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Livestock movements are an important mechanism of infectious disease trans-

mission. Where these are well recorded, network analysis tools have been used

to successfully identify system properties, highlight vulnerabilities to trans-

mission, and inform targeted surveillance and control. Here we highlight the

main uses of network properties in understanding livestock disease epidemiol-

ogy and discuss statistical approaches to infer network characteristics from

biased or fragmented datasets. We use a ‘hurdle model’ approach that predicts

(i) the probability of movement and (ii) the number of livestock moved to gen-

erate synthetic ‘complete’ networks of movements between administrative

wards, exploiting routinely collected government movement permit data

from northern Tanzania. We demonstrate that this model captures a significant

amount of the observed variation. Combining the cattle movement network

with a spatial between-ward contact layer, we create a multiplex, over which

we simulated the spread of ‘fast’ (R0 ¼ 3) and ‘slow’ (R0 ¼ 1.5) pathogens,

and assess the effects of random versus targeted disease control interventions

(vaccination and movement ban). The targeted interventions substantially out-

perform those randomly implemented for both fast and slow pathogens. Our

findings provide motivation to encourage routine collection and centralization

of movement data to construct representative networks.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: epidemic forecasting and control’.

This theme issue is linked with the earlier issue ‘Modelling infectious disease

outbreaks in humans, animals and plants: approaches and important themes’.

1. Introduction
The ‘static network’ concept of a population as a set of ‘individuals’ (nodes) with

immutable contacts (links) between them is now well established in infectious

disease modelling. The network representation occurs naturally because the ‘indi-

vidual’ is typically well defined (e.g. a person, animal, city, herd or farm) and the

number of potentially infectious contacts per individual is usually few [1–5]. While

there are a few studies for human diseases that include comprehensive, explicit
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network data [6], more frequently, these are either generated

indirectly (for example, using mobile phone data or gravity

models to predict commuter flow [7–10]) or are explicit but at

small geographical scales [11,12]. By contrast, in Great Britain

(GB), cattle movement data have been recorded for individuals

on a daily basis for almost two decades [13]. This data richness

has presented both challenges and opportunities for the appli-

cation of network analyses in infectious disease epidemiology

[4,5]. Similar livestock data now exist in many other countries

[14–20]. However, they remain rare in emergent economies

where disease burden is often high and zoonotic risk is more

pronounced due to the high proportion of people who live

and work in close contact with livestock [21]. About one billion

of the world’s poorest people (earning less than ,US$2 per day)

depend at least partially on livestock for their livelihoods [22],

making the trade of livestock and the freedom to move livestock

to access natural resources vital in many impoverished commu-

nities [23–25]. In many regions, such as sub-Saharan Africa,

there are frequent but poorly recorded cross-border movements

[26–28] and, when coupled with poor within-country knowl-

edge of livestock movements, this creates risks for

international pathogen transmission.

Though network analyses would be greatly aided by sys-

tems for comprehensive routine recording of between-farm

and market movement, as occurs in GB and elsewhere, in

countries with developing infrastructure collecting these

data can be onerous and costly and requires well-evidenced

justification. Here, we provide an overview of the role of net-

work analysis in epidemiology, paying particular attention to

the challenges of exploiting extensive but fragmented data.

These insights are used to analyse livestock movements in

northern Tanzania, where there is a high burden of livestock

disease including zoonoses [29–35], no formal livestock tra-

ceability system implemented at a national level and

limited resources for disease control. We demonstrate the uti-

lity of our network by identifying nodes to target disease

control and surveillance interventions, considering both fast

and slowly transmitting pathogens, and interrogate their effi-

cacy through simulation, demonstrating substantial potential

benefits in reducing disease spread.
2. Fundamental network concepts applied to
livestock diseases

