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ABSTRACT  Pre-mRNA splicing is an essential step in eukaryotic gene expres-
sion. Mutations in cis-acting sequence elements within pre-mRNA molecules 
or trans-acting factors involved in pre-mRNA processing have both been 
linked to splicing dysfunction that give rise to a large number of human dis-
eases. These mutations typically affect the major splicing pathway, which ex-
cises more than 99% of all introns in humans. However, approximately 700-
800 human introns feature divergent intron consensus sequences at their 5' 
and 3' ends and are recognized by a separate pre-mRNA processing machinery 
denoted as the minor spliceosome. This spliceosome has been studied less 
than its major counterpart, but has received increasing attention during the 
last few years as a novel pathomechanistic player on the stage in neurodevel-
opmental and neurodegenerative diseases. Here, we review the current 
knowledge on minor spliceosome function and discuss its potential 
pathomechanistic role and impact in neurodegeneration. 
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fALS – familial ALS, 
FTD – frontotemporal dementia, 
GEM – Gemini of Cajal bodies 
IGHD – Isolated Growth Hormone 
Deficiency, 
LMN – lower motor neuron, 
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type 1 / Taybi-Linder syndrome, 
RFMN – Roifman syndrome, 
sALS – sporadic ALS, 
SMA – Spinal Muscular Atrophy, 
snRNA – small nuclear RNA, 
snRNP – small nuclear 
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INTRODUCTION 
Pre-mRNA splicing is an essential step in eukaryotic gene 
expression. It is predominantly a co-transcriptional process 
during which the non-coding introns are excised from pre-
cursor mRNA (pre-mRNA) molecules and the flanking exons 
are joined (spliced) together resulting in translation-
competent mature mRNA molecules. In most metazoan 
organisms, pre-mRNA splicing is carried out by two sepa-
rate spliceosomes that function in parallel, specializing in 
distinct intron types [1]. The bulk of the introns are re-
moved by the major (U2-dependent) spliceosome and fea-
ture, in addition to the nearly invariant GT-AG sequences, 
relatively divergent consensus sequences in their 5' and 3' 
termini. This group constitutes approximately 99.5% of all 
introns that are collectively called major or U2-type introns. 
Additionally, the minor (U12-dependent) spliceosome ex-
cises a small subset of introns that contain highly con-
served 5' splice sites (5'ss) and branch point sequences 
(BPS) [2, 3]. These minor or U12-type introns are found in 
approximately 700-800 genes in humans and represent 
approximately 0.5% of all human introns [4]. The U12-type 
introns coexist with the U2-type introns in the same genes. 
Typical minor intron containing genes contain one, but 
occasionally two or three U12-type introns and multiple 
U2-type introns [3, 5]. The positions of the U12-type in-
trons within their host genes are evolutionarily conserved, 

not only within vertebrates, but in some cases also in in-
vertebrates [6]. 

The key difference between the two machineries is in 
the composition of the small nuclear ribonucleoproteins 
(snRNPs), and at a functional level, in the initial intron 
recognition steps. Both machineries are composed of five 
small nuclear RNAs (snRNAs) that associate with a large 
number of protein components to make up snRNPs [7, 8]. 
Of the five snRNAs four are unique to each spliceosome 
(Table 1). Specifically, the major spliceosome is composed 
of U1, U2, U4 and U6 unique snRNAs, while the respective 
snRNAs in the minor spliceosome are U11, U12, U4atac 
and U6atac. U5 snRNA is shared between the two spliceo-
somes. In either spliceosome the U4 and U6 as well as their 
functional analogues U4atac and U6atac snRNPs form a 
trimeric structure with the U5 snRNP called U4/U6.U5 or 
U4atac/U6atac.U5 tri-snRNP, respectively. In these com-
plexes U4 and U6 or U4atac and U6atac snRNAs are exten-
sively base-paired with each other [9, 10]. Similar higher 
order organization is found between U11 and U12 of the 
minor spliceosome, which form a U11/12 di-snRNP [11, 12] 
while the respective U1 and U2 snRNPs of the major 
spliceosome exist as mono-snRNPs. 

In contrast to the divergent snRNA composition, most 
of the protein components are thought to be shared be-
tween the two systems. All snRNPs except U6 and U6atac 

Table 1. Major vs Minor spliceosome snRNAs and associated proteins. 

