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Abstract

Purpose—To develop and validate a fully automatic method for segmentation of paraspinal 

muscles from 3D torso CT images.

Methods—We propose a novel learning-based method to address this challenging problem. 

Multi-scale iterative random forest classifications with multi-source information are employed in 

this study to speed up the segmentation and to improve the accuracy. Here, multi-source images 

include the original torso CT images and later also the iteratively estimated and refined probability 

maps of the paraspinal muscles. We validated our method on 20 torso CT data with associated 

manual segmentation. We randomly partitioned the 20 CT data into two evenly distributed groups 

and took one group as the training data and the other group as the test data.

Results—The proposed method achieved a mean Dice coefficient of 93.0%. It took on average 

46.5 s to segment a 3D torso CT image with the size ranging from 512 × 512 × 802 voxels to 512 

× 512 × 1031 voxels.

Conclusions—Our fully automatic, learning-based method can accurately segment paraspinal 

muscles from 3D torso CT images. It generates segmentation results that are better than those 

achieved by the state-of-the-art methods.
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Introduction

The paraspinal muscles play an important role in trunk movement and spinal stability. 

Several studies [2,3,6,8] have demonstrated an association between imaging parameters of 

the paraspinal muscles such as cross-sectional area (CSA) size, shape, density, and volume, 

and spinal degeneration and low back pain (LBP). The measurements of these imaging 

parameters in clinical practice, however, are not reliable enough as they are usually 

measured in a 2D axial CT image, which can be chosen differently from hospital to hospital. 

Although measuring the paraspinal muscles in 3D holds the potential to improve the 

accuracy, it has not become common as it requires expertise- and time-intensive manual 

segmentation. The integration of more automated procedures for the reliable 3D 

segmentation of paraspinal muscles may reduce the label-intensiveness associated with 

manual methods and provide reliability and reproducibility of the acquired imaging 

parameters with respect to segmentation bias and temporal drift, especially for multicenter, 

longitudinal studies.

Figure 1 (left) shows the entirety of the paraspinal muscles, which run along almost the 

entire spine. There is a pair of the muscles on both sides of the body. Automatic 3D 

segmentation of paraspinal muscles from CT images is challenging due to the size of the 

data, the large variability of muscle shape and appearance, and the close contact of 

paraspinal muscles with the surrounding muscles which appear with almost the same 

intensities as shown in Fig. 1(right).

Despite the fact that there are significant progresses made in automatic segmentation of 

muscles from MR images [5,11,13,15,17–19,22,28,30], only a few methods have been 

introduced before to address the problem of automatic segmentation of muscles from CT 

data [9,10,12,20,20,29]. The published CT muscle segmentation methods can be classified 

into two categories: 2D methods and 3D methods. The methods in the former category 

usually work on 2D cross-sectional images taken at specific skeletal landmarks instead of 

3D scans. For example, Wei et al. [29] presented a 2D atlas-based method for segmenting 

paraspinal muscles from 2D axial CT images. Another 2D method was introduced in [20], 

where a finite element method (FEM)-based deformable model was developed to 

incorporate a priori shape information via a statistical deformation model (SDM) within the 

template-based segmentation framework for automatic segmentation of skeletal muscle. 

Recently, Kume et al. [12] have investigated deep convolutional neural networks (CNN)-

based approaches for automatic segmentation of paraspinal muscles at the level of the 

twelfth thoracic vertebrae in torso CT images. An average Dice coefficient of 86.3% was 

reported. In contrast, the methods in the latter category work directly on 3D scans. Along 

this line, Kamiya et al. proposed an rule- based expert system for the segmentation of the 

psoas major [9] and rectus abdominis [10] muscles from CT images, where the shape of the 

muscles was approximated by a simple quadratic function. An average Jaccard Similarity 

Coefficient (JSC)of 0.841 was reported in [10].Inoue etal. [7] introduced a method to 

segment psoas major muscle using higher-order shape prior and reported an average JSC of 

76.5%.
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In this paper, we propose a novel learning-based method to address the challenging problem 

of fully automatic segmentation of paraspinal muscles from 3D torso CT images. In 

comparison with previous work, our contribution is as follows:

– To speed up the segmentation and to improve accuracy, we propose a novel 

multi-scale iterative random forest (RF) classification method for fully 

automatic segmentation of paraspinal muscles from CT images.

– Inspired by the auto-context model [21,25], we propose to employ features 

derived from multi-source information, including the original torso CT images 

and later also the iteratively estimated and refined probability maps of the 

paraspinal muscles.

– We conduct experiments to evaluate the performance of the present method and 

to compare the accuracy of the present method with a deep learning-based 

method.

The paper is organized as follows. In the next section, we will describe the method. 

“Experimental design and results” section will present the experimental results, followed by 

discussions and conclusions in “Discussions and conclusions” section.