(a) Centrality measures and transmission patterns
Network centrality measures originated in social science [36]

and are used to quantify the importance of nodes and links in

a network, with obvious applications to identifying disease

risks [19,37–41]. Common measures include degree centrality

(the number of links associated with a node1), betweenness

centrality (the number of times a node or link is traversed

by the shortest paths between all other node pairs) and eigen-

vector centrality (loosely, a measure of how connected a node

is to well-connected neighbours).2 Network centrality

measures have been used to analyse livestock movement

data from many countries, with each using different types

of data source [4,17,40–43]. One example showing the rel-

evance of all three of these centrality measures comes from

the analysis of the costly [44] 2001 foot-and-mouth disease

(FMD) epidemic in GB. First, a small number of ‘cull ewes’

were sold and transported long distance across GB; these
were responsible for seeding virus into many otherwise

low-risk areas [45]. These seeding movements are a character-

istic of ‘small world’ network behaviour [1] with the

long-range movements acting as links with high-betweenness

centrality [45,46]. Second, Longtown auction market (the

largest in GB) played a dominant role in spreading disease

[47], demonstrating the importance of high degree centrality.

Third, since the epidemic, prohibition of direct market-to-

market livestock movements means that some farms now

act as ‘middlemen’ between markets, representing a risk

that could be effectively targeted to restrict disease spread

[4,48]. This role, linking highly connected nodes, is a

well-recognized feature of high eigenvector centrality.
(b) Network dynamics
In a static network, the infection pressure from a single indi-

vidual is reduced over time as each daughter infection ‘uses

up’ the link it was infected over [49,50]. Further, the com-

ponents of the network (groups of nodes which can reach

each other) are well defined. In dynamic networks, links

can shift between individuals over time (rewiring), nodes

can appear or disappear and the components of the network

can change in size and composition. Rewiring a link away

from an infected individual has the potential to expose

another susceptible individual, thus increasing the prob-

ability of disease persistence [51,52]. Link dynamics also

greatly complicate measures of network structure. For

example, for an SIS infection process on a static network,

where susceptible individuals (S) can become infected (I )

and eventually recover to susceptible again, the eigenvector

centrality scores of the nodes of the network contact matrix

represent the expected proportion of time those nodes are

infected over the long term3. This is the case so long as the

probability of recovery before re-infection is high (e.g. if the

density of infected nodes is always low, or the recovery

time is substantially shorter than the time between infected

generations). However, livestock movements vary daily, sea-

sonally and from year-to-year. Contact patterns between

farms and therefore eigenvector centrality measures can

change dramatically depending on the season and stochastic

progression of the epidemic. This influences epidemic spread

[4,13,18,51], an effect also seen in human diseases [14,53].

Individual variability in disease progression and severity

will also influence disease generation times and therefore

what movements are likely to cause infection spread. Thus,

predictions of node importance and targeting can depend

strongly both on the dynamic properties of the network

and the properties of the underlying disease, making the

identification of general principles for the targeting of control

more challenging (e.g. [54]; also electronic supplementary

material).

Livestock movements are also an example where the

actual contact occurs episodically. Episodic behaviour is a

subject of considerable study in the network literature,

especially where there are patterns of concentrated bursts

(burstiness) separated by long waiting periods [55–57].

While an infection may itself cause episodic activity, it is

most frequently studied as a property of the underlying net-

work. Episodic activity has been shown to slow an epidemic

on simulated [58] and real networks [59] but can also increase

epidemic speed, for example, due to observed correlations

between the topology of the network and the frequency of
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episodic contacts [60]. Epidemic spread also depends on

within-node infection dynamics; in a simulated avian influ-

enza outbreak, patterns of recorded vehicle movement

between farms could either slow or accelerate pathogen

spread, depending on the disease parameters and detection

threshold at the farm level [61].

