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International travel offers an extensive network for new and recurring

human-mediated introductions of exotic infectious pathogens and biota,

freeing geographical constraints. We present a predictive census-travel

model that integrates international travel with endpoint census data and epi-

demiological characteristics to predict points of introduction. Population

demographics, inbound and outbound travel patterns, and quantification

of source strength by country are combined to estimate and rank risk of

introduction at user-scalable land parcel areas (e.g. state, county, zip code,

census tract, gridded landscapes (1 mi2, 5 km2, etc.)). This risk ranking by

parcel can be used to develop pathogen surveillance programmes, and has

been incorporated in multiple US state/federal surveillance protocols. The

census-travel model is versatile and independent of pathosystems, and

applies a risk algorithm to generate risk maps for plant, human and

animal contagions at different spatial scales. An interactive, user-friendly

interface is available online (https://epi-models.shinyapps.io/Census_

Travel/) to provide ease-of-use for regulatory agencies for early detection

of high-risk exotics. The interface allows users to parametrize and run the

model without knowledge of background code and underpinning data.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: epidemic forecasting and control’.

This theme issue is linked with the earlier issue ‘Modelling infectious disease

outbreaks in humans, animals and plants: approaches and important themes’.
1. Introduction
Emerging pests, pathogens and infectious diseases pose significant threats to

public health security, agricultural productivity and ecological diversity. Globa-

lization continually exacerbates long-distance human-mediated pathways for

invasive zoonotic and botanical pathogen introduction around the world at

unprecedented rates [1,2]. The most important pathway accelerating new patho-

gen and pest introductions is human travel, migration and trade [3–12]. Once

introduced, the exotic organism begins to invade the susceptible population

if suitable climatic and environmental conditions are met. Recently, awareness

of the damaging impacts from non-indigenous pest and disease introduction

has increased substantially, and regulatory agencies have strengthened their

efforts to prevent such introductions through quarantines and other proactive

protocols [8]. Reliable estimates for invasion pathways are therefore of critical

importance to develop appropriate management strategies and regulatory pol-

icies. These initial introductions of exotic pathogens and pests by definition

occur in very low incidence, and thus, are challenging to detect (‘finding a

needle in a haystack’). Introductions can occur in animal populations dispersed

across broad areas, across the entire extent of human population or across wide-

ranging geographical landscapes of mixed agricultural/residential areas, from
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low-density rural to high-density urban areas. Finding point

introductions requires substantial dedication of manpower

and fiscal resources, often going undetected for prolonged

time periods until incidence exceeds the lower threshold of

sampling sensitivity. Only when an introduced pathogen sur-

passes the perception/detection threshold, do we become

aware of its existence in the previously pathogen-free area

and begin to react to it via attempts at control, mitigation or

eradication. Yet optimizing the probability of epidemic eradi-

cation depends on early detection prior to spread. Thus, the

earlier the detection, the more probable the pathogen can be

eliminated or the propagation slowed, lessening the epidemic

impact over multiple years [13].

Although there is a greater understanding of the impor-

tance and urgency for early detection of non-indigenous

pathogens, many approaches present broad patterns of his-

torical pathogen emergence and establishment [8,9,12], or

predict post-introduction disease epidemics [14]. These are

reactive, occurring after pathogen introduction, and are gen-

eralized to relatively large spatial scales, leading to inefficient

manpower and resource allocation. Very few current models

address initial introductions adequately, especially at suffi-

ciently fine spatial scales, to pinpoint risk and target

surveillance efforts for early detection [15,16]. Therefore, we

aim to develop a risk-based census-travel model to estimate

introductions of exotic pathogens and pests by exploiting

international travel patterns and connectivity among human

populations as a proxy for potential pathways of introduction.