Spliceosome snRNAs Core associated proteins References  

Major U1 Sm proteins+, U1-A , U1-C, U1-70K  [4, 13, 15-17] 

U2 Sm proteins+, 12S#: U2-A’, U2-B’’, 17S#: SF3a and 
SF3b complexes, hPrp43  

[13, 16-19] 

U5* Sm proteins+, 20S#: 52K, 40K, hPrp8, hBrr2, 
Snu114, hPrp6, hPrp28, hDib1  

[13, 20, 21] 

U4/U6  Sm proteins+, LSm proteins2-8, 13S#: CypH, 
15.5K, hPrp3, hPrp31, hPrp4  

[13, 14, 22, 23] 

Minor U11/U12 Sm proteins+, 18S#: SF3b complex, 20K (ZMAT5), 
25K (SNRNP25),31K (ZCRB1),  

35K (SNRNP35), 48K (SNRNP48), 59K (PDCD7) 
65K (RNPC3),Urp (ZRSR2)  

 

[24-26] 

 U4atac/U6atac Share proteins with U4/U6 snRNAs of the major 
spliceosome  

[22] 

+Sm proteins-B/B’, D1, D2, D3, E, F, and G 
*U5 snRNA is shared between major and minor spliceosomes 
# Denotes the centrifugal fraction in which the proteins were identified 
Note: Dynamic changes in protein compositions of the snRNPs during splicing stages are not shown and the reader is referred to [13, 14] 
for more details. 
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are associated with a seven-membered ring of Sm-proteins 
necessary for snRNP function and biogenesis [27]. Con-
versely, U6 and U6atac snRNPs contain seven Lsm proteins 
[28]. Furthermore, all specific proteins associated with 
either tri-snRNP are thought to be identical between the 
two systems [22]. Differences in protein composition are 
associated with U11/U12 di-snRNP in comparison to U1 
and U2 in the major spliceosome. Specifically, U11/U12 di-
snRNP contains seven unique protein components not 
found from the major spliceosome (see Table 1) [24, 25]. 

Both the U1 and U2 and the analogous U11/U12 func-
tion in the initial recognition of introns and it is this step of 
splicing where the two systems show most differences. In 
addition to the significant differences in the extent of 
U11/5'ss vs U1/5'ss and U12/BPS vs U2/BPS base-pairing 
(Figure 1), the main difference is in the mechanism of in-
tron recognition. With major introns, the individual U1 and 
U2 snRNPs independently bind to the 5’ss and BPS se-
quences, respectively. Additionally, the U2AF1/2 protein 
dimer recognizes a polypyrimidine track (PPT) found up-
stream of the 3’ splice site (3’ss) as well as the terminal AG 
dinucleotide in major but not minor introns. In contrast, 
the recognition of the 5’ss and BPS of minor introns takes 
place via cooperative recognition by U11 and U12 of the di-
snRNP, respectively [11]. Minor introns lack a PPT and con-
sequently do not require U2AF for intron recognition [3, 
29]. Furthermore, the 3'ss is recognized by the Urp/ZRSR2 
protein that possibly functions in both spliceosomes, albeit 
at different stages of the spliceosome assembly [30-32]. 
The outcome of these differences is that the recognition of 
minor introns is somewhat more rigid and conservative 
compared to that of major introns. 

The subsequent steps in the splicing process are very 
similar between the two systems. The formation of an ini-
tial intron recognition complex is followed by the associa-
tion of a specific tri-snRNP with the nascent spliceosome. 
U1/5’ss or U11/5’ss interaction is replaced by U6/5’ss or 
U6atac/5’ss interaction, respectively, and dissociation of 
U1 or U11 snRNP from the pre-mRNA. Subsequently, the 
helices formed between U4/U6 or U4atac/U6atac are un-
wound, followed by the formation of the catalytic core 
composed of U2/U6 or U12/U6atac snRNAs base-paired to 
each other and to 5’ss and BPS sequences in the intron [10, 
33, 34]. This catalytic structure, together with associated 
proteins carries out the two-step splicing reaction which is 
identical between the two systems.  