Infection events themselves can also change the network

structure. If the perceived jeopardy is sufficiently high,

rumours of pathogen spread may change contact patterns

[62,63]. For livestock, farmers may be inclined to sell infected

animals due to their condition or may be restricted from sell-

ing animals until the farm is officially declared disease-free

[64]. In human disease, modelling analyses that included

changes in the contact process over the course of the recent

West African Ebola epidemic were used to inform changes

in policy [65], highlighting the relevance for detailed datasets

on contact patterns and their changes over time, both

routinely and in response to an outbreak [66].

(c) The role of pathogen sequence data for relating
transmission networks to livestock networks

Although livestock movements tell us about potentially infec-

tious contacts, the relationship between these contacts and

the transmission network of actual infectious contacts is

only partially understood. Duration of contact, heterogeneity

in immune response and environmental conditions are some

of the factors that could affect which livestock movements

transmit infection. The growing availability of high-coverage

pathogen sequence data provides an unprecedented opportu-

nity to quantify this relationship [67,68]. A number of tools

have been developed to estimate transmission from genetic

data [69–78] and new tools continue to be developed

[69,73,79]. However, there remain many challenges [80–84].

A key limitation is that pathogen evolution needs to occur

on a similar or faster timescale to the disease generation

time in order to infer the direction of transmission [80]. Con-

sidering larger epidemiological units (e.g. farms rather than

animals) can alleviate this problem since the generation

time will be concomitantly longer [73,74,77]. Epidemiological

information is still required to estimate transmission from

genetic data and contact network data are important when

trying to identify the most likely transmission events

[85,86], but there are few tools to formally integrate these

[87]. Phylodynamic approaches that leverage all available

data could provide new insights into pathogen transmission

and result in more targeted and improved control interven-

tions, but they must overcome the challenge of appropriate

weighting of the often biased and/or fragmented data.

Nevertheless, even limited genetic data integrated into trans-

mission models can improve epidemiological insights [88]

and, in situations where other data are fragmented or sparse,

sequence data can greatly strengthen the understanding of

transmission and inform control.
3. Exploiting network properties
(a) Evaluating system resilience
Invasion of a livestock network by an infectious pathogen has

the capacity to impair or destroy the function of individual

nodes, either by the direct impact on livestock or by the

restrictions resulting from control efforts. The impact on
network structure can be considerable, in extremis resulting

in the destruction of the network as a functioning entity.

For infectious diseases, interventions such as movement

restrictions, culling or prolonged herd testing are all designed

to reduce transmission, but will also have varying degrees of

impact on livestock movements and potentially impair the

nodes’ role in the network. Such changes have an economic

impact [89,90] and, if sufficiently harmful, can result in

node removal and/or substantial long-term harm to the net-

work. Resilience of a network typically focuses on its ability

to recover, retain the same structure and adapt to maintain

system functionality when exposed to disturbances [91–93].

One approach to eliminate disease, such as during the 2001

FMD epidemic, is to disrupt the network by preventing

trade for a period (link removal). These movement restric-

tions, however, can result in excessive livestock welfare

issues, welfare culls, and significant long-term industry

damage [94]. Less disruptively, lasting adjustments (link

rewiring) can minimize the impact of highly influential

nodes, while maintaining overall trade function. An example

of this is the implementation of high biosecurity and com-

partmentalization in some poultry companies to isolate

themselves from disease incursion despite close physical

proximity to infected farms, allowing operations to continue

in the face of national restrictions [95].

Minimizing the number of affected nodes, or protecting

particular ones, may be important for resilience. In dynamic

networks, slowing the rate at which contacts occur can slow

the rate of pathogen spread and maintain communication

between nodes [4], improving the network’s resilience. Con-

versely, reducing contact rates can also increase pathogen

spread [61]. Additional complications arise when considering

multiple layers of a network and multiple diseases that

spread on it. Ultimately, targeting control measures that con-

sider the spread of multiple pathogens on a network could be

more efficient and robust. Additionally, prior to designing

and imposing changes on a network, particularly in econom-

ies where livelihoods are heavily dependent on a functioning

livestock movement network, the network’s resilience to

proposed changes should be assessed.
(b) Exploiting network data to improve surveillance
The concepts of network resilience can be used to improve

surveillance. Albert et al. showed the extent to which different

types of complex network can be resilient to breakdown

(which makes disease difficult to control) or vulnerable to

breakdown (which makes the disease easier to control) [96].

