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Abstract

Background: Activin A and follistatin exhibit immunomodulatory functions, thus affecting autoinflammatory processes
as found in rheumatoid arthritis (RA). The impact of both proteins on the behavior of synovial fibroblasts (SF) in RA as
well as in osteoarthritis (OA) is unknown.

Methods: Immunohistochemical analyses of synovial tissue for expression of activin A and follistatin were performed.
The influence of RASF overexpressing activin A on cartilage invasion in a SCID mouse model was examined. RASF and
OASF were stimulated with either IL-13 or TNFa in combination with or solely with activin A, activin AB, or follistatin.

Protein secretion was measured by ELISA and mRNA expression by RT-PCR. Smad signaling was confirmed by western

blot.

follistatin.

local inflammatory joint environment.

Results: In human RA synovial tissue, the number of activin A-positive cells as well as its extracellular presence was
higher than in the OA synovium. Single cells within the tissue expressed follistatin in RA and OA synovial tissue. In the
SCID mouse model, activin A overexpression reduced RASF invasion. In human RASF, activin A was induced by IL-13
and TNFa. Activin A slightly increased IL-6 release by unstimulated RASF, but decreased protein and mRNA levels of

Conclusion: The observed decrease of cartilage invasion by RASF overexpressing activin A in the SCID mouse model
appears to be mediated by an interaction between activin/follistatin and other local cells indirectly affecting RASF
because activin A displayed certain pro-inflammatory effects on RASF. Activin A even inhibits production and release of
follistatin in RASF and therefore prevents itself from being blocked by its inhibitory binding protein follistatin in the
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Background

Activin A is a disulphide-linked homodimer composed of
two Pa-subunits (BaPa) of inhibin A, which itself is formed
by an «- and Ba-subunit. The heterodimer consisting of an
a- and Pg-subunit is called inhibin B. Accordingly, two
other forms of activin can be distinguished: activin B (Bgps)
and activin AB (BaPs) [1, 2]. Both activins and inhibins are
members of the transforming growth factor p (TGF-P)
superfamily. Their role in the hypothalamic-pituitary-
gonadal axis is well known [3], but activins are also linked
to inflammatory and fibrotic processes [4]. In marrow
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stromal cells, activin A is upregulated by tumor necrosis
factor a (TNFa), lipopolysaccharide (LPS), interleukin-la
(IL-1a), and IL-1P [5, 6]. In vivo experiments with animals
confirmed the systemic activin A release in circulation after
LPS injection [7, 8]. The activin A increase was biphasic
and followed by the release of the activin A-binding protein
follistatin [7, 9]. The effect of activin A has been described
as pro- as well as anti-inflammatory, depending on the ex-
amined cell type or cellular activation state. For example,
the release of pro-inflammatory cytokines of activated mac-
rophages could be blocked by activin A [10], but quiescent
macrophages were stimulated by activin A to produce pro-
inflammatory cytokines [11, 12].

The role of activin A and follistatin in chronic autoin-
flammatory disorders is not fully understood. There is
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evidence that activin A promotes allergic diseases [13]
and inflammatory bowel disease [14], whereas these ef-
fects could be blocked by follistatin. In inflamed joints
affected by rheumatoid arthritis (RA), activin A was
expressed by synovial fibroblasts (RASF) in the synovial
membrane and upregulated in the RA synovium com-
pared with osteoarthritis (OA) or normal joint tissues
[15, 16]. Elevated activin A levels were also found in the
synovial fluid of RA compared to OA patients [15].
RASF proliferation was elevated by activin A and re-
duced by follistatin [16]. Pro-inflammatory cytokines like
TGEF-B, TNFaq, and IL-1 increased the activin A produc-
tion in RASF [16]. In a carrageenan-induced mouse
arthritis model, follistatin injection reduced macrophage
infiltration into the synovium and inhibited proteoglycan
erosion [17].