The model traces human-assisted pathways from source

countries to elucidate high-risk areas for introduction. Specifi-

cally, we: (i) construct a mathematical model to predict points

of introduction of invasive pathogens and quantify the rela-

tive risk; (ii) demonstrate its application on several case

studies as well as its utility for readily integrating with

other survey models and tools to develop comprehensive,

proactive survey programmes; and (iii) provide a user-

friendly, interactive tool to assist plant, animal and human

health regulatory authorities with detecting new introductions

as early as possible. The model can serve as a tool to facilitate

more efficient survey design, resulting in earlier detection, and

thus limiting the adverse impact of introduction.
2. Methods
Our motivation for this study is to predict introductions based on

human travel and population connectivity for preemptive pre-

ventative action rather than rely on a delayed reaction to post-

introduction and subsequent spread. To get around the ‘finding

a needle in a haystack’ problem (i.e. very low prevalence of initial

introductions), we present a model framework that employs a

risk-based algorithm to explore pathways of potential risk intro-

duction for geographical area(s) of interest. For a given pest or

pathogen, international occurrence/prevalence data are gathered

from the published literature and/or expert elicitation to ascer-

tain the group of potential source countries, ranking their

relative importance. International travel records from the collec-

tion of source countries are linked with census demographic

data to estimate their endpoint destination for potential pathogen

introduction. The endpoint can be explored at various spatial

hierarchies (e.g. country, province, state, county, census tract,

1 mi2 grid, etc.) to assist survey methodologies at different

scales. We demonstrate the composition and utility of the

model to predict initial introductions using examples from phy-

tobacterial, phytoviral, phytomycological and zoonotic viral
vectored and non-vectored pathogens (electronic supplementary

material, table S1).

For simplicity, we refer to the introduction of ‘pathogens or

disease’ for the remainder of this paper with the reader’s under-

standing that the model can be applied to a wide array of

additional exotic biota types.

For model development, we use the USA as the endpoint

country due to the prevalence and granularity of travel, census

and demographic data available. This methodology can be

applied to other endpoint countries, if similar extensive data-

bases exist. The model parses the risk of introduction across

user-scalable, spatially distinct areas (parcels), within which

the susceptible human, plant or animal populations are geo-

graphically dispersed. Those parcels can be then prioritized by

potential risk of introduction for the purpose of detection survey.

The model relies on three main data-driven components

(electronic supplementary material, table S2).

(a) International travel: pattern and volume
The impact of international travel on the introduction and spread

of infectious diseases has led to considerable concern [17]. Both

international visitors and US outbound travellers can be exposed

to many bacterial, viral, parasitic and fungal infections while

abroad, creating various pathways of introduction [18]. Travel-

lers can also transport infected plant and animal materials and

pests illicitly or inadvertently, unaware of quarantines and

import/export regulations. According to the National Travel

and Tourism Office (NTTO, Department of Commerce), which

publishes inbound and outbound travel data for the USA, the

USA received 75.9 million international visitors in 2016.

Canada, Mexico, UK, Japan and China were the five countries

with the highest volume of travellers to the USA, respectively.

Concurrently, US citizens travelling overseas has risen to

38.3 million in 2017, compared with 26.8 million in 2000. These

historically increasing travel trends to and from the USA are pre-

dicted to continue to rise, amassing even greater opportunities

for pathogen introduction. Fortuitously, the US Department of

Homeland Security (DHS) captures travel volume for countries

visited by outbound US residents through the Advanced Passen-

ger Information System (formerly DHS I-92) and incoming

international travel volume via I-94 arrival forms. Additionally,

the Office of Immigration Statistics within DHS reports immigra-

tion statistics by country of birth or citizenship. In particular,

non-immigrant admissions data estimate the volume and charac-

teristics of foreign travellers entering the USA by month for

tourism, business, work, education or cultural exchange pro-

grammes. Using these data sources, 176 potential source

countries were identified for which detailed international travel

records to and from the USA were available (figure 1).

(b) Pathogen source strength, Si: distribution and
prevalence at points of origin

The quantification of pathogen source strength indicates how

likely a traveller from a particular country will act as a carrier

or transporter for pathogen introduction. Global pathogen data

were primarily collected from peer-reviewed publications,

global pest and disease databases, and key international health

organization reports (e.g. World Health Organization (WHO),

Centers for Disease Control and Prevention (CDC); electronic

supplementary material, table S2). Each of the 176 countries

were ranked by their respective pathogen status (i.e. epidemic

phase, prevalence, distribution, duration (years post-introduc-

tion), host population coverage, reported cases) and

subsequently standardized for unbiased comparison. To that

end, the pathogen source strength is a general function of the

available data and pathosystem of interest.
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Figure 1. Schematic diagram to represent the conceptual pathway model for international disease spread from 176 potential pathogen-originating countries. The
connectivity between known source countries, suspected neighbouring countries and the potential traveller endpoints with consideration of source strength, travel
volume and endpoint demographics represents a simplification of the real global travel network structure. The census-travel model integrates all of these
components to estimate risk of introduction.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180260