Nodes (or links) can be removed from a network randomly

or using targeted measures such as removing nodes that

are highly ranked by one or more centrality measure. In

terms of surveillance, random and targeted node removal

can be compared to non-targeted and targeted surveillance

[4]. Network analysis can thus provide an analytical frame-

work to predict which farms to test in targeted surveillance

strategies and estimate net gains in performance. While gen-

eric network analysis can be valuable [5], it can be made

more robust by an understanding of the characteristics of

the real system [97] and the dynamics of the considered

pathogen [48]. Network analysis has been used to inform tar-

geted surveillance strategies in many livestock systems

[43,97–100], leading to considerable gains in surveillance effi-

ciency [101,102]. Analyses of GB livestock networks have
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identified highly connected premises with a high risk of both

becoming infected with, and spreading, disease [38], and

have used simulations to show how targeted surveillance

could reduce the size of potential epidemics [4]. For Swedish

cattle and pigs, a bespoke metric was identified to consider

the timing and sequence of possible incoming and outgoing

infection chains [14]. This metric was subsequently expanded

to consider the size of the in and out components and then

used to analyse the German pig trade movements network

to identify high-risk farms [15]. Such data are not typically

available in low resource settings; having such network

knowledge could enable the use of cost-efficient, network

measure-targeted surveillance for disease control but needs

justification for the additional cost and effort required.

(c) Multiplexes, multi-layer networks and multi-host
pathogen systems

Complex systems are inherently multi-dimensional, with

components linked via a complex set of often directed and

weighted interactions, giving rise to diverse and unpredict-

able behaviours [103]. For infectious diseases, these can

arise when spread occurs by more than one mechanism

(e.g. animal trade, airborne, fomites, sharing a resource or

insect vectors), resulting in a multiplex, or where trans-

mission occurs across more than one species, an example of

a multi-layer network. Both can compromise disease control

[104], especially when there are biases in available data or

the ability to exert control [105]. The multiplex representation

was first developed in the social sciences to represent differ-

ent types of interpersonal relationships [106]. It has since

been used in a variety of contexts, including ecological sys-

tems [107], air transport [108], behavioural biology [109]

and epidemiology [110]. In one livestock example, a study

of a dairy system in northern Italy explicitly accounted for

two independent transmission routes: cattle and veterinarian

movements. This study found that at the local-scale veterinar-

ian movements explained the spread of Mycobacterium avium
subspecies paratuberculosis better than cattle movements and

geographical distance failed to capture the impact of veteri-

narian visits [111,112]. This highlights a need to identify the

potentially multiple transmission routes beyond discrete live-

stock movements when collecting data to construct a livestock

network that is representative of a transmission network.

Many pathogens are multi-host and therefore the network

multi-layer. This complication often has severe implications

for humans, livestock and wildlife [113]. Unfortunately,

most analytical frameworks of resilience are unsuitable for

multi-dimensional systems [114], and network resilience can

be influenced by interdependence with other networks

[115]. Recent work using percolation theory to study the vul-

nerability of a system of interdependent networks [116]

shows that the overlap between network layers can improve

network resilience and this makes diseases harder to eradi-

cate [117]. By disentangling system dynamics from system

structure, network characteristics can be identified that influ-

ence resilience [115]. A well-known exemplar is the

transmission of Mycobacterium bovis, the cause of bovine

tuberculosis (bTB), between cows and European badgers

(Meles meles), where the role of different layers can be quanti-

fied by exploiting their spatial patterns (electronic

supplementary material, figure S1) [64]. At finer granularities,

radio-collar data were used to quantify inter- and intra-species
contacts for cattle and badgers [118]; adding a layer of

indirect contacts based on badger latrine locations to this

network showed better correspondence to badger-to-badger

transmission patterns [119].
4. Movement networks where there is a limited
resource for explicit traceability