Due to the clues pointing towards a role of activin A
in RA, the aim of the study was to investigate the role of
activin A and follistatin in the inflammatory and matrix
degrading response of RASF and the known feedback
loop between activin A and follistatin described for other
cell types.

Methods

Tissues and cells

RA/OA synovium and OA cartilage were obtained dur-
ing knee replacement surgeries (Agaplesion Markus
Hospital). RA patients fulfilled classification criteria of
the American College of Rheumatology [18, 19]. Human
OA cartilage with macroscopically intact surface was cut
[20] and in part snap-frozen for hematoxylin/eosin stain-
ing (H/E), for which areas with normal histological
structure were used. Sample collection of the synovium
and cartilage was approved by the local ethics committee
(Justus Liebig University Giessen), and all patients gave
written informed consent.

Synovium samples were snap-frozen, used for paraffin-
embedding, or digested (1 h Dispase-II-solution, 0.1 ml/
ml, PAN-Biotech, Germany) [21] for fibroblast isolation.
Cells were cultured up to passage 5 in DMEM (PAA-La-
boratories, Germany) containing 10% heat-inactivated
fetal calf serum (FCS, Sigma-Aldrich, Germany), 1 U/ml
penicillin/streptomycin, and 1mM HEPES (PAA-La-
boratories) at 37 °C and 10% CO, [21].

Immunohistochemistry

Formalin-fixed 5 pm paraffin sections were deparaffinized,
and antigen retrieval was performed with 4 M hydrochloric
acid (follistatin, f2-microglobulin) or proteinase K (vimen-
tin). The tissue was permeabilized with Triton X-100 and
endogenous peroxidases blocked with 0.3% H,O, in 100%
methanol. After blocking with 10% dry milk, the slides were
incubated overnight with primary antibodies in 2.5% BSA at
4°C: goat anti-human/mouse/rat polyclonal activin A
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(AF338, R&D, Germany), mouse anti-human monoclonal
follistatin (MAB669, R&D, Germany), goat anti-human
polyclonal ACVR2A (A8081) and ACVR1B (A2455) (both
Sigma-Aldrich, Germany), mouse anti-human monoclonal
2-microglobulin (ab54810, Abcam, UK), and mouse anti-
human monoclonal vimentin (M7020, Dako, USA). Slides
were incubated 30 min with secondary antibodies (Histofine,
Medac), and color development was performed with AEC
substrate (Vector Laboratories, USA). For snap-frozen tis-
sues, 5 um acetone-fixed sections were used with the same
procedure.

Activin A overexpression

Recombination vector pAdLox (digested with EcoR1)
was used to generate adenoviral vectors with either the
full-length activin A (for: 5'-CTGTCTTCTCTGGA-
CAACTC-3, rev: 5'-GCAGGGCCTTTTAAAAAGGC-
3’) or the GFP sequence inserted as a control. The
adenoviral vectors were provided as a courtesy of the
University of Pittsburgh. Based on previous experiments,
a multiplicity of infection (MOI) of 100 was used for
RASF or OASF transduction [21]. The absence of virus
in the supernatants after one passage was confirmed by
real-time PCR.

SCID mouse model

Female, 6-week-old Crl-scidBR mice (Charles River,
Germany) were kept under pathogen-free conditions
with water and food ad libitum. Animal experiments
were performed in accordance with the German Animal
Welfare Act and approved by the local government au-
thorities, RP Oberfranken, Germany, 621-2531.1-13/03.
Animals underwent surgery with implantation of 1.5 x
10° SF together with healthy areas of human OA cartil-
age in a carrier matrix (Gelfoam, Pfizer, USA) with up to
four cartilage implants per animal [20]. SCID mice were
sacrificed after 60 days, and implants removed, snap-
frozen, stained (H/E), and used for scoring [20, 22, 23].

Synovial fibroblast stimulation

RASF or OASF were cultured for 48 h. The medium was
replaced and cells stimulated with IL-1f3 or TNFa (10 ng/
ml each; R&D) with or without activin A/AB (15 ng/ml;
R&D) or follistatin (500 ng/ml; R&D) for 15h. Superna-
tants were centrifuged and stored at — 20°C. As control,
stimulation was performed under serum-free conditions.