Although parallels can be drawn in the assembly and 
catalytic pathways of the two spliceosomes, the key ques-
tion that remains unanswered is the reason for their co-
existence. Present evidence suggests two salient functional 
differences at the level of whole mRNAs. First, unlike the 
U2-type introns that are subject to extensive alternative 
splicing processes that result in multiple mRNA isoforms 
from a single gene, only a handful of alternative splicing 
events have been described for U12-type introns [5, 35, 
36]. It is conceivable that the more rigid intron recognition 
process by the U11/U12 di-snRNP, coupled with the high 
conservation of the 5’ss and BPS sequences limits possibili-
ties in alternative splice site selection. Second, both in vitro 

and in vivo investigations have provided evidence that mi-
nor intron splicing is less efficient than splicing of U2-type 
introns, trapping partially processed mRNAs containing 
unspliced U12-type introns in the nucleus [37-41]. Such 
rate-limiting regulation of gene expression is then ex-
pected to downregulate the mRNA and protein levels of 
the genes containing U12-type introns, but at the same 
time this process may be further regulated by internal and 
external signals thereby creating an additional layer of 
gene expression control via minor intron splicing [42, 43]. 
Even though U12-type introns are located in a highly-
conserved set of "host" genes, this group of genes does not 
constitute a simple group or discreet pathways. Rather, a 
more broad term of "information processing genes" was 
coined by Burge, Padgett and Sharp [3] to distinguish genes 
involved in DNA replication and repair, transcription, RNA 
processing and translation, cytoskeletal organization, ve-
sicular transport, voltage-gated ion channel activity and 
Ras-raf signaling from those involved in basic metabolism 
[3, 44, 45]. 
 

MUTATIONS OF MINOR SPLICEOSOME COMPONENTS 
AND NEURODEVELOPMENT DEFECTS 
At present up to 60% of human diseases have been linked 
to splicing defects, with mutations in either components of 
spliceosomes or more commonly cis-acting regulatory ele-
ments within introns or exons and splice sites being the 
major contributors [46-48]. Consequences and severity of 
these mutations depend on whether trans-acting splicing 
factors or cis elements are affected. Typically, mutations 
within genes encoding splicing factors tend to result in 
widespread defects as the function of entire splicing ma-
chinery can be compromised. Of the two systems, the ma-
jor spliceosome has been studied at more detailed level 
and in fact, most diseases associated with splicing defects, 
both in cis-acting elements and in trans-acting factors, 
have been linked to major spliceosome function. These 
have been discussed in detail elsewhere [49, 50]. However, 
a rapidly growing body of knowledge and interest in the 
minor spliceosome in recent years has led to the discovery 
of a small number of diseases caused by mutations in core 
minor spliceosome components that could provide more 
insight into the significance of the minor spliceosome and 
explain the existence of two splicing machineries. Minor 
spliceosome-associated diseases have recently been re-
viewed [51] and as such only brief descriptions will be pro-
vided here. Presently, five congenital human diseases with 
defects in minor spliceosome components have been de-
scribed: Microcephalic Osteodysplastic Primordial Dwarf-
ism type I/Taybi-Linder Syndrome (MOPD1/TALS), Roifman 
syndrome (RFMN), Lowry Wood Syndrome (LWS), Early 
Onset Cerebellar Ataxia (EOCA), and Isolated Growth Hor-
mone Deficiency (IGHD) with associated pituitary hypo-
plasia.  