There are many examples where livestock movement data have

facilitated the planning of disease control and surveillance

[17,19,42,120–122]. Conversely, an absence of movement

information can obstruct disease control [45,123]. In settings

where comprehensive tracing systems are absent, a variety of

methods have been used to quantify livestock movement pat-

terns and construct movement networks. These include the

use of GPS collar data to describe mobility patterns of pastoral

herds and overlaps with wildlife areas [27,43,124,125], house-

hold and market surveys [126], transport vehicle records

[127] and international movement permits [28,128].

Movement permits are used in many countries to certify

livestock health and/or to regulate movement taxes and

have been used to quantify livestock flow and construct

movement networks [128,129]. The often ephemeral and

patchy nature of these records, due to poor archiving or

non-compliance [130], can result in substantial non-random

‘missingness’ that is difficult to quantify. In these cases,

movement permits have been used in conjunction with

household and/or market survey data to estimate the risk

of disease introduction and target surveillance and vacci-

nation campaigns, also illustrating the importance of a

regional disease control approach [28,122,131,132]. Such ana-

lyses have identified traders as key targets for disease control

[130], demonstrated the effects of cattle movement on

regional disease transmission [133], identified increased

risks of bTB with increased herd introductions [41] and,

with serology data, identified the role of between-village

cattle movements in transmitting Rift Valley fever virus [134].

Biased network samples can make reconstruction of

network characteristics difficult. This was addressed in GB

by extrapolating from a small biased network sample via stat-

istical associations between common factors in the network

study and a national population survey [135].

Another approach to network construction is to impose

an underlying model on observed population densities.

Specifically, if census data (populations and locations) are

available or can be estimated, gravity [136] and radiation

[137] models provide two ways of creating network models

of population mobility. While there is ongoing research

regarding their relative merits [138], they share the property

of describing movement in terms of relative population size

and a measure of distance. Gravity models, for example,

describe the probability of a movement occurring in inverse

proportion to the spatial distance from each hub.
5. Evaluating network-based control strategies
for livestock movements in Tanzania

(a) Introduction to the study
Tanzania provides an exemplar of a rapidly developing emer-

ging economy. In northern Tanzania, there is a heavy reliance
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upon livestock for food, traction power, income, savings and

social status. Movements can be over long distances, often on

foot, and occasionally over international boundaries with

multiple levels of market activity [26,85,139,140]. The patho-

gen burden is often high, and this impacts productivity,

creates herd/flock instability and, in the case of zoonoses,

directly affects human health [30,32,33,141–146]. In addition

to protecting human health, reducing the burden of endemic

livestock pathogens to improve livestock health and pro-

ductivity is recognized as a route away from poverty and

necessary to meet global food demands [23,147–153]. Live-

stock sales are also a major source of income in rural

communities [154–156]. In addition to trade between mar-

kets, livestock can be sold privately, borrowed or gifted

between households and are regularly moved to access natu-

ral resources [41,157,158]. A reduction in endemic livestock

disease is therefore paramount to improving livelihoods in

such emerging economies.

Historically, there has been no formal, centralized system

for identifying and tracing the movement of individual ani-

mals in Tanzania; however, a paper movement permit

certifying livestock health is officially required whenever ani-

mals are traded, recording movements from markets, though

not movements to markets. These data are not digitized and

the receipt books are stored at administrative Zonal Veterin-

ary Centres in Tanzania. The aims of this study were to

quantify cattle and small ruminant movements in a large

(97 000 km2) area of northern Tanzania (Arusha, Manyara

and Kilimanjaro regions) using archived, routinely collected

government movement permit data; infer livestock move-

ment networks; and build this information into livestock

disease simulations to inform surveillance and control.

