations

Due to the issue of DMSO toxicity in patients who re-
ceive cell therapies, the majority of research in HSC cryo-
preservation focuses on reducing or removing DMSO 
from cryoprotectant solutions. Additional factors that 
impact the success of HSC cryopreservation include the 
freezing rate, pre-freeze storage conditions, cell concen-
tration, and storage temperature. A brief review of these 
parameters is included in this section. 

Freezing Rate
Cryopreservation of HSCs is generally carried out us-

ing slow cooling rates (approx. 1  ° C/min). A comparison 
between slow cooling (2  ° C/min) and rapid cooling (vit-
rification) of human UCB cells has been performed by 
Djuwantono et al. [59], who found that cell viability and 
CD34+ enumeration after rapid cooling was significantly 
higher than that after slow cooling. These results suggest 
that rapid cooling is a promising cryopreservation meth-
od for UCB. 

Precooling
Since the addition of DMSO to HSCs causes an exo-

thermic reaction, there is concern that this release of en-
ergy could cause damage to cells. Dijkstra-Tiekstra et al. 
[60] performed a study using precooled DMSO and pre-
cooled white blood cells (WBCs). Results showed that 

precooling has a minimal effect on WBC recovery. It was 
determined that 50% precooled DMSO performed better 
than 20% precooled DMSO, and a slow cooling rate per-
formed better than fast freezing, but differences were 
minimal. 

Pre-Freeze Storage
Delays in cryopreservation after the collection of cells 

may adversely affect cell viability [61]. A study by Gutt-
ridge et al. [61] found that pre-cryopreservation storage 
time significantly affected the viability of CD34+ cells 
from UCB after cryopreservation, suggesting that extend-
ed pre-cryopreservation should be avoided. This finding 
is consistent with results of another study by Schwandt et 
al. [62], which showed that the highest viability for cord 
blood cells was obtained when cells were cryopreserved 
directly after collection. The temperature at which cells 
are stored before freezing may also affect the cryopreser-
vation outcome. It is also suggested that hematopoietic 
progenitor cells should be maintained at a refrigerated 
temperature (4–8  ° C) before freezing to avoid significant 
losses in cell potency [63, 64]. 

Cell Concentration
Cell concentration is an important parameter that re-

quires careful consideration before freezing, as a low cell 
concentration is associated with more DMSO usage, 
higher cost, and greater patient toxicity. Despite these 
factors, the influence of cell concentration on cryopreser-
vation outcome is not well studied [65]. Two studies have 
demonstrated that cryopreservation of PBSCs at a con-
centration of 2 × 108 cells/mL still yielded high recovery 
of viable cells [66] and excellent engraftment after autol-
ogous PBSC transplantation [65]. An earlier study even 
indicated a cell concentration of 3.7 ± 1.9 × 108 for cryo-
preservation of PBSCs did not result in loss of engraft-
ment potential [67]. It is noteworthy that a cell con- 
centration that is too high may lead to cell loss and cell 
clumping after thawing, or seizures during the infusion 
of cells. As a result, special care should be taken with high 
cell concentration products [68, 69]. 

Storage Temperature
Controlled-rate freezing and storage in vapor nitrogen 

has been a standard technique for cryopreservation of 
HSCs. To explore and validate easier and more cost-effec-
tive ways of cryopreservation of HSCs, freezing and stor-
age of cells in a –80  ° C mechanical freezer has been exam-
ined. However, the recovery rate and viability of CD34+ 
cells were significantly decreased for PBSCs cryopre-
served for 10 years with this method, although the my-
eloid differentiation potential, in vivo reconstitution, and 
self-renew potential of CD34+ cells were maintained [70]. 
Loss of CD34+ cells was even observed for HSCs cryopre-
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served by non-controlled rate freezing and stored at 
–80  ° C overnight [71]. Calvet et al. [72] found that hema-
topoietic and immunologic reconstitution with PBSCs 
cryopreserved at –80  ° C for less than 6 months is satisfac-
tory, although a profound CD34+ T lymphocyte deficit 
persists at 1 year. Sputtek et al. [73] compared the recov-
ery of PBSCs frozen at –80  ° C versus –170  ° C for 3 and 6 
months and found that –80  ° C storage resulted in signifi-
cant loss of cell membrane integrity and clonogenic po-
tential. Encouraging results from one study found that 
hematopoietic recovery for PBSCs was found not ad-
versely affected by long storage (> 1 year) at –80  ° C, which 
was demonstrated at two independent centers using sim-
ilar freezing and storage techniques [74]. Yuan et al. [75] 
found success at stabilizing pluripotent stem cells for up 
to 1 year at –80  ° C by adding the minimally toxic polysac-
charide Ficoll 70 to their cryoprotectant solution.

These studies suggest that this easier and cheaper 
method might be valuable in areas where the access to 
liquid nitrogen and controlled-rate freezing is limited. 
Although rare, malfunction or failure of the controlled-
rate freezing device is a potential risk. One interesting 
study examined the effects of interruptions of controlled-
rate freezing on the viability of umbilical cord cells in or-
der to provide guidance of the proper response in case of 
freezing device failure [76]. There was no difference in 
post-thaw survival between the temperature at which 
cooling was interrupted if cells were transferred to a 
–80  ° C freezer; however, cells should only be transferred 
to vapor nitrogen when the interrupting temperature was 
lower than –40  ° C.