Three of the diseases, MOPD1/TALS, RFMN and LWS 
are autosomal recessive disorders which have been associ-
ated with point mutations in the RNU4atac locus, encoding 
the  U4atac  snRNA, an  essential  snRNA  component in the  
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FIGURE 1: Major versus minor intron splicing. (A) Major (U2-type) and minor (U12-type) introns differ in their cis-acting 5'ss and BPS ele-
ments. The (nearly) invariant nucleotides are highlighted in red letters. Non-coloured letters indicate a clear preference for a nucleotide at a 
given position and potential base parings with the respective snRNAs are depicted. Base modifications of snRNAs are omitted. Minor introns 
are subdivided into AT-AC or GT-AG minor introns based on their terminal dinucleotides. (B) Major and minor introns are recognized differ-
ently by their respective spliceosomes, which assemble on their substrates in a stepwise manner. Major introns are initially recognized by 
the U1 snRNP binding to the 5’ splice site, SF1 binding to the branch point sequence (BPS) and U2AF2/1 heterodimer recognizing the polypy-
rimidine tract (PPT) and the 3’ terminal AG dinucleotide, respectively. Recognition of the BPS by the U2 snRNA displaces the SF1 and con-
verts the E complex to complex A. In contrast to the major introns, 5’ss and BPS of minor introns are recognized cooperatively by U11 and 
U12 of the di-snRNP, respectively, thereby forming the minor intron A complex. The subsequent steps in the splicing process are very similar 
between the two systems and intron recognition is followed by the association of major and minor tri-snRNPs, respectively, giving rise to 
(presumably) similar catalytic structures and catalytic steps of splicing. 
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U4atac/U6atac.U5 tri-snRNP. The patients amongst the 
three diseases are typically compound heterozygotes ex-
cept for a single A51G>A mutation that as a homozygote 
leads to the most severe case of MOPD1/TALS [51-56]. 
Inter-estingly, both LWS and RFMN patients are compound 
heterozygotes for U4atac mutations that are either shared 
with MOPD1/TALS or unique to LWS or RFMN. Clinically, all 
three diseases appear to overlap and share phenotypes 
related to cephalo-skeletal dysplasia, intrauterine and 
postnatal growth retardation and microcephaly, with vary-
ing severities [55-57]. Additionally, MOPD1/TALS includes 
severe forms that are defined by general developmental 
defects in multiple organs and major brain malformations 
with death in infancy or childhood [52]. In contrast, RFMN 
and LWS are phenotypically different and milder diseases 
but share the growth retardation and immune system 
(subclinical in LWS) defects of MOPD1/TALS. Additionally, 
both LWS and RFMN patients exhibit cognitive delays and 
facial dystrophies [54, 55].  

Recently, a mutation associated with EOCA was found 
in the RNU12 gene which codes for the U12 snRNA that is 
part of the U11/U12 di-snRNP complex [58]. Cerebellar 
ataxia is characterized by abnormal development and/or 
degeneration of the cerebellum. In the case of EOCA, pa-
tients homozygous for the mutation exhibit early (at infan-
cy) muscle hypotonia, difficulties with speech and learning 
and abnormal gait [58]. In connection with the U11/U12 di-
snRNP, mutations in the RNPC3 gene, encoding the 
U11/U12-65K protein, have been linked to IGHD, a genet-
ically diverse disorder that is characterized by a deficiency 
or lack of growth hormone as a result of defective pituitary 
gland development. Moreover, IGHD patients with muta-
tions in RNPC3 also present a mild form of microcephaly 
[59, 60]. 

 

THE MINOR SPLICEOSOME AND NEURODEGENERATIVE 
DISEASES 
Interestingly, while the small number of diseases linked to 
congenital mutations in minor spliceosome components 
show diverse and often pleiotropic pathologies, these dis-
eases all share neurological components with varying de-
grees of severity. Similarly, several recent studies have also 
linked defects in the splicing of minor introns with neuro-
degenerative diseases such as Amyotrophic Lateral Sclero-
sis (ALS) and Spinal Muscular Atrophy (SMA), both of which 
are characterized by the degeneration of motor neurons. 
However, a feature that remains enigmatic is the tissue-
specific phenotype observed in patients, regardless of the 
spliceosomal component or accessory factor affected. Here, 
we discuss the two currently known minor spliceosome-
associated neurodegenerative diseases, emphasizing the 
points of convergence that illuminate the possible role and 
involvement of the minor spliceosome in cellular differen-
tiation and function.  

 

SPINAL MUSCULAR ATROPHY 
Spinal Muscular Atrophy (SMA) is the most common motor 
neuron disease in children with an estimated incidence of 1 