(b) Methods
Summary methods are presented here; for full details see the

electronic supplementary material.

(i) Data source and transcription
Access was granted to archived government movement

permit receipt books at the Northern Zonal Veterinary

Office, Arusha. Movement permit receipt books were selected

for analysis from 2009, 2011, 2013 and 2015. Origin, destina-

tion, number of each species (cattle, sheep or goat) moved

and date were manually entered into spreadsheets from 50%

of the available permits (30 946 permits), of which 19 438

(63%) permits yielded complete data. Only cattle movements

are analysed here.

(ii) Statistical modelling
Cattle movements were aggregated temporally by month and

spatially at the ward level, because origins and destinations

often could not be located at a finer scale. A ward is an

administrative unit of mean area 243 km2 and mean human

population of 12 000 across the 398 wards in the study

regions [159]. We aimed to infer the inter-ward cattle move-

ment network within the study area; movements to outside

the study area and within wards were excluded (local move-

ments from markets are less likely to generate a movement

permit due to non-compliance). The resulting dataset

recorded the movement of 86 195 cattle from 98 origin

wards to 239 destination wards over the 4 sampled years.
Due to a large number of non-randomly missing permits,

it was not possible to use the movement data directly.

Instead, the network was inferred by statistical modelling of

the observed movements. First, to distinguish true from the

artefactual absence of movements (months where an origin

ward sent out no cattle), a zero-inflated negative binomial

(ZINB) generalized linear model (GLM) was fitted to each

origin ward, so that in subsequent modelling steps, move-

ments would be imputed in place of false zeroes. Next,

inter-ward livestock movement was modelled using a

hurdle model. The movement between each pair of wards

in a given month is represented by a two-step process: the

binary event of any cattle being moved, modelled by a bino-

mial generalized linear mixed-effects model (GLMM), and

the number of animals moved, modelled by a zero-truncated

negative binomial (ZTNB) GLMM. Each part of the hurdle

model allowed movement to depend multiplicatively on the

distance between origin and destination wards and their

‘masses’ (human and cattle population sizes), in addition to

other characteristics (electronic supplementary material,

table S1). The combined models can therefore be viewed as

a gravity model of the livestock movement network. Unex-

plained spatial and temporal variation was modelled by

fitting random effects for the origin and destination ward

and for the 48 months.

(iii) Simulated networks
The fitted model was used to simulate monthly movements

among the 398 wards for 1 year, with the number of move-

ments inflated twofold to account for using a 50%

subsample of the data.

(iv) Network measures
The simulated data were used to create an observed year-

aggregated, static, directed, weighted cattle movement net-

work. A spatial contact layer, connecting all adjacent wards,

was added to the market movements network as a simplified

means of accounting for contacts and movements between

wards that are not represented by the movement permit

data. Social network analysis was applied to the resulting

multiplex network to identify nodes with high in-degree,

out-degree, betweenness and eigenvector centrality where

disease control interventions could be targeted.

(v) Simulating disease outbreaks and control on the network
The spread of a ‘fast’ (R0 ¼ 3) and ‘slow’ (R0 ¼ 1.5) pathogen

was simulated on the multiplex to assess the effects of disease

control interventions on the spread of pathogens with varying

infectiousness [160]. This was achieved by running a stochas-

tic SIR compartmental model within each ward. The total

number of cattle in the susceptible (S), infectious (I ) and recov-

ered (R) compartments was updated daily, while cattle were

moved monthly between wards. The two sources of simulated

cattle movement were long-distance movements via the

market network and short-distance movements between

adjacent wards to account for unobserved local movements

(for a full description, see electronic supplementary material;

an animation of a simulated fast epidemic is available in the

data repository (http://dx.doi.org/10.5525/gla.researchdata.