Protein measurements

Cytokines, matrix-degrading proteinases (MMP), and
growth factors were measured by enzyme-linked im-
munosorbent assay (ELISA, R&D) or Luminex analysis
for IL-6, IL-1p, TNFq, IL-10, VEGEF, IL-12p40, GM-CSF,
IFNy, IL-8, IL-4, IL-2, and IL-5 using the Bead-based
multiplex kit (R&D).
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RNA extraction and cDNA synthesis
RASF were harvested and total RNA extracted (RNeasy
Mini Kit, Qiagen, Germany). Remaining DNA was re-
moved using the RNase-free DNase Set (Qiagen). RNA
concentrations were quantified (Ribogreen RNA quanti-
fication kit, Molecular Probes, Netherlands, or Nano-
drop system, Thermo Fisher) and RNA stored at — 80 °C.
c¢DNA was synthesized using 150 ng RNA, 5 mM Tris-
HCI (pH 8.3, 25°C), 50 mM KCI, 1 mM MgCl,, 0.5 mM
spermidine, 1 mM dithiothreitol, 1mM each dNTP
(Roche, Germany), A260 unit random primer (Roche),
1.6 U/ul RNase inhibitor (Roche), and 1.3 U/ul AMV re-
verse transcriptase (Promega, Germany). Conditions
were 25 °C 10 min, 42 °C 60 min, and 99 °C 5 min. cDNA
was stored at — 20 °C.

Polymerase chain reaction (PCR)

Real-time PCR was performed (LightCycler system, Roche)
using SYBR Green detection including melting curve ana-
lysis. 18S rRNA served as an endogenous control. Primer ef-
ficiencies were tested by the standard curve method (E =10~
Vslope  '— 2,00 + 0.05 was considered acceptable). PCR mix-
ture includes 2 pl cDNA or water, 0.5 uM each primer, 10 pl
2xQuantiTect” SYBR® Green PCR Master Mix (Qiagen), and
MgCl, according to primer efficiency. PCR products were
subjected to a melting curve analysis. Data were analyzed
using the LightCycler analysis software (Roche). Primers in-
clude follistatin for: 5'-GTCGGGATGTTTTCTGTCCAG-
3" and rev: 5'-TGGCATAAGTGGCATTGTCAC-3" (4 mM
MgCl, T, = 50 °C).

For evaluation of activin A receptor type 1 (ACVRI) and
activin A receptor type 2A (ACVR2A), standard PCR was
performed using the Titan One-Tube RT-PCR system (T, =
55°C, Roche) followed by agarose gel electrophoresis (1%).
Primers include ACVRI  for: 5-AGCATCAAC-
GATGGCTTCCA-3, rev 5'-AGTGCTGTCTCCAACATT
GG-3'; ACVR2A for: 5'-GGTGTACAGGCATCACAAGA-
3", rev: 5'-CCAAGAGACCACATTAGCCT-3’; 18S for: 5'-
TCAAGAACGAAAGTCGGAG-3', rev: 5-GGACATC-
TAAGGGCATCACA-3").

Western blot

RASF (n=3) were pre-incubated with serum-free
medium for 2 h before stimulation with activin A for 10
min and lysed after stimulation (10 mM Tris, 150 mM
NaCl, 1 mM EDTA, 0.2% sodium deoxycholate, 1% NP-
40 and protease/phosphatase inhibitors (Roche)). West-
ern blotting was performed with antibodies against total
Smad2 (#5339, CST, UK) and phosphorylated Smad2
(#3101, CST). For detection, secondary goat anti-rabbit
HRP-conjugated antibodies (Dako) and the ECL system
(GE Healthcare, USA) were used. Antibodies against
activin A (mouse anti-human, R&D) and ACVR2A
(A8081, goat anti-human polyclonal, Sigma) were

Page 3 of 11

detected using secondary anti-mouse HRP-conjugated
antibodies (goat anti-mouse; donkey anti-goat, Santa
Cruz). Cyclophilin B served as the loading control.