3

Noting that there are various ways to describe the strength

of pathogen source using epidemiological measures for a

specified space and defined period of time, we illustrate sev-

eral general approaches to formulating the source strength

function, Si. In cases of rapidly emerging outbreaks, refined

spatio-temporal quantification may be possible. During the

2015–2016 Ebola virus epidemic in West Africa, the CDC

reported weekly to monthly Ebola case counts for outbreak

countries [19]. With incremental situation reports, the spatio-

temporal dynamics of pathogen spread within source

countries can be incorporated into the structure instead of

assuming pathogen stationarity. For example, we consider

the log transformation (to balance weighting for heavily

skewed data) of the reported Ebola cases (Ci) to determine

the pathogen strength over time as the epidemic evolves in

West African source countries (figure 4c)

Si(t) ¼ log (Ci(t)þ 1): ð2:1Þ

On the other hand, for a plant pathosystem, factors such as the

prevalence (Pi), host distribution (Hi) and infection duration

(Di) in source countries can be considered. The influence of

disease status in the source country, whether directly or

indirectly through host distribution, can be represented by

an appropriate expression. It is important to note that different

expression formats can be used to accurately represent patho-

gen source strength. For example, plum pox virus (PPV) has

existed in Europe for multiple years with widespread preva-

lence, and therefore, the pathogen source strength can

estimate the relative disease situation in each source country

by

Si(t) ¼ Pi(t)Di(t)log (Hi(t)þ 1): ð2:2Þ

Assessment of the pathogen strength plays an inherent and

influential role in the pathway model. Reporting of incursions

is often incomplete or lags behind actual spread, given the

dynamic nature of pathogen dispersal. Therefore, if a country

reports the presence of a pathogen, there is no guarantee that

areas relatively nearby are free of infection or infestation.

Unreported cases in non-source countries result in underesti-

mates of source strength and commensurate underestimates

of pathogen introduction risk [20]. It is important to include

all infected countries to avoid underestimation of risk. For

example, during the 2016–2017 Zika epidemic, the virus

spread quickly through the Americas, but due to the
magnitude of infected cases and asymptomatic proportion,

confirmed case reporting was severely delayed. Taking into

consideration infection uncertainty in adjacent (suspected

source) countries can mitigate these underestimations. We pro-

vide two methods to capture this additional potential risk of

unreported cases: (i) assign a probability of infection to each

suspected country via expert opinion and suitability for patho-

gen presence or (ii) assume that all countries within a certain

proximity from a known source country border (e.g. 0 – shar-

ing land boundary, 10, 100, 1000 km) are non-reporting and

assign appropriate source strength to each by expert opinion

and suitability. The census-travel model can then investigate

introduction scenarios accounting for estimated disease

prevalence in unknown source countries.

(c) Connectivity: linkage between source and endpoint
The spatially specific risk for travel-related pathogen introduc-

tion varies depending on traveller characteristics and their

final destination. Although international passengers are

required to declare travel destinations upon entry by the US

Customs and Border Protection, detailed itineraries are not

readily available due to data sensitivity and complexity.

Therefore, in order to estimate the final destination travel pat-

tern at refined spatial scales, we use foreign-born population

demographics collected through the US Census and American

Community Survey (ACS) databases. Foreign-born refers to

anyone who is not a US citizen at birth, including naturalized

citizens, legal permanent residents and temporary migrants.

As an ongoing survey by the US Census Bureau, the ACS pro-

vides annual information on demographics and socioeconomic

factors for the entire US population at the census tract level.