in 6’000 to 1 in 10’000 live births. Pathological hallmarks 
include the degeneration of motor neurons in the anterior 
horn of the spinal cord and brain stem and concomitant 
muscle atrophy [61, 62]. The disease is caused by de-
creased levels of the survival motorneuron (SMN) protein 
due to homozygous loss or mutation of the SMN1 gene 
[63]. A complete loss of SMN protein is embryonic lethal 
[64, 65]. In SMA patients this lethality is rescued by a pa-
raloguous SMN2 gene that humans have acquired by gene 
duplication [66]. However, SMN2 harbours a silent C to T 
transition in exon 7 which disrupts an exonic splicing en-
hancer and converts it to an exonic splicing silencer [67, 
68]. The combined effect of the suboptimal intron 6 
branchpoint, the strong intronic splicing silencer in intron 7, 
and an A to G transition in SMN2 further downstream in 
intron 7, that creates an hnRNPA1 binding site acting as an 
additional splicing silencer, result in a splicing pattern 
where exon 7 is predominantly skipped. This leads to the 
production of a C-terminally truncated protein that is rap-
idly degraded (Figure 2) [69-72]. Thereby, SMN2 produces 
only a fraction of full-length SMN mRNA, resulting in se-
verely decreased SMN levels. The SMN protein is ubiqui-
tously expressed and shows bimodal localization in both 
the cytoplasm and the nucleus, where it is enriched in 
biomolecular condensates termed Gemini of Cajal Bodies 
(GEMs) [63, 73]. These membrane-less compartments of-
ten physically associate with Cajal Bodies (CBs) which have 
been implicated in snRNP maturation and recycling [74]. 
However, GEMs are not detected in all tissues, and are 
thus likely not essential for splicing, but are prevalent in 
cell types with high metabolic or transcriptional activity 
such as neurons [75]. Although the function of GEMs re-
mains enigmatic, their abundance is clearly linked to SMN 
levels and correlates with SMA disease severity [76]. In 
neurons, SMN was also detected in axons and growth 
cones [77, 78]. The protein executes its various cellular 
functions as part of the macromolecular SMN complex 
composed of SMN, Gemins2-8 and Unrip. The best-
characterized function of this 20S complex is the assembly 
of Sm-class snRNPs, by an ATP-dependent loading of a 
heptameric Sm-protein ring in the cytoplasm and their 
subsequent import into the nucleus. The Sm-class snRNPs 
either constitute the building blocks of both splicing ma-
chineries (U1, U2, U4, U5, U11, U12, U4atac) or play a criti-
cal role in the 3`-end processing of replication-dependent 
histone messenger RNAs (U7). In addition, SMN has been 
implicated in several other processes of the eukaryotic 
RNA metabolism, ranging from transcription [79], snoRNP 
and signal recognition particle (SRP) biogenesis [80, 81], 
stress granule formation [82] and mRNA trafficking [77, 78] 
to translation [83]. However, these proposed functions are 
largely based on interaction data and currently lack rigor-
ous biochemical validation. 

 

AMYOTROPHIC LATERAL SCLEROSIS 
Amyotrophic Lateral Sclerosis is the most common motor 
neuron disease in adults with an estimated incidence of 1 - 
3 per 100’000 and a prevalence of 3 - 7 per  100’000  indivi- 
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duals worldwide [84]. The primary symptoms of ALS are 
progressive muscle weakness, muscle atrophy and spastici-
ty, which are caused by the degeneration and death of the 
upper (UMN) and lower (LMN) motor neurons in the motor 
cortex, the brainstem and spinal cord. The onset of ALS 
usually affects the limb-innervating motor neurons (spinal-
onset). However, 20-25 % of ALS patients present a bulbar 
onset. In 3-5 % of the cases, the disease starts with initial 
trunk or respiratory involvement [85, 86]. However, there 
are also less common cases of exclusive UMN or LMN de-
generation reported. The degeneration of the UMNs re-
sults in speech problems (especially in bulbar onset), 
weakness, spasticity and uncontrollable reflexes, whereas 
the loss of LMNs results in muscle wasting and weakness as 
well as in cramps and decreased reflexes [85, 87-90]. The 
average disease onset peaks between 50-75 years of age, 
and death due to respiratory failure typically occurs within 
2 - 5 years after the first symptoms [91]. However, there is 
a large variability among patients, and disease progression 
and survival can vary from months to decades. The obser-
vation that family members that harbour identical ALS-
causing mutations show differences in disease onset and 
survival, implicates the presence of genetic or environmen-
tal disease modifiers that affect severity and progression 
rate [92]. Additionally, recent work has revealed that ALS 
represents a disease spectrum together with frontotem-
poral dementia (FTD) [93]. The most striking support for 

the spectrum disease concept arose from large genetic and 
histopathological overlaps as identical mutations are pre-
sent in families with either ALS, FTD or both diseases [94-
96]. FTD is one of the most common forms of dementia in 
patients younger than 65 years and is characterized by 
atrophy of the temporal and frontal brain lobe and by be-
havioural changes or speech impairment [97-100]. Clinical-
ly, depending on the population studied, 10-50% of ALS 
patients develop some symptoms of FTD and 10-15% of 
patients with FTD show symptoms of motor neuron dis-
ease [101-106].  