Statistics

All data are presented as arithmetic mean + standard de-
viation (SD). For comparisons with a single control
group, one-way ANOVA followed by Dunnett’s post hoc
test was performed. Multiple comparisons among several
groups were performed by one-way ANOVA followed by
Bonferroni’s post hoc test. For comparison of two groups
with different treatments and increasing stimulation dur-
ation, two-way ANOVA followed by Bonferroni’s post
hoc test was performed. The assessment of significance
level for pair-wise comparisons was calculated by a Stu-
dent two-tailed t test and Mann-Whitney U test. p
values < 0.05 were considered significant. Statistical cal-
culations were performed and graphics created using
GraphPad Prism.

Results

Detection of follistatin and activin A and their receptors
on synovial fibroblasts

In hyperplastic RA synovium, the number of activin A
expressing cells and presence of the secreted protein in
the extracellular matrix surrounding the cells was higher
compared to OA (n =4) (Fig. 1a, b). Cells at sites of car-
tilage invasion also expressed activin A (Fig. 1c). Activin
A receptor expression (ACVRI and ACVR2A) was com-
parable on cultured RA- and OASF by PCR (Fig. 1d)
and by immunocytochemistry for ACVR2A and 1B in
RASEF (Fig. 1e). In addition, the effect of activin A on the
activin A receptor type 2A (ACVR2A) expression was
evaluated by western blot showing that stimulation with
activin A did not significantly alter ACVR2A expression
in RASF (Additional file 1). Synovial tissue evaluation by
immunohistochemistry showed that only few cells
expressed follistatin (RA and OA, n=3 each Fig. 1f)
compared to the total number of cells and vimentin-
positive fibroblasts (Fig. 1g, h). The synovial lining layer
was mostly negative for follistatin (Fig. 1f).

Effect of activin A on RASF-mediated cartilage invasion in
vivo

In the SCID mouse model, RASF invaded coimplanted
human cartilage as published previously [22]. However,
activin A overexpression in RASF reduced RASF inva-
sion into cartilage compared to GFP controls (p < 0.05)
(Fig. 2a). Due to the limited capacity of OASF to invade
cartilage [22, 24], OASF were pre-activated with IL-1p
and then coimplanted. Activin A overexpression in
OASF did not affect IL-1B-induced invasion. Activin A
overexpression was confirmed by western blot prior to
implantation (Fig. 2c).
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Fig. 1 Detection of follistatin and activin and their receptors on synovial fibroblasts. a Activin A staining of RA synovial tissue compared to b OA
synovial tissue (representative stainings, n =4 each). ¢ Activin A staining at the site of cartilage invasion in RA (n=4). d mRNA of ACVRT was
detectable in all 5 RASF and 3 OASF and mRNA of ACVR2A in all 4 RA- and 3 OASF; here, LS174T cells are shown as a positive control. Negative
control: water instead of RNA. 185 rRNA served as the loading control. e Immunocytochemistry for ACVR2A and ACVR1B protein confirmed the
presence of both receptors on cultured RASF. Positive control: mesenchymal marker vimentin, negative control: matched isotype control. f Follistatin
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Activin A suppresses follistatin

Kinetics of RASF (n = 5) stimulated with activin A at 15
ng/ml showed suppression of follistatin protein secretion
over time (6—42 h stimulation, Fig. 3a). At all time
points, the use of activin A concentrations of 10-30 ng/
ml suppressed follistatin protein expression (shown for
15 h, Fig. 3b). The activin A-mediated follistatin suppres-
sion decreased at concentrations below 5ng/ml activin
A (Additional file 2). The reduction of follistatin RNA
expression was confirmed by real-time PCR for up to 24

h (Fig. 3¢) and after using different activin A concentra-
tions (Fig. 3d). Due to the kinetics, 15 ng/ml activin A
and 15h for stimulation were selected for further
experiments.