Census tracts are semi-permanent portions of counties with

populations of 1200–8000. Rural census tracts cover larger

land areas than dense urban tracts. Although census tracts

are a convenient spatial hierarchy to parse population data,

the US Census Bureau also provides summarized demo-

graphic and economic data at other spatial scales, e.g.

county, subcounty, metropolitan area, school district and zip

code. We extracted 5-year estimates for foreign-born popu-

lations by country of origin/birth, age and sex. Assuming

strong social and cultural connectivity (visiting family and

friends) is a major driver of human travel, we can then distri-

bute the international traveller volume from each source

country across the endpoint region at the selected spatial scale.
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(d) Susceptible host population at endpoint
International travel presents opportunities for introduction across

the globe; however, after an initial introduction, a susceptible

host population and suitable conditions are necessary for establish-

ment and subsequent spread. For human pathogens such as Ebola

(figure 4), Dengue (electronic supplementary material, figure S4),

Chikungunya (electronic supplementary material, figure S5),

Zika (electronic supplementary material, figure S6) or Chagas

(electronic supplementary material, figure S7), we can use

human population density (and vector population distributions

when applicable) at the selected scale directly. We can also include

socioeconomic factors to further refine the vulnerability to spread

after an introduction. In particular, impoverished areas have been

heavily linked to disease spread [21]. On the other hand, for

animal and plant pathogen incursions, the susceptible population

needs to be estimated as these distributions are not necessarily

widely available and complete. For commercial crops and live-

stock, we use geospatial maps of commercial farms (often

collected by the agricultural commodity, Animal and Plant

Health Inspection Service (APHIS), etc.), and parse the spatially

distributed population at the same desired scale, connecting the

host to the travelling human population from international

source(s). In some cases, the susceptible host populations for

plants and animal pathogens/biota can be further refined. For

example, in areas where horticultural crops are grown, such as

Citrus and Prunus, homeowners often also grow such plants in

their dooryards and gardens. In fact, data from past surveys of

citrus diseases conducted by state/federal regulatory agencies

show approximately 60% of residences in Florida grew citrus in

their gardens, at approximately two trees per residence. When

similarly validated datasets are available, we can link residential

host plants to the distribution of human residences at the chosen

spatial scale as a proxy to estimate residential host plant popu-

lations. We then join the resulting residential and commercial

plant host populations to approximate the spatial distribution of

hosts within the endpoint area of interest at fine to coarse

granularity.
(e) Risk algorithm and mapping
The deterministic model is a sum of the accumulated risk com-

ponents from source countries (RSC), adjacent suspected

countries (RAC) and returning outbound US travellers (ROUT)

for each parcel j. Each risk component is weighted by the user

(WSC, WAC, WOUT) to calculate the total risk for pathogen intro-

duction through the appropriate travel pathways, RT (equations

(2.3–2.6)). For each land parcel j within the regional landscape

made up of land parcels {1, 2, � � � ,M}, the parameter Fij denotes

the foreign-born population of country i to estimate the likelihood

of external disease introduction through interaction (e.g. contacts,

activities), whereas Pj denotes US population. The inbound and

outbound travel volume of the interested demographic group

(e.g. passenger visa class, age, sex, travel month) to/from country

i are estimated as Ti and Oi, where N and K are the number of

pathogen sources and adjacent suspected countries, respectively.

The nearest distance between country boundaries is calculated as

dik, where the user-defined maximum distance threshold value dT

filters the areas included in the adjacent country risk.