733)). Two types of intervention were trialled: proactive vacci-

nation of 70% of the cattle in a ward before the start of the

epidemic, and a reactive ban on cattle movements one

http://dx.doi.org/10.5525/gla.researchdata.733
http://dx.doi.org/10.5525/gla.researchdata.733
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month after the start of the epidemic. Vaccine interventions

were applied to all wards, or targeted at 20 (5%) of wards

that were selected randomly, based on their total cattle popu-

lation size or based on their network centrality measures. The

network centrality measures used for targeting interventions

were betweenness centrality, eigenvector centrality and geo-

metric mean degree. The market movement ban was either

implemented in all 111 wards that generated outward cattle

movements in the simulations, and were therefore assumed

to have a market, or were targeted in a subset of 20 of these

wards, the same number as in the targeted vaccination

interventions, and based on the same selection criteria.

(c) Results
The two parts of the hurdle model explained a substantial pro-

portion (binomial: 40%; ZTNB: 24%) of the spatial and

temporal variation in cattle movement, with movement

being more probable over shorter distances and into wards

containing a secondary market, and the number of animals

moved being most strongly associated with the agro-ecological

system of the origin wards and the presence of a primary or

secondary market in the origin or destination ward (electronic

supplementary material, table S1 and figure S2). All variables

were retained in the hurdle model that was used to simulate

the monthly cattle market movements.

(i) Network and node measures
The multiplex network is fully strongly connected (all wards

can be reached by all other wards) and displays ‘small world’

properties. The spatial network layer connects all adjacent

wards and the permit-related movements reduce the network

diameter (longest path length between two wards) from 18

on the spatial network to 12 (see electronic supplementary

material, table S2 for cattle market, spatial and multiplex

networks summary statistics).

The distributions of the three node centrality measures

that were investigated (betweenness, eigenvector and geo-

metric mean degree) were strongly right-skewed. This

indicates that the multiplex may be sensitive to targeted dis-

ease control interventions at the highly influential nodes.

Figure 1 shows the geographical distribution of the top-

ranked wards for each centrality measure, showing the
potential for substantial differences in the effectiveness of tar-

geting controls based on centrality measures due to their

geographical distribution.

(ii) Simulated movements and pathogen transmission
Mean reductions in population cumulative incidence (PCI)

after 1 year for the fast and slow pathogens for each interven-

tion scenario are shown in figure 2. Reductions are relative to

PCI reached after 1 year with no intervention (fast: 24%; slow:

1.7%). The higher the reduction in PCI, the more effective the

intervention. The list of trialled interventions and associated

PCI are given in electronic supplementary material, tables

S3 and S4. All simulated interventions had a greater

reduction in PCI for the fast pathogen example compared

to the slow, although the ranking of intervention efficacy

was similar for both fast and slow pathogens. The movement

ban implemented in all 111 market wards (high economic

and logistical costs) performed only slightly better than

when targeted in only 20 wards using network measures,

and network-based targeting was more effective than select-

ing wards using population size or randomly, although there

was no substantial difference in performance between the

network measures. Vaccination applied to all wards achieved

a 100% reduction in PCI for both fast and slow pathogens,

while the best-performing targeted intervention, degree cen-

trality, achieved reductions in PCI of 58% (fast) and 31%

(slow). The ‘common sense’ intervention of targeting using

the total number of cattle performed almost as well as

degree centrality, and similarly to the second-best network

measure, betweenness, but was much less efficient, requiring

3.5� more vaccine doses than degree centrality. Targeting

vaccination using eigenvalue centrality performed relatively

poorly, particularly against the slow disease, where its

performance was comparable to selecting wards randomly.
6. Discussion
It is well established that the network analysis of livestock

movements can be used to better understand and control dis-

eases of commercial and zoonotic importance in higher

income countries, where livestock industries tend to be

highly structured and movement data are centrally collected
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and digitized. It is less clear that such approaches are valu-

able in lower income countries, where movement data are

typically unavailable and the cost–benefit ratio less compel-

ling. By exploiting movement permit data collected for

health certification and tariff purposes, we have shown that

even highly fragmented information about movement pat-

terns can be used to infer network structure. By simulation,

we show that the resultant inferred network has the potential

to advance strategic understanding. These simulations corro-

borate that simple network measures can be used to identify

good targets for surveillance and disease control that would

be appropriate for a range of diseases and reduce the impact

of infectious disease at considerably reduced cost and effort.