While most ALS patients suffer from the apparent spo-
radic form of the disease (sALS), about 10 % of the patients 
have clearly inherited the disease [107]. These ALS cases 
(fALS), which clinically and pathologically are indistinguish-
able from the sporadic form, frequently show either point 
mutations in the genes coding Cu/Zn-binding superoxide 
dismutase 1 protein (SOD1) [108], the TAR DNA binding 
protein 43 (TDP-43) [96, 109, 110], the RNA-binding pro-
tein Fused in Sarcoma (FUS) [111, 112] or hexanucleotide 
expansions in the first intron of the C9orf72 gene [113, 
114]. The mutations in these four genes account for ap-
proximately 55% of the familial ALS cases (fALS) but are 
also found in sporadic ALS cases (sALS), albeit to a much 
lesser extent [115]. Unfortunately, the causes for the vast 
majority of sALS cases remain unknown. It has been pro-
posed that susceptibility is increased by an interplay of low 

FIGURE 2: SMN1 and SMN2. The vast majority of the SMN protein is produced from the SMN1 gene. However, during evolution, humans have 
acquired a paralogue (SMN2) by gene duplication, but SMN2 produces only approximately 10% of the full-length mRNA. Due to a C to T transi-
tion in SMN2 (C to U at RNA level) the first exonic splicing enhancer (ESE) in exon 7 is disrupted and an exonic splicing silencer (ESS) is created, 
which is bound by hnRNPA1 (A1). Inclusion of exon 7 is further prevented by an A to G transition further downstream in intron 7 (creating an 
additional hnRNPA1 binding site), and the suboptimal branchpoint (BPS) in intron 6. Hence, exon 7 is mainly skipped leading to the production 
of an instable C-terminally truncated protein (SMNΔ7) that is rapidly degraded. Cis-acting elements promoting exon inclusion are indicated with 
green plus signs, while inhibitory elements are marked with red minus signs. 
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penetrance genetic risk factors, exposure to environmental 
risk factors, and subsequent accumulation of cell damage 
with age [116, 117]. Mutations in many different genes 
have been found to be causative for fALS thereby explain-
ing 68% of fALS cases [117]. However, the connection be-
tween these mutated genes and development of ALS re-
mains elusive. A converging feature in ALS is the presence 
of ubiquitinated cytoplasmic inclusions in the degenerating 
motor neurons and glia cells. With the notable exception of 
FUS and SOD1 mutations, which cause aggregation of FUS 
and SOD1, respectively, most ALS cases display ubiqui-
tinated TDP-43 inclusions [110]. C9orf72-linked ALS also 
presents, apart from TDP-43 pathology, intranuclear RNA 
foci as well as ubiquitin reactive and TDP-43-negative in-
clusions in the cerebellum and the hippocampus. These 
contain dipeptide repeat proteins translated from the hex-
anucleotide repeats [113, 118, 119]. 

 

A ROLE FOR THE MINOR SPLICEOSOME IN SMA AND 
ALS? 
ALS and SMA are both neurodegenerative diseases that 
lead to the loss of motor neurons and consequently volun-
tary muscle movement. Despite the differences in age of 
onset, disease progression and etiology, FUS-linked and 
TDP-43-linked ALS and SMA converge with each other 
[120, 121], and with the minor spliceosome. Of the two 
diseases, SMA provides a more direct link to the minor 
spliceosome. Even though the SMN mutations in SMA are 
expected to impair the assembly of both major and minor 
Sm-class snRNPs, several reports suggest that this effect 
may be exacerbated with the minor spliceosome compo-
nents. Specifically, investigations of the spinal cord and 
brain of moderate and severe SMA mouse models have 
revealed preferential downregulation of the minor spliceo-
some snRNPs [122, 123]. This effect was not observed in 
tissues unaffected by the disease, which further supports 
the hypothesis that decreased snRNP levels are directly 
involved in the SMA pathomechanism [123]. Additionally, 
minor tri-snRNP formation is impaired in SMA patient-
derived lymphoblasts [124] and widespread mis-splicing of 
U12-type introns was observed not only in SMA patient-
derived cells but also in Drosophila and Mouse SMA mod-
els [124-126].  