RSC,j ¼
XN

i¼1

FijPM
j¼1 Fij

 !
TiSi, ð2:3Þ

RAC,j ¼
XK

k¼1

FkjPM
j¼1 Fkj

 !
TkSk, if dik � dT , ð2:4Þ

ROUT,j ¼
XL

l¼1

PjPM
j¼1 Pj

 !
OlSl, where L ¼ N þ K, ð2:5Þ

RT,j ¼WSCRSC,j þWACRAC,j þ WOUTROUT,j ð2:6Þ
and CRIz,j ¼ RTz ,j=max
l[{1,...,L}

(RTl ,j), where z [ {1, . . . , L}: ð2:7Þ

For visualization of the risk distribution, we link the output

file with a geographical information system (GIS) mapping pro-

gram such as ArcGISq to generate risk maps. Risk estimates

are updated as various factors are changed and explored by the

user and new scenarios are calculated. Each parcel is assigned

an overall risk index, and the population of parcels are segregated

into user-defined risk categories (incremental steps of risk). For

convenience, we normalize risk estimates on a 0.0–1.0 scale

(figure 2). From a regulatory standpoint, surveys are often

deployed inclusive of regional political boundaries, such as

state, province, county, etc. Thus, risk maps are scalable such

that the users can interrogate the entire region (figure 2b,e) or

subregions at higher resolution (figure 2c,f). The risk contribution

by various countries can be ranked via a ‘Country risk index’ (CRI),

where RT,i is the total risk from country i (equation (2.7)). Because

the CRI integrates the disease situation and international travel

volume, its range of values is broad and therefore normalized to

a 0.0–1.0 scale for better comparison (figure 2a,d). It is important

to note that a retrospective analysis of the census-travel model

can be powerful in determining the historical introduction

dynamics and predicting near-term future introduction patterns.
3. Results
(a) Multiple pest/disease survey and deployment
Surveys are costly in manpower and fiscal resources. There-

fore, it can be advantageous to survey for multiple exotic

pathogens/pests simultaneously. For example, we have

developed a multiple exotic citrus pathogen surveillance pro-

gramme that routinely includes Asiatic citrus canker, citrus

Huanglongbing (HLB) and citrus black spot (among many

others) that has been deployed by the USDA, APHIS and

State of Florida for several years [22]. Via this survey pro-

gramme, both emerging pathogens and those yet to be

introduced or discovered are integrated into a single compre-

hensive survey. The census-travel model allows the

simultaneous inclusion of multiple pathogens and provides

the methodology to rank the pathogens by their relative

importance. This user-defined ranking can be based on per-

ceived pathogen impact/concern on the commodity if

introduced, e.g. environmental/climatic suitability for dis-

ease development, prevalence of associated vector,

reproduction rate, detection/confirmation limitations, cost

of control/eradication if introduced, estimated crop damage

on yield/quality or by socio-political importance. To make

sound science-based decisions on disease priority prior to

survey implementation, we adopt procedures to elicit struc-

tured expert opinion on disease ranking. For example,

figure 3 illustrates the multi-pathogen survey approach using

the census-travel model. Twelve anonymous independent

experts ranked six epidemiological factors for citrus canker,

black spot and HLB in Florida in 2010. The census-travel

model calculates the risk of introduction for each pathogen sep-

arately (figure 3b–d), before weighting them according to their

ranking (figure 3e) to generate an aggregate risk output for

each land parcel. The overall risk by parcel can then be used

to partition survey efforts across the region (figure 3f ).

For either individual pathogen or multi-pathogen surveil-

lance, regional survey (e.g. state-wide) requirements are

incorporated in a spreadsheet table that uses the overall priori-

tized risk categories of introduction to calculate the number of
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Figure 2. Census-travel model introduction risk for citrus HLB in Central and South Florida citrus-producing regions, comparing retrospective and recent risk esti-
mates (note that HLB spread within/between USA is not explicitly considered). (a,d) Source CRIs for the top 10 countries of highest risk contribution in 2000 and
2010, respectively. Note, over time, Brazil emerged as the largest contributor of HLB risk of introduction for Florida. (b,e) Introduction risk estimates by census tract
for 2000 and 2010. (c,f ) Higher resolution metropolitan Miami demonstrating the shift in risk distribution for introduction points.
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sampling points within each designated land parcel. This table

can be used as a ‘scenario generator’ to estimate fiscal, personnel

(surveyors, supervisors, support staff, etc.), vehicle, equipment

and miscellaneous requirements needed to survey for new intro-

ductions. By changing the sampling frequency, i.e. the number

of samples assigned to parcels by their risk category, the overall

logistical requirements of the survey are conveniently recalcu-

lated and can be used by regulatory agencies to explore the

possibilities of apportioning manpower and fiscal resources in

various ways to achieve regulatory goals.

