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This preface forms part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: epidemic forecasting and control’.

This theme issue is linked with the earlier issue ‘Modelling infectious disease

outbreaks in humans, animals and plants: approaches and important

themes’.
1. Introduction
The twenty-first century has already seen many infectious disease outbreaks

in human, animal and plant populations, including the outbreak of

plague in Madagascar in 2017 [1], outbreaks of Foot and Mouth disease in

countries including the United Kingdom [2,3] and Japan [4], and the outbreak

of olive quick decline in Italy due to the bacterial pathogen Xyelella fastidiosa
which was first detected in that country in 2013 [5]. In §2d of the main

introductory article of this pair of theme issues [6], we describe three of the

main uses of epidemiological models today, namely: (i) guiding surveillance;

(ii) epidemic forecasting; and (iii) assessing the potential impacts of interventions.

These analyses are increasingly carried out in real-time when outbreaks are

ongoing [2,7–15].

In this theme issue, we present articles about epidemic detection, forecasting

and control at different stages of an outbreak by researchers from across the

complementary fields of mathematical epidemiology in human, animal and

plant systems. The questions that models are used to address inevitably

change throughout an outbreak, according to the needs of decision makers

and/or public health teams. Questions that are considered in this theme issue

include the following.

Before and early in an outbreak:

(i) how vulnerable is the population to disease, where will the pathogen

arrive and where should surveillance be focused? [16–18],

(ii) which surveillance method should be used? [10,19],

(iii) what is the current outbreak size, and where is the pathogen now?

[20,21],

(iv) where and how can interventions be introduced to eradicate the patho-

gen quickly? [22], and

(v) which data and resources are required to allow forecasting and control

to be performed effectively? [10,20,23].
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Figure 1. (a) Epidemiological models can be used to predict the impacts of current and proposed disease control measures in populations of humans, animals and
plants. As an example of an intervention, fungicides are applied to banana plantations in Costa Rica 40 – 80 times per year to control Black Sigatoka disease, which
has been exacerbated by climate change [26]. Here, bananas in another country—Columbia—are being washed prior to packing. Credit: David Bebber, 2017. This
photograph is also the cover image of the linked theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important
themes’. (b) Complex epidemiological models require detailed datasets for accurate parametrization. Here, a visualization of air traffic routes over Eurasia, which
could be used to inform travel rates or connectivities in models of global pathogen transmission (e.g. [17,27]). Credit: Globaı̈a, 2011. This photograph is also the
cover image of this theme issue. (Online version in colour.)
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Once a major epidemic is ongoing:

(vi) how transmissible is the pathogen, by which trans-

mission routes is it spreading, and how many cases

will there be? [23–25],

(vii) how effective are current control efforts (figure 1a)?

[28], and

(viii) which interventions should be introduced, and how

should they be adapted as the epidemic continues?

[18,22,24,28–30].

At the end of a major epidemic:

(ix) can the epidemic be declared over, or do hidden

cases remain in the population? [20,31].

2. Requirements for outbreak modelling
In order to answer the types of questions outlined above, two

important components are required. First, a model designed

to answer the specific questions of interest is needed. For

example, to predict the effects of interventions that are inher-

ently spatial, such as culling all hosts within a fixed radius of

known infecteds—a commonly used control for outbreaks in

animal [32,33] and plant [34,35] populations—a spatially expli-

cit epidemiological model is required. As described in the

Introduction to the theme issue ‘Modelling infectious disease

outbreaks in humans, animals and plants: approaches and

important themes’ [6], a suite of modelling frameworks has

been developed. For example, for representing outbreak

dynamics, compartmental models that track the numbers of

individuals in different infection or symptom states [36–39]

or renewal equations that count the numbers of infections

[40–42] can be used. For modelling disease surveillance, a

number of statistical approaches have been designed [19,21,43].

Second, data relevant to the ongoing outbreak are required

so that the model can be parametrized. To estimate the values

of transmission parameters, temporal data are usually needed,
such as time-series data describing the number of new cases in

each time period (e.g. [44]). Because more data become avail-

able as an outbreak progresses, this leads to parameter

estimates that change over time [45,46], and even to questions

surrounding when parameters are known with sufficient cer-

tainty to allow action to be taken [45,47]. In certain scenarios,

genetic data can provide information on temporal variables

such as transmission rates between hosts or locations and

rates of pathogen evolution [48–50]. The increasing complexity

of models that are developed has led to the requirement for

more data so that the models can be parametrized accurately,

often including detailed datasets such as the precise locations

of hosts in the landscape or travel routes and frequencies

between different regions (figure 1b).

Data availability is extremely important. Despite well-

documented instances in which crucial data were unavailable

to modellers, such as during the early response to the 2014–

16 Ebola epidemic [51], publically available datasets (such as

those in the Project Tycho database [52]) and computing code

(e.g. the code underlying the Nextstrain pathogen evolution

tracker [53]) are increasingly common. Teaching tools such

as the recent book by Ottar Bjørnstad [54] are introducing

more mathematical modellers to epidemiological modelling.

These advances are permitting the questions outlined above

to be answered more accurately for pathogens in populations

of humans, animals and plants.
3. Outlook
Collaboration between modellers, experimental or clinical

epidemiologists and policy makers has been recommended

in an attempt to build a framework that will allow outbreaks

to be managed optimally [15,39,55]. However, collaboration

between epidemiological modellers focused on different

host types is encouraged more rarely [56]. Distinctions

between different human, animal and plant populations
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and the pathogens that cause disease in those populations,

such as the lack of adaptive immunity in plant hosts unlike

in vertebrate animals [57], demand that certain research ques-

tions can only be addressed by modellers who are experts in

particular systems.

However infectious disease outbreaks in humans, animals

and plants also share many similarities [6]. Most of the ques-

tions addressed in this theme issue are relevant not only to

particular pathogens in specific systems, but to almost all out-

breaks irrespective of the type of host. As a result, we contend

that increased collaboration between mathematical epide-

miologists interested in infectious diseases of humans,

animals and plants will lead to improved mathematical
tools. Partnerships between modellers from different disci-

plines, combined with interaction with epidemiologists and

decision makers, will permit epidemic responses to be per-

formed most effectively.

We hope that this theme issue serves as a foundation on

which to build this unified approach.
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