Alteration of inflammatory parameters by activin A

Activin A was induced by IL-1f and to a lower extent by
TNFa in RASF (n =7, Fig. 4a, p <0.05). Follistatin pro-
duction in RASF was not altered by stimulation with 10
ng/ml TNFa, whereas 10ng/ml IL-1B decreased the
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Fig. 2 Effect of activin A on cartilage invasion. a RASF were coimplanted together with healthy human cartilage into SCID mice. After 60 days, the
invasion of RASF into cartilage was reduced by adenoviral activin A overexpression in comparison to control (n=4 animals with n =14 implants
per group). By way of example, implants with GFP-transduced RASF (Basis) and for activin A overexpressing RASF are shown (c = cartilage). b OASF
were activated with IL-1(3 to induce cartilage invasion, and activin A overexpression did not change IL-13-induced OASF cartilage invasion (n=5
implants without activin, n =10 implants with activin). ¢ Overexpression of activin A in RASF was confirmed by western blot. An MOI of 100 was used
for implantation with mock-treated cells showing baseline activin A protein expression in RASF
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Fig. 3 Synovial fibroblast stimulation with activin A suppresses follistatin. a Activin A suppressed follistatin protein release in RASF at all time points from 6 to 42 h
(15 ng/ml activin A, n =4). b Concentrations of 10-30 ng/ml activin A had the same suppressive effect on follistatin protein (shown for 15 h, n =4). ¢ Stimulation
of RASF with activin A (15 ng/ml, n =5) from 1.5 to 24 h resulted in a reduced expression of follistatin RNA. d When stimulating RASF for 3 h with 0 to 30 ng/ml
activin A, a significant reduction of follistatin RNA expression was observed (15 h, n =4). ¢, d 185 rRNA measurement served as the normalization control

follistatin release from 2075 +474 to 1121 + 380 pg/ml
(0.54-fold, p<0.05, Fig. 4b). Other factors such as
RANKL, OPG, or oncostatin M (an IL-6 signaling path-
way inducer) did not alter follistatin levels (data not
shown). Activin A between 10 and 30 ng/ml slightly in-
duced IL-6 (maximum 2.2-fold with 30 ng/ml activin A,
p <0.05, Fig. 4c). Other factors such as proMMP-1 and
soluble TNF receptor I (sTNF-RI, Fig. 4c), MMP-13,
MMP-3, TGE-f, IL-1 receptor antagonist (IL-1ra), GM-
CSF, and IFNy were detectable but not altered by activin
A or follistatin (data not shown). IL-10, IL-4, IL-1f,
IL12p40, and TNFa were close to or below the detection
limit of the ELISA and not induced by activin A or fol-
listatin (data not shown).

Effect of activin A on synovial fibroblasts under
inflammatory conditions

IL-1B or TNFa were added to RASF in combination with
activin A. In all settings, addition of activin A completely

suppressed follistatin in RASF as well as reduced follistatin
in OASF without reaching statistical significance. The de-
crease was independent of the presence of the pro-
inflammatory stimuli (Fig. 5a). Factors such as IL-6,
proMMP-1, and VEGF were not affected by activin A or
follistatin (Fig. 5b—d). However, activin A increased the
VEGF release of RASF stimulated with IL-1f or TNF« (p <
0.05, Fig. 5¢). Activin A or follistatin had no effect on
STNEF-RI release (Fig. 5e). Other parameters such as MMP-
13, TGE-B, IL-1Ra, GM-CSE, and IENy were detectable,
but only effects of IL-1B and/or TNFa but not of activin A
or follistatin were visible (data not shown). IL-10, IL-4, IL-
1B, IL12p40, and TNFa were close to or below the detec-
tion limit of the ELISA. Results from stimulations under
serum-free conditions were comparable (not shown).

