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A diagnosis of classic Hodgkin lymphoma (cHL) is based 
on the finding of neoplastic Hodgkin Reed‐Sternberg 
(HRS) cells within the heterogeneous cellular setting of 
a lymph node.1,2 The tumor microenvironment (TME) in-
cludes reactive lymphocytes, eosinophils, granulocytes, 
histiocytes, macrophages, plasma cells, and mast cells.2 
These cells express immunoregulatory molecules that 
serve fundamental roles in normal physiology, but are 

also involved in cancer cell growth, survival, and immune 
escape. This complex TME supports the survival of HRS 
cells through various cellular mechanisms, and HRS cells 
evade normal antitumoral immunity by expressing inhibi-
tory ligands, resisting apoptosis, and inducing an immuno-
suppressive TME.3

Programmed cell death ligand 1 (PD‐L1) expression is in-
variably observed among at least a large fraction HRS cells in 
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Abstract
Immune checkpoint‐blocking antibodies have therapeutic activity against relapsed or 
progressive classic Hodgkin lymphoma (cHL), but Hodgkin Reed‐Sternberg cells 
can develop resistance to this therapy via multiple mechanisms. To improve the ef-
ficacy of immune checkpoint blockade, we need a more precise understanding of the 
immune escape mechanisms active in individual cHL patients, and this requires a 
detailed characterization of immune cell populations in the tumor microenvironment. 
These cell‐cell interactions can now be studied by multiplex immunohistochemistry 
coupled to digital image analysis. This method should allow the identification of 
actionable target molecules mediating resistance to immune checkpoint inhibitors in 
individual cHL patients, thereby favoring the implementation of personalized 
therapies.
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nearly all cases of cHL. PD‐L1 expression is driven by gains 
of chromosome 9p24.1, the locus that includes PD‐L1, PD‐
L2, and JAK2. Gains at 9p24.1 directly increase the PD‐1L 
expression and JAK2 expression. Increased JAK2 may result 
in a heightened sensitivity of HRS cells to cytokine‐medi-
ated JAK‐STAT signaling and thus even greater PD‐L1 ex-
pression due to cytokine‐mediated induction of the protein.4,5 
One mechanism of immune evasion involves signalling be-
tween PD‐L1, expressed by HRS cells, and its receptor pro-
grammed cell death 1 (PD‐1), expressed by immune cells. 
PD‐L1 in HRS cells binds PD‐1 on CD4 + T cells and 
CD8 + T cells, and suppresses T‐cell effector function. This 
so‐called PD‐1–PD‐L1 axis is a critical checkpoint that reg-
ulates the efficacy of T cell‐mediated immune responses, so 
blocking this pathway is the basis for cHL immunotherapy 

using checkpoint‐blocking antibodies (eg, nivolumab,6,7 
pembrolizumab8,9). This strategy begins to be used when pa-
tients affected by cHL do not respond adequately to initial 
therapy (first‐line or second‐line treatments) or relapse.10 The 
therapeutic activity of nivolumab was recently shown in two 
clinical trials6,7 of cHL patients who had failed to respond 
to autologous hematopoietic stem cell transplantation and 
brentuximab vedotin. On the basis of these trials, nivolumab 
was approved for relapsed or progressive cHL.11 The main 
mechanisms involved in cHL cell survival and immune es-
cape are illustrated in Figure 1. First, HRS cells express high 
levels of PD‐L1, which binds its receptor PD‐1 on T cells and 
subsequently deactivates T‐cell antitumor function. Tumor 
cells also evade antitumor immune functions by encouraging 
the local infiltration of various immunosuppressive cells.12 

F I G U R E  1   Mechanisms of tumor progression and tumor microenvironment‐mediated immune evasion in classic Hodgkin lymphoma (cHL). 
Left: Programmed cell death ligand 1 (PD‐L1) normally binds PD‐1 on T cells and regulates their activity. Centre: In cHL, PD‐L1 is also expressed by 
Hodgkin Reed‐Sternberg (HRS) cells. In these cells, PD‐L1 binds PD‐1 on CD4 + T cells and CD8 + T cells and suppresses T‐cell effector function. 
Regulatory T cells (Tregs) and the PD‐1: PD‐L1 pathway are both critical to terminating immune responses. Tregs lead to inhibition of the activity 
of conventional T cells. Right: Infiltration of the tumor microenvironment (TME) by myeloid‐derived suppressor cells (MDSC) and CD163 + M2 
macrophages inhibit immune surveillance in cHL. Inflammatory and immune cells infiltrating the TME also express ligands (eg, CD30L and CD40L) 
that bind receptors on HRS cell membranes. In some cases, Epstein‐Barr virus infects the tumor clone, and the viral latent membrane protein 1 
(LMP1) both augments HRS cell PD‐L1 expression and helps HRS cells resist apoptosis.27 In red, therapeutic agents targeting signals that allow HRS 
cells to evade immune surveillance and to resist apoptosis. Asterisks indicate U.S. Food and Drug Administration (FDA) approved agents
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For example, by secreting granulocyte‐macrophage colony‐
stimulating factor, HRS cells stimulate the infiltration of 
myeloid‐derived suppressor cells (MDSCs).13 These cells 
suppress immune surveillance in cancer and inflammation.14 
Immunosuppressive effects in the TME are also due to the ac-
cumulation of M2 macrophages, a subset of CD163 + mac-
rophages that have anti‐inflammatory properties.15 A fraction 
of infiltrating CD4 + T cells are regulatory T (Treg) cells, 
which enhance immunosuppressive effects and whose pres-
ence is associated with inferior outcome.16 Furthermore, nat-
ural killer cells, whose function is to destroy diseased host 
cells such as HRS cells, have been reported to be defective 
in cHL patients.17 It is unknown what may be the contribu-
tion of these cells to the induction or the inhibition of clinical 
responses. Finally, another well‐characterized immune‐sup-
pressive mechanism employed by HRS cells is the expression 
of the immune‐modulatory glycoprotein Galectin‐1. HRS 
cells invariably express Gal1 and Gal1 binding its ligands on 
T‐cells results in their apoptosis.18,19