In the context of ALS, depletion of TDP-43 has a direct 
effect on the minor spliceosome components with various 
minor snRNAs being misregulated in a cell-line specific 
manner. In SH-SY5Y cells the levels of U4atac and U6atac 
snRNAs are reduced by depletion of TDP-43, while in 
U87MG cells the levels of U12 snRNA are reduced and U11 
are increased. In contrast, HeLa cells show no significant 
changes in the level of minor spliceosome in response to 
TDP-43 depletion [127]. Likewise, sALS patients with TDP-
43 pathology show a misregulation of minor snRNAs in 
their spinal cord, motor cortex and thalamus compared to 
control patients [127, 128]. Additionally, reduced nuclear 
levels of the 59K protein subunit of the U11 snRNP were 
reported in spinal cord motor neurons [127]. A possible 
connection between the minor spliceosome and TDP-43 

are the GEMs, as suggested by colocalization of TDP-43 and 
GEMs in HeLa cells, SH-SY5Y cells and mice hippocampal 
neurons [128]. Consistently, knockdown of TDP-43 in HeLa 
cells reduces the number and size of GEMs [127, 128], 
while mice with a conditional TDP-43 knock out failed to 
form GEMs altogether in upper motor neurons [129]. This 
combined evidence suggests a role for TDP-43 in GEM for-
mation. Intriguingly, compared to other cells, motor neu-
rons stand out with the highest density and increased size 
of GEMs [75], which makes them particularly interesting 
not only in the context of SMA but also ALS. 

Similar observations were made with FUS. Primary cul-
tured hippocampal neurons from knock-out FUS mice and 
HeLa cells with a FUS knock-down failed to form GEMs 
[128, 130-132]. Furthermore, FUS directly interacts with 
SMN [128, 132, 133] and fibroblasts of ALS patients harbor-
ing a mutation in the NLS of FUS (R521C and R514G) show 
a reduced number of GEMs [132]. Finally, it was shown 
that FUS interacts with spliceosomal snRNAs and that cy-
toplasmic FUS inclusions specifically trap snRNAs, thereby 
decreasing their nuclear concentration [132, 134, 135], 
thus suggesting converging pathomechanisms via decrease 
of spliceosomal snRNPs in the nucleus. However, how 
could disturbance of such a general function as splicing 
confer selective motor neuron death as observed in FUS- 
and TDP-43-linked ALS and SMA? One possible explanation 
is a selective or preferential impairment of minor intron 
splicing.  

While a direct function of TDP-43 in minor intron splic-
ing remains to be elucidated, FUS preferentially interacts 
with minor intron containing mRNAs and with the minor 
spliceosome [135]. FUS depletion affects over 30% of mi-
nor spliceosome-dependent splicing events and leads to 
extensive downregulation of minor intron containing genes 
involved in neuronal functions, such as promotion of neu-
rogenesis, dendritic development, postnatal maturation of 
spinal motor units and axonal outgrowth. Additionally, ALS-
linked FUS is splicing insufficient as it localizes to the cyto-
plasm and therefore cannot participate in splicing of the 
nuclear pre-mRNAs [135]. Furthermore, cytoplasmic FUS 
inclusions trap significant amounts of minor snRNAs in the 
cytoplasm leading to apparent nuclear reduction implicat-
ing a general minor spliceosome defect in FUS-linked ALS 
[135]. Interestingly, C9orf72-linked ALS cases not only dis-
play TDP-43 pathology but the expressed hexanucleotide 
repeat expansion RNA also sequesters hnRNP H [113, 136]. 
HnRNP H participates in the splice site recognition of many 
minor introns, and is involved in the autoregulation of the 
U11-48K protein that is essential for the 5'ss recognition of 
minor introns [137-139]. Furthermore, hnRNP H seems to 
require FUS to efficiently promote splicing of a subset of 
transcripts [135], suggesting that misregulation of hnRNP H 
in C9orf72-linked ALS may be an additional factor promot-
ing mis-splicing of minor introns. 