Stimulation with follistatin or activin AB
When stimulating RASF with follistatin, activin A con-
centrations were slightly reduced. However, reduction
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was less than 2-fold and did not reach significance. Simi-
larly, IL-6 and proMMP-1 levels were not attenuated
significantly (Fig. 6a). Stimulation with activin AB led to
similar results compared to activin A with a strong re-
duction of follistatin and low or no induction of other
parameters including IL-6 and proMMP-1 (Fig. 6b).

Confirmation of activin A-induced signaling
Phosphorylation of Smad2, a well-known signaling path-
way of the TGF-P superfamily, could be detected by
western blot (n=3, p<0.01, Fig. 6¢). In parallel to the
Smad2 phosphorylation, actvin A-mediated suppression
of follistatin was confirmed (Fig. 6¢).

Discussion

As previously described, the activin A levels in synovial
fluid and its expression in the synovium are elevated in
RA [15, 16]. Indeed, activin A expression in the RA

synovium is higher compared to OA, indicating a pos-
sible role in RA pathogenesis and in inflammatory pro-
cesses and/or neoangiogenesis. The activin A
concentrations measured in vivo in inflamed joints (up
to 39ng/ml) have shown to block in vitro the IL-6-
induced proliferation of 7TD1 B lymphoid cells, the
phagocytic activity of monocytic M1 cells, and the
fibrinogen production in HepG2 [25]. These findings in-
dicate an anti-inflammatory action of activin A in the
context of RA. Indeed, in the SCID mouse model, the
invasive behavior of RASF overexpressing activin A was
decreased compared to GFP controls, whereas the acti-
vin A overexpression in IL-1p activated OASF did not
influence the invasion score. Our findings support the
anti-inflammatory action of activin A in RA in vitro, but
on the other hand, studies focusing on RASF have
shown that activin A increased RASF proliferation [16].
Accordingly, the antagonist follistatin inhibited RASF
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proliferation induced by IL-1f [16]. Based on the de-
creased invasive behavior of RASF in the SCID mouse
model, we examined the effect of activin A and follista-
tin on cytokine and MMP levels of RASF.

We could show that activin A and AB increased the
IL-6 release of RASF and contributed to the observed
accelerated proliferation of RASF stimulated by activin
A in vitro [16]. Nevertheless, the pathophysiological rele-
vance in vivo of the induced release of IL-6 by activin A
by approximately 2-fold has to be questioned due to the
high amounts of IL-6 present within inflamed joints.
Moreover, IL-1p increased the IL-6 release about 1000-
fold. The levels of other inflammatory factors and MMPs
were not affected showing that activin A does not act on
RASF as a potent pro- or anti-inflammatory cytokine at
least for the parameters evaluated in this study. Conse-
quently, we could not observe a relevant reduction of cy-
tokines or MMPs in activated or non-activated RASF by
application of follistatin. However, activin A increased
the VEGF release of RASF treated with IL-13 or TNFa,
and therefore, activin A may contribute to neoangiogen-
esis and capillary permeability, effects known to be me-
diated by VEGF [26].

The major source of activin A is synovial fibroblasts
and CD68+ mononuclear cells [16]. Our data are in line
with previous findings showing an increased activin A

release by stimulation with IL-1p and TNF« [16]. These
findings confirm the role of RASF as a source of activin
A in inflamed joints. Activin A was also shown to pro-
mote RANKL-induced osteoclast formation, and there-
fore, activin A produced by RASF could indirectly
contribute to bone erosion [27-29]. The decrease of
RASF invasion in our SCID mouse model cannot be ex-
plained by the observed effects in vitro. However, they
could be explained as a result of an altered expression of
activin A and follistatin in RASF affecting local cells in
the more complex system in vivo.