Given the particularities of cHL, where a small number 
of tumor cells reside in close proximity to various types of 
immune cells, greater information on the spatial distribution 
of these cells is required. This need is even more important in 

the immunotherapy era to support therapeutic decision‐mak-
ing. The choice of therapy for a particular patient should take 
into account not only the level of expression of the protein 
targeted by a therapy, but also the location and phenotype 
of immunosuppressive cells in the TME. In particular, it is 
important to know which secretory ligands and membrane‐
bound molecules are being expressed by immune cells that 
are in proximity to HRS cells and that may be providing sig-
nals that allow HRS cells to resist apoptosis.

Hodgkin Reed‐Sternberg cells' ability to process and pres-
ent antigens may also dictate their susceptibility to immuno-
therapy. In solid tumors, the response to immune checkpoint 
blockade requires tumor antigen presentation by HLA class 
I molecules on cancer cells to cytotoxic CD8 + T lympho-
cytes. In cHL, however, most tumor cells do not express HLA 
class I due to loss of beta2‐microglobulin.20 As revealed 
by the CheckMate 205 trial (ClinicalTrials.gov identifier: 
NCT02181738),7 HRS cell expression of β2‐microglobulin 
and HLA class I molecules was not predictive of the response 
to nivolumab.21 Intriguingly, HRS cell expression of HLA 
class II molecules was instead predictive of complete remis-
sion in the same study.21 This finding suggests that CD4 + T 
cells play a role in mediating the response to PD‐1 blockade via 

F I G U R E  2   Panel A, Multiplex immunohistochemistry. Three stains can simultaneously detect different proteins in formalin‐fixed, paraffin‐
embedded sections of a reactive lymph node. Left: Expression of CD3 (purple) in T cells, CD20 (teal) in B cells, and both CD20 and MIB1 (green) 
in a large fraction of germinal centre B cells, in different subcellular locations (CD20 in the membrane and MIB1 in the nucleus). Right: Expression 
of CD4 (yellow) in helper T cells, CD8 (purple) in cytotoxic T cells, and both CD4 (yellow) and programmed cell death 1 (PD‐1) (teal) in a large 
fraction of germinal centre T cells (merging into green). Panel B, Standard immunohistochemistry. Different tissue sections of a lymph node are 
stained with CD3, CD20, MIB1 and CD4, CD8, PD‐1. Left: Expression of CD3 (diffuse in the paracortical area and scattered in the germinal 
centre), CD20 (diffuse in the follicle mantle and scattered in the germinal centre), and MIB1 (restricted to germinal centre cells). Right: Expression 
of CD4 and CD8 (diffuse in the paracortical area). CD4‐positive cells are present in the germinal centre. A fraction of germinal centre cells also 
express PD1. Images were acquired with the Aperio ScanScope XT Virtual microscopy system and ImageScope Slide Viewing software (Leica 
Biosystems)
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an alternative, HLA class II‐dependent mechanism. CD4 + T 
lymphocytes are a major component of the immune infiltrate 
of cHL; a detailed functional phenotyping and analysis of the 
spatial distribution of these cells may reveal the mechanisms 
of resistance to immune checkpoint blockade.

The identification of immune escape mechanisms should 
have therapeutic implications because the characteriza-
tion of these mechanisms in individual cHL patients may 
guide the choice of immunotherapy or combination therapy. 
Achievement of this clinically relevant goal requires the de-
tailed study of immunomodulatory proteins expressed by the 
different cell populations infiltrating the TME. This anal-
ysis is now possible using multiplex immunofluorescence 
or immunohistochemistry coupled to digital image analy-
sis.22 This novel method uses three or more stains to detect 
multiple proteins simultaneously on the same tissue section 
(Figure 2 Panel A).23 The use of multiplexing for immune 
profiling is permitting the detection of multiple immuno-
modulatory molecules (eg, PD‐1 and PD‐L1) in single cells 
in histological specimens and the analysis of whether or not 
these molecules colocalize.24,25 A multiplexing panel must 
be validated by standard immunohistochemistry for each of 
the selected antibodies (an example is shown in Figure 2 
Panel B). Furthermore, to get insight into possible protein‐
protein interactions, multiplex immunohistochemistry can 
be integrated with the in situ proximity ligation assay.26

The fact that HRS cells use different mechanisms to es-
cape antitumor immunity is currently limiting the efficacy 
of immune checkpoint blockade. The multiplex analysis of 
the TME could reveal which cells (eg, MDSCs, M2 macro-
phages, Tregs) and proteins (eg, PD‐L1, PD‐1) are limiting 
the efficacy of immunotherapy in individual cHL patients, 
and these results may guide the choice of a personalized 
treatment. The personalized combination of monoclonal an-
tibodies, immunomodulators, and checkpoint inhibitors with 
mechanism‐based therapies may make HRS cells vulnerable 
to immune eradication. This approach has important basic 
scientific and translational implications, since it will enable 
future investigations into the mechanisms regulating immu-
nity to cHL and will extend the perspective of optimizing im-
munotherapy for relapsed or progressive cHL and probably 
also for newly diagnosed disease.
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