These results could be used to form simple and practical

guidelines that could be exploited immediately if, for

example, a movement ban was initiated and government

needed guidance on where their limited re-enforcement

resources should be targeted, although they should not be

used for more specific predictions without further data and

analysis. They also provide a foundation for deeper research

effort, highlighting where the collection of additional empiri-

cal data would be useful. For example, the substantial

changes in network metrics that result when the spatial

spread between wards is incorporated highlight the need to

augment movement data with more extensive information

about local patterns of contact. The homogeneous mixing

assumption used at the within-ward level has previously

been shown to be useful for developing strategic understand-

ing, even in highly spatially driven scenarios [161], but more

detailed recommendations would require modelling of
within-ward heterogeneity supported by higher resolution

data. This assumption may be less realistic for small urban

wards where cattle are tethered, though in larger pastoral

and agro-pastoral wards, shared natural resource points

might make homogeneous mixing more appropriate (GL

Chaters 2017, unpublished data, and [158]). Similarly, while

the assumption that cattle-to-market movements occur from

adjacent wards is consistent with two authors’ expert knowl-

edge of livestock management practice (O.M.N. and E.S.),

verification with further data collection is an important next

step. Finally, simulated movements are dynamically gener-

ated based on the random variation generated within the

stochastic simulation models. We have not investigated in

our dataset evidence of dynamic patterns such as changing

network patterns over time because the patchy missingness

in our data limits the complexity of the movement model. If

more complete data became available for analysis, it would

be beneficial to assess the evidence for link rewiring through-

out the year as this could indicate where control measures

should be targeted at specific times. Further potential

model deficits include the similar impact of targeting control

measures when comparing across centrality measures. This

may in part be because of the relative crudeness of the disease

model; in a more sophisticated model, where the timescales

and frequencies of links were considered in greater detail,

more substantial differences might be apparent. Similarly, a

more explicit model of spatial spread might also prove

discriminatory. Finally, the addition of pathogen sequence

data where these are available would provide valuable

confirmation of the role of network structure.
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7. Conclusion
Despite this demonstration of the value of our inferred net-

work approach, we note that data generation was the result

of substantial, time-consuming effort, and the resultant

inferred network, while useful, has limitations as noted

above. Mobile broadband technology is becoming increas-

ingly accessible and coupled with the availability of

inexpensive scanning devices, the adoption of routine,

robust digitized data recording should be achievable. In

this paper, we have shown the benefits of having these data

to be potentially substantial. This will be particularly perti-

nent in emerging economies such as Tanzania, where

changes in industry structure are likely to have unanticipated

disease impacts and will require regular monitoring.
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Endnotes
1For directed networks like livestock movements, where transmission
is overwhelmingly in the direction of the movement only, the geo-
metric mean of in- and out-degree can be used.
2See electronic supplementary material, for a disease-relevant
interpretation.
3For an irreducible positive definite matrix (e.g. a contact matrix
where all nodes belong to a single strong component), the Perron–
Frobenius theorem applies and the matrix is guaranteed to have a
unique largest eigenvalue (and positive eigenvector). For directed
networks, strong connectivity amongst all nodes is required (all
nodes can reach each other reciprocally, i.e. are members of the
same strong component). Where this is not the case, eigenvector cen-
trality is not well defined, and other network measures need to be
considered (for example, by using singular values).
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