Long-Term Storage
Some of the earliest UCB was harvested and frozen in 

the 1990s. There is interest in determining the shelf life of 
frozen HSCs after long-term storage. The ability to bank 
cells for an extended time allows for greater flexibility in 
treatment options and availability. Seo et al. [77] com-
pared cord blood samples preserved for 1 and 2 years. 
Total nucleated cell count (TNC), cell viability, and 
CD34+ count showed no significant difference between 
cells frozen for 1 and 2 years, although as expected, both 
showed a decrease in viability and CD34+ cell count com-
pared to fresh samples. Lee et al. [78] extended this range 
of successful cord blood storage, finding no significant 
difference in TNC, cell viability, and CD34+ count for 
cells frozen up to 5 years. 

A clinical study by Lisenko et al. [79] found that the 
storage duration of PBSCs did not impact patient hema-
topoietic recovery for storage times ranging from several 
months to several years. The quality of long-term cryo-
preserved UCB units for HSCT showed no difference be-
tween cells cryopreserved for 10 years and 1 month, in 
terms of percentage of viable cells, CD34+CD38– cells, 

and CD34+CXCR4+ cells [80]. Hematopoietic progeni-
tor cells cryopreserved in 5 and 10% DMSO for < 1 year, 
1–9 years, and > 9 years showed no difference in viability 
[81]. No difference in time to WBC engraftment or to 
platelet engraftment between the three storage groups  
(< 1 year, 1–9 years, and > 9 years) was observed. Long-
term storage (> 60 months) of PBSCs in vapor phase ni-
trogen after controlled rate freezing also did not have a 
negative effect on hematopoietic recovery [79]. However, 
in another study, total nucleated cell count, CD34+ cell 
count, and cell viability for cells from peripheral blood or 
bone marrow cryopreserved for 11–19 years was found to 
decrease with time [82]. 

One study by Broxmeyer et al. [83] found that CD34+ 
cells from UCB that had been frozen for up to 21 years 
were able to be engrafted in mice. This finding suggests 
that HSCs can recover and maintain their self-renewing 
potential years after cryopreservation and long-term 
storage. Hubel et al. [84] imposed a storage lesion on 
cryopreserved UCB by storing them at –80  ° C. They ob-
served that conventional markers of UCB viability, in-
cluding nucleated cell count, CFUs, and enumeration of 
CD34+ cells, showed little sensitivity to the storage lesion. 
However, apoptosis markers such as caspases were up-
regulated rapidly after imposition of the storage lesion. In 
another arm of this study, UCB frozen for approximately 
1 year was compared to UCB frozen for more than 11 
years. Little difference was observed in these cells as a re-
sult of different storage times [84], Overall, it seems that 
long-term storage for less than 10 years does not signifi-
cantly affect cryopreservation outcome. 

Preclinical Assays for Quality 

Determining the quality of HSCs after freezing and 
thawing typically involves flow cytometric analysis to de-
termine cell viability and cell type, as well as further via-
bility analysis such as CFU and TNC. Flow cytometry al-
lows for the identification of viable cells using a viability 
dye such as 7-AAD, which binds DNA and is excluded by 
cells with an intact cell membrane. Cell type can be deter-
mined using antibodies that bind to CD34, a cell surface 
marker for blood and bone marrow-derived stem cells 
[85]. Clinically, this test has limited applications, since the 
CD34 count is usually determined before freezing and is 
not reflective of the cells post-thaw [86]. TNC is used to 
determine the total number of cells that contain a nucleus 
and is commonly used to determine cell quality and like-
lihood of engraftment prior to infusion [86]. CFU, con-
sidered to be the best measure of viable stem cells, is a 
measure of how cells divide and form colonies over time. 
In 2011, Page et al. [86] determined CFU to be a robust 
measure of engraftment following UCB transplant.
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Post-Thaw Assessment 
Traditionally, the assessment of PBSC grafts before in-

fusion into patients is made before cells are frozen and 
thawed. Before freezing, the total number of CD34+ cells 
is determined, and this number is used post-thaw to de-
termine the total cell number administered to the patient. 
In a 2008 study by Lee et al. [87], PBSCs were analyzed via 
flow cytometry of 7-AAD and CD34 after collection from 
36 patients and immediately post-thaw. Thawed PBSCs 
were administered to patients and the time to engraft-
ment was determined by daily blood counts. The results 
indicated that quantification of the viable CD34+ cell 
number is a more accurate predictor of engraftment than 
the pre-freeze viable cell count. Similarly, Page et al. [86] 
performed a cord blood transplant study and found that 
measuring CD34+ and TNC before cryopreservation was 
not a good reflection of post-thaw engraftment success. 
Predicting engraftment success is most accurate when 
cells are analyzed post-thaw. 