When developing targeted survey methodologies, it is

important to not bias efforts exclusively towards areas with

higher risk because of the uncertainty that all risk factors

influencing introduction and propagation are known and

taken into account. Therefore, the census-travel model

output of new/continuous introduction risk can be readily

integrated with additional risk factors capturing risk from
prior introductions, post-introduction spread and vector

population distributions, among a variety of other epidemio-

logical or social risks. In fact, the model has already been

incorporated into various federal and state regulatory risk-

based surveillance programmes as a major component of

risk. Two recent deployments of the census-travel model

include its incorporation into PPV surveys for New York

since 2013, and more recently, for early detection in

California, where introduction risk output is combined with

other risk layers to generate an overall risk map (electronic

supplementary material, figure S1A,B). Similarly, the

census-travel model generates a risk component for continual

introduction of Candidatus Liberibacter asiaticus (CLas) which

has been incorporated into ongoing CLas/ACP surveys in

California [23,24] (electronic supplementary material, figure

S2). In both cases, the construction of the supplementary

risk components is beyond the subject of this paper.
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(b) Model application demonstration and validation
The census-travel model has predicted introduction risk for

many pathosystems across the USA (electronic supplementary

material, table S1). A compelling validation of the predictive

power of the census-travel model was the prediction of Ebola

introduction into the USA in 2015. Using reported Ebola case

numbers from infected West African countries (Guinea, Liberia,

Sierra Leone), the census-travel model provided risk estimates

for Ebola virus introduction in parcels (census tracts) for the

entire USA, highlighting Texas, and metropolitan Dallas

regions (figure 4c–e). The model captures the general travel pat-

tern from the source countries, predicting several high-risk

areas across the USA including the precise census tract where

an introduction occurred. A Liberian man inbound from

Africa had developed symptoms after arrival into the USA

and sought medical attention at the nearest hospital to his resi-

dence (location of apartment complex and hospital indicated,

figure 4e). Linking medical facilities with areas at high risk for

introductions can assist in prioritizing training and detection
services for new emerging diseases. Figure 4 also illustrates

the flexibility of the census-travel model in predicting disease

introduction risk at various spatial scales, i.e. state, county,

census tract, TRS (township-range-section).

Additional model validation for plant pathosystems at the

TRS level have been included in electronic supplementary

figures S1 and S2, highlighting the prediction accuracy and

reliability of the census-travel model. For example, the census-

travel model was used to predict CLas introduction into

California in 2010. HLB was initially detected in Southern

California in 2012 (2 finds) and again in 2015 (15 finds). The

census-travel model estimated the introduction risk to be

greater than 0.65 (on a standardized 0–1 scale) in approxi-

mately 4.6% of the TRSs covering Southern California.

Assuming that 300 TRSs (i.e. 5% of the Southern California

TRSs) are selected completely at random for HLB survey, the

probability that all TRSs from the initial 2012 and 2015 HLBþ
detections are included is 0.00000536 ( p , 0.001), according

to binomial probability theory. On the other hand, selecting
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the top 5% highest risk estimates from the census-travel model

for survey, all detected HLBþ TRSs will be covered.

(c) Online model interface
An interactive graphical user interface (https://epi-models.

shinyapps.io/Census_Travel/) was created in Shiny (web
application framework for R) to allow users to parametrize

the model via multiple input screens, execute it and inspect

graphical outputs of source and endpoint connections and

risk maps for introductions into the USA (electronic sup-

plementary material, figure S3). We have compiled a list of

global pathogen/disease datasets (electronic supplementary

https://epi-models.shinyapps.io/Census_Travel/
https://epi-models.shinyapps.io/Census_Travel/
https://epi-models.shinyapps.io/Census_Travel/
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material, table S1) for online model demonstration and test-

ing. The user can select various pathogen(s)/disease(s) to

investigate or upload their own global pathogen data. For

each pathogen of interest, the user can define the relative

weightings for a multi-pathogen survey approach. Addition-

ally, components such as weighting for source/adjacent/

outbound travel, census year for socioeconomic and demo-

graphic input data (i.e. retrospective versus current

introduction risk analyses), US endpoint state(s), land

parcel type (spatial risk output level) and traveller details

(age, gender, etc.) are available to the user to run the

census-travel model under different scenarios. Possible intro-

duction pathways between source countries and endpoint

areas can be further investigated using the integrated three-

dimensional interactive map via a Google Earth interface.