Follistatin has mainly been described as an anti-
inflammatory component inhibiting experimental in-
duced allergic asthma and inflammatory bowel disease
in mice by blocking activin A [14, 30]. In acute inflam-
matory reactions, the source of the follistatin release fol-
lowing the increase of activin A remains unclear [7, 9].
Possible cells producing follistatin in a negative feedback
loop as an answer to activin A are liver cells as shown
for the human hepatocellular carcinoma cell line HepG2
[31]. Interestingly, we showed that follistatin expression
was limited to single cells in RA synovium. Indeed, in
vitro, activin A decreased follistatin production and re-
lease by RASF independently of the duration up to 3
days. This effect was also independent of the activin A
concentration, and even low doses were able to block
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the follistatin release as well as reduce mRNA levels.
This behavior does not seem to be specific for RA syn-
ovial fibroblasts because OASF also showed the reduced
follistatin release suggesting a fibroblast-specific effect.
Even though the effects of follistatin or activin A on
RASF regarding, e.g., IL-6 seems to be negligible, in the
local inflammatory joint environment, the decrease of
follistatin levels could possibly play a role in RA and OA
through the missing inhibition of activin A effects on
immune cells such as activated tissue macrophages.
Therefore, activin A prevents itself from being blocked
by inhibition of the release and gene expression of follis-
tatin. The suppression of follistatin induced by activin A
could also explain the limited follistatin expression in
RA synovium. The effect is probably mediated by Smad
signaling as shown for RASF in our study and since
Smad signaling is a well-known pathway activated by the
TGE-B superfamily [32].

Our data indicate a decrease of follistatin release after
stimulation of RASF with IL-1 but not TNF«. The ob-
served 0.54-fold reduction of follistatin by 10 ng/ml IL-
1B may be due to the increased production of activin A
induced by IL-1p itself. TNFa increased the release of
activin A but to a lesser extent compared to IL-1,
which could explain the difference.

Taken together, there is a discrepancy between the ob-
served effect of activin A on RASF in vitro and the re-
duced invasion of RASF overexpressing activin A in
SCID mice. SCID mice are characterized by an impaired
immune system with severe lymphopenia but unaltered
monocytes and macrophages [33]. Therefore, in the
SCID mouse model, the interactions of monocytes/mac-
rophages, RASF, and chondrocytes within the cartilage
are key players in the invasion process of RASF. Interest-
ingly, activin A was described to induce the production
of TIMP-1 (tissue inhibitor for metalloproteinases-1) in
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human chondrocytes [34] and decreased the production
of IL-1P in activated U-937 cells and in mouse macro-
phages activated with LPS [10, 35]. Pap et al. showed
that IL-1B contributes to the invasion of RASF [36].
Consequently, the decreased invasion by RASF overex-
pressing activin A could possibly be mediated by the re-
duced production of IL-1B in monocytes/macrophages
and by other factors such as the increased production of
TIMP-1 in chondrocytes (Fig. 7). Although the reduced
RASF-mediated cartilage invasion is visible in the SCID
mice, suggesting a protective therapeutic effect, the
interaction with other cell types with an intact activin/
follistatin self-regulatory cycle has to be taken into
account.

Conclusions

In conclusion, activin A reduces the invasive behavior of
RASF in the SCID mouse model, indicating a possible
protective role in RA. The known proliferative effects of
activin A on RASF and the increase of VEGF release in
vitro and the unaltered MMP and cytokine release in the
presence of activin A are not able to explain the obser-
vation in vivo. However, the observed effects in the
SCID mouse model could be mediated via interaction
with other local cells such as macrophages. Therefore,

activin A seems to be involved in the pathogenesis of
RA but it plays an ambivalent role with partially pro- as
well as anti-inflammatory components depending on the
evaluated cell type.

Additional files

Additional file 1: Western blot confirmed the presence of the ACVR2A
receptor on RASF, which was not altered by different concentrations of
activin A (10 to 30 ng/ml) after 15 h stimulation. (PPT 134 kb)

Additional file 2: Synovial fibroblast stimulation with activin A; increasing
suppression of follistatin release through RASF by activin A concentrations
of 0.5 ng/ml and higher (n = 3, experimental replicates). (PPT 220 kb)
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