Together, SMA and ALS with FUS/TDP-43 pathology 
have both been associated with defects in minor intron 
splicing and/or abnormal cellular distribution of minor 
spliceosome components (Summarized in Figure 3). But is 
there  evidence  that  further  links  such  defects  to  motor  
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neuron pathology? In contrast to major introns, minor in-
trons are neither present in housekeeping genes nor even-
ly distributed throughout the genome but mainly present 
in genes related to information processing [3, 4, 45]. Some 
of these minor intron containing genes fulfil crucial roles 
for maintenance of neuromuscular junctions which are 
primary pathological targets in ALS and SMA, whereas oth-
er genes are required for general motor neuron function 
[126, 135, 140-145]. For example, SMA mice display in-
creased minor intron retention and concomitant downreg-

ulation of functional mRNA from the Myo10 gene encoding 
a member of the myosin-family of motor proteins that has 
been associated with axon outgrowth and neuronal devel-
opment [146, 147]. Similarly, the minor intron containing 
Stasimon gene (TMEM41b in humans), which is required 
for motor neuron development and function has been re-
ported to be aberrantly spliced in Drosophila, Zebrafish, 
and Mouse models of SMA [125, 126]. Strikingly, injection 
of human TMEM41b mRNA is sufficient to rescue neuro-
muscular junction transmission defects caused by de-

FIGURE 3: Impaired minor intron splicing in SMA and ALS. Many of the molecular defects observed in patient tissues or disease modelling 
systems ultimately converge on affecting the spliceosome and minor intron splicing. These include both gain- and loss-of-function mechanisms 
in the nucleus as well as in the cytoplasm. Defects linked with SMA are indicated with a yellow rectangle, while blue rectangles mark ALS-
associated defects. 
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creased SMN levels in these model systems [126]. Finally, a 
number of minor intron containing genes are known to 
code for voltage-gated ion channels that are necessary for 
motor neuron function [45, 143, 148, 149]. Among them 
are, for example, several subunits of voltage-gated calcium 
channels that are affected in SMA: Cacna1a, Cacna1b, Cac-
na1c, Cacna1e and Cacna1h [125]. Intriguingly, some of 
these genes are also affected by FUS depletion in agree-
ment with reported disruption of Ca2+ homeostasis and 
axonal defects in both SMA and ALS [150-153]. Finally, as 
proposed by Doktor et al. [125], SMA can be modelled in 
evolutionary distinct organisms, which suggests that the 
underlying defect is evolutionarily conserved. A similar 
argument can also be made for ALS [154]. Therefore, it is 
possible that while major spliceosome defects can contrib-
ute to specific phenotypes, the high degree of conservation 
of minor introns could explain the common pathology 
across species and over large evolutionary distances. 

However, while there is growing evidence for a contri-
bution of the minor spliceosome to the pathomechanism 
of neurodegenerative disorders, most of the data are cor-
relative and the specific mechanism or the other contribu-
tions are not yet fully elucidated. For example, SMN, FUS 
and TDP-43 all have other axonal functions that are im-
paired in SMA and ALS, such as control of genes that are 
involved in neuritogenesis and axonal outgrowth that 
could further contribute to the neurodegenerative pheno-
type [155-159]. Therefore, the future challenge is to de-
termine the specific contribution of the minor spliceosome 
in neurodegeneration. For example, whether the defects or 
alteration in minor intron splicing contribute directly to 
neurodegeneration via mis-splicing of specific neuronal or 
muscular genes affecting neuronal survival or via mainte-
nance of neuromuscular junctions. Due to the rather low 
number of minor introns in the genome, a comparative 
transcriptomic study of ALS and SMA motor neurons in 
isolation or NMJs from the same species with identical 
genetic background should reveal whether a defined set of 
shared mRNA-processing events in specific genes lead to 
neurodegeneration. While such a candidate gene hypothe-
sis is highly appealing, an alternative possibility is that a 
global and possibly mild defect in the splicing of minor in-
trons may affect the expression of hundreds of genes, the 
combined effect of which subsequently compromises neu-

ronal survival. Minor introns are found in genes responsi-
ble for DNA repair, RNA processing, cytoskeletal organiza-
tion, and neuronal transmission and indeed all these pro-
cesses have been found to be affected both in ALS and 
SMA [92, 160-162]. Furthermore, minor spliceosome com-
ponents are of low abundance already in proliferating cells 
and at least a subset of them are further downregulated 
during neuronal differentiation [163]. Hence, while other 
cell types might tolerate the down-regulation of minor 
intron splicing activity due to reduction or partial seques-
tration of minor spliceosome components, neuronal cells 
might be particularly vulnerable towards these disturb-
ances after differentiation. Thus, the accumulation of small 
but global alterations in the expression of genes containing 
minor introns may add up and lead to reduced survival of 
neurons or their dysfunction. 
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