Preclinical Functionality
Post-thaw viability does not guarantee post-thaw cell 

functionality. In 2016, Morgenstern et al. [88] found sev-
eral instances of patients with delayed engraftments de-
spite sufficient post-thaw viability of CD34+ cells. Deter-
mining post-thaw functionality is thus an important step 
before moving into clinical trials. Cell functionality can 
be determined by CFU, as performed by Chevaleyre et al. 
[89] in a study of UCB, which found that storing UCB for 
3 days at 4  ° C prior to cryopreservation increased func-
tionality. 

Animal models can also be used for preclinical assess-
ment. As previously mentioned, Broxmeyer et al. [83] 
found successful engraftment of UCB cryopreserved for 
over 20 years in mice. In 2016, Yang et al. [90] success-
fully demonstrated the functionality of bone marrow 
mononuclear cells post-thaw in a rodent stroke model. 
Mice were induced with ischemic stroke and received 
fresh or thawed bone marrow mesenchymal stem cells. 
Thawed cells had previously been frozen in liquid nitro-
gen for 12 months. Although flow cytometry results 
showed decreased viability in the thawed cells, mouse re-
covery from stroke was comparable between the fresh and 
thawed cells [90].

Clinical Studies

Currently, most clinical studies that focus on cryo-
preservation of HSCs concentrate on DMSO reduction, 
post-thaw DMSO removal, and assessment of long-term 
cell storage. As previously mentioned in this review, a 
2014 and subsequent 2018 clinical trial had success in de-
creasing adverse reactions in patients by decreasing the 

DMSO concentration [27], while a study by Akkök et al. 
[49] found that washing samples prior to infusion de-
creased patient side effects. Similarly, Foïs et al. [91] 
found a reduction in adverse side effects when washing 
cells before infusion. Galmes et al. [92] developed a sim-
ple technique for PBSC cryopreservation. Cells were 
stored at –80  ° C without the use of a control rate freezer. 
Both 5 and 10% DMSO samples were tested. Patients who 
received cells frozen in 5% DMSO had higher platelet re-
covery and decreased infusion-related toxicity. 

As previously mentioned in this review, Calvet et al. 
[72] developed an unconventional method for cryo-
preservation of hematopoietic progenitor cells that in-
volves passive freezing to –80  ° C with only 3.5% DMSO. 
A clinical study of 342 autografts after storage for 3, 6, and 
12 months was performed, and engraftment success and 
long-term immunological reconstitution was observed. 
Results showed this method to be successful for up to  
6 months of storage time. A decade-long clinical study 
performed by Pavlů et al. [93] observed hematopoietic 
recovery after transplant in 50 patients. Patients received 
two transplants for myeloma treatment at least 2 years 
apart, and no reduction in patient recovery was observed 
as a result of longer cell storage. A study by Mitchell et al. 
[94] tracked UCB transplants with varying storage times 
in liquid nitrogen ranging from several months to 11 
years. Their analysis found that storage time had no im-
pact on engraftment up to 11 years.

Although currently there are few clinical studies that 
focus on cryopreservation of HSCs, results have been 
promising. Reducing DMSO in cryoprotectants or wash-
ing cells prior to infusion has shown success at decreasing 
patient adverse reactions. Clinical trials focusing on cell 
storage time have shown cells can be stored for up to 11 
years without impacting therapeutic potential.

Conclusion

Optimal cryopreservation of HSCs requires the con-
sideration of several factors, including composition of the 
cryoprotectant solution, cell concentration, freezing rate, 
and storage temperatures. Much of the research in this 
area focuses on the cryoprotectant solution used. To date, 
DMSO remains the gold standard for cryopreservation of 
HSCs, despite evidence of detrimental side effects experi-
enced by patients. In the past decade, efforts have been 
made to reduce, wash away, or eliminate DMSO in cryo-
protectant solutions. Multiple clinical studies have shown 
success at reducing the amount of DMSO used in cryo-
protectant solutions from 10% to as low as 3.5%. Addi-
tional clinical studies have shown that washing cells prior 
to infusion into patients can decrease DMSO-related side 
effects. Preclinical experiments have indicated prelimi-
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nary success of DMSO-free solutions, but these results 
have yet to be demonstrated in clinical research. Quality 
control studies have found HSCs to be stable in liquid ni-
trogen for up to 10 years, with cells frozen up to 11 years 
showing clinical success. Clinical results have also high-
lighted the importance of post-thaw cell assessment to 
predict engraftment success.

As HSC therapy and other emerging cell therapies 
grow in popularity, there is a need for improvement in 
HSC cryopreservation protocols. The successful develop-
ment and widespread use of optimized DMSO-free or re-
duced solutions is a crucial step in improving HSCT. In 

addition, it is important that clinical cell assessment is 
performed on thawed cells rather than relying on pre-
freeze data, since freezing and thawing impacts cell qual-
ity. Overall, improving HSC cryopreservation standards 
and protocols would result in fewer patient side effects, 
improved safety and quality control, and enhanced effi-
cacy of HSC therapy as well as other emerging cell thera-
pies.
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