This interface allows the user to visually explore which

country has the largest contribution of risk, as well as relative

risk contributions by country, indicated by bar heights

extending away from each origin country (electronic sup-

plementary material, figure S3B). The user can also select

the granularity of the on-screen maps to visualize initial

output. The selected visual granularity does not affect the

output file which contains all output data requested. The

output files are available for download, and can be linked

to a GIS mapping programme to display maps at user-ident-

ified spatial scales. The same output files can be used to

develop surveillance programmes using the risk ranking to

apportion resources (i.e. the number of surveyors, samples

to be taken) within available manpower and fiscal con-

straints. An informative documentation file is also provided

to assist users with running the model.
4. Conclusion
The census-travel model allows the user to explore potential

points of introduction of a wide range of exotic biota, includ-

ing contagions such as plant, human and animal disease

pathogens. To our knowledge, this is the first demonstration

that integrates global travel data to predict/propagate patho-

gen introduction risk at fine spatial scales for efficient survey

design and implementation (e.g. census tract or TRS),

whereas all other methods calculate risk at coarser county

or state scales. This modelling framework is highly flexible,

and can be similarly employed to estimate introductions in

other countries and various endpoint scales (i.e. land parcel

size) when detailed travel and census databases become

available. The versatile model has a multitude of direct

applications and potential for extensions.

We have initially focused on international travel as the

primary driver of pathogen introduction, i.e. primary

spread. Possible extensions to the census-travel model

include incorporating international trade. However, there is

a significant lack of publicly available, comprehensive trade

data on the global scale currently, which adds tremendous

difficulties on conducting rigorous international trade path-

way analysis. After arrival at a particular port-of-entry, data

on the distribution towards secondary and tertiary points

for dissemination are typically proprietary, if it exists at all,

and thus, the risk output spatial scale would require aggrega-

tion to large scales (i.e. county or state level), losing the

granularity of the census-travel model for efficient survey

design and implementation.
The census-travel risk map highlights the potential areas

for introduction to optimize resource allocation for a surveil-

lance programme. However, the chance of introduction is still

a stochastic process and international travel may not be the

only contributing factor for pathogen introduction. Further-

more, identification of detected infections resulting from

primary versus secondary spread is not always clear, due

to lack of reporting and potential sampling bias. Depending

on the pathosystem, particularly after initial introductions,

other risk factors should be taken into account to prioritize

survey programmes to consider secondary spread mechan-

isms. To that end, we have incorporated the census-travel

model as a major risk component of other risk-based

models that are used to drive pathogen surveys. For example,

we have incorporated census-travel risk in the PPV risk-based

survey model, generated annually since 2013 for New York

State, which serves as the basis of the PPV eradication and

early detection survey in New York and California. Census-

travel risk has also been incorporated into the ACP/HLB

risk-based survey models for California, Florida and Texas.

Resulting surveys over the past 7 years have led to the discov-

ery of greater than 1200 detections of CLas-infected trees in

California’s Los Angeles Basin (electronic supplementary

material, figure S2). Many of the high-risk introduction

TRSs capture the HLB finds in the early years, although the

predictability by the census-travel model alone decreases

gradually after HLB establishment and subsequent secondary

spread increases. The model has also served as the basis of

the Florida risk-based survey for multiple citrus pathogens

conducted yearly by a joint state–federal Cooperative

Agricultural Pest Survey (CAPS).

Additionally, the model output can be used to inform

epidemiological calculations. After the contagion is found,

pathogen incidence can be estimated based on survey inten-

sity metrics [25,26]. Furthermore, due to the probabilistic

nature of the model, it can be used as the spatio-temporal

starting point for modelling the potential spread of patho-

gens via epidemiological models or estimating the contact

ratio within an existing area. For example, by integrating sus-

ceptible host population densities in an area of concern (data

source: US census) and social interactions (distances to

schools, shopping, restaurants and radii of probable work

travel distances, etc.), we can estimate the contact ratio. Con-

tact ratio can be combined with duration of infectiousness

and R0 of the contagion to predict spatial and temporal

spread into surrounding areas. Such estimations can also

serve as a driver for responding to potential outbreaks.

Response can involve logistical planning such as staging

manpower and resources in strategic locations of high risk

and potential spread as an early response to control or

mitigate the pathogen.
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