Materials and method

We formulate the segmentation of paraspinal muscles as a two-class classification problem. 

To solve such a classification problem, we propose to employ random forests [1] and auto-

context model [25], and conduct the classification in multiple scales.

Multi-scale random forest classification with auto-context model

Our method is inspired by Qian etal. [21] and Tu and Bai [25]. It is a supervised learning 

method consisting of training and testing stages. In the training stage, we will train a 

sequence of classification forests, as shown in Fig. 2. In the first iteration, we extract only 

the appearance features from the CT images to train a classification forest (“Classifier 1” in 

Fig. 2). By applying the trained forests in the first iteration, each training subject will 

produce tissue probability maps for paraspinal muscles or background, respectively. In the 

subsequent iterations, the tissue probability maps obtained from the previous iteration will 

be used as additional source information for training, thus getting a subsequent classification 

forest (e.g., “Classifier 2” in Fig. 2). It was demonstrated in [21] that the context features 

could encode the spatial constraints into the classification, thus improving the quality of the 

estimated tissue probability maps.

Similarly, in the testing stage, given a target CT image, we can obtain the initial tissue 

probability maps by applying “Classifier 1” using only the appearance features, as shown in 

Fig. 3. In the subsequent iterations, along with the appearance features, the tissue probability 

maps obtained from the previous iteration are also fed into the subsequent classifier for 

refinement.

In theory, we can apply RF classification method directly to get 3D segmentation. In 

practice, however, due to the large size of the torso CT data (the size of the data ranges from 
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512 × 512 × 802 voxels to 512 × 512 × 1031 voxels), directly applying RF classification 

method will lead to long training and testing time. In this paper, we propose a multi-scale 

strategy to address this issue. We conduct both training and testing in multiple scales. More 

specifically, during training, we first train two classifiers (“Classifier 1” and “Classifier 2” as 

shown in Fig. 2) following the above procedure on down-sampled training images. For 

thehigh-resolution training images, instead of training a classifier from appearance features 

extracted from high-resolution data to get the initial tissue probability maps, we up-sample 

the probability maps obtained from classifiers in low resolution. We empirically found that 

the up-sampled probability maps from “Classifier 1” led to more accurate segmentation 

results. Furthermore, for each training data, we extract a region of interest of the paraspinal 

muscles by dilating the associated ground-truth segmentation and randomly sample training 

data points only from this region in order to train a classifier in high resolution (“Classifier 

3” in Fig. 2). Similarly, during testing, we also upsample the probability maps obtained from 

“Classifier 1” to provide an initial tissue probability maps in high resolution. We then up-

sample and dilate (in this study, we dilate 10 voxels along each axis) the binary 

segmentation results obtained from the probability maps of “Classifier 2” by thresholding 

and morphological operations to provide a mask, which will then constrain the test region 

for “Classifier 3,” i.e., we only apply “Classifier 3” to every voxel inside the masked region 

in order to compute the tissue probability maps in high resolution. Thresholding, followed 

by morphological operations to remove isolated small volumes and internal holes, is used to 

get the binary segmentation from the probability maps of “Classifier 3,” which is then taken 

as the segmentation output of the present method.

Appearance features and context features

Considering the size of the data, we use the random Haar-like features as introduced in [27] 

for both appearance features and context features. Specifically, as shown in Fig. 4, for each 

voxel x, its Haar-like features are computed as the local mean intensity of any randomly 

displaced cubical region R1 or as the mean intensity difference over any two randomly 

displaced cubical regions (R1 and R2) within the cubic image patch R around the voxel x in 

a source image I.

f (x, I) = 1
R1

∑
p ∈ R1

I(p) − b 1
R2

∑
q ∈ R2

I(q), b ∈ [0, 1] (1)

where R is the patch centered at voxel x, I is any kind of source image, and the parameter b 
∈ [0, 1] indicates whether one or two cubical regions are used (as shown in Fig. 4, for b = 0 

and b = 1).

To accelerate the feature extraction within each cubical region, we use the well-known 

integral image technique as introduced in [26]. Details about how to compute the integral 

image of a quantity can be found in [26]. The quantity can be the voxel intensity value or the 

estimated tissue probability value. Advantage of using integral image lies in the fact that 

once we obtain an integral image of the quantity over the complete CT volume, the sum of 
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the quantity in any sub-volume or cubical region can be calculated quickly in constant time 

no matter how big the size of the cubical region is [26].

Data description

After local institution review board (IRB) approval, the present method was evaluated on 

torso CT data with associated manual segmentation of 20 subjects. CT images used in this 

study are non-contrast torso CT images taken at Light Speed Ultra 16 scanner (manufactured 

by GE) at Gifu University Hospital. We randomly partitioned the 20 subjects into two evenly 

distributed groups. We then took one group as the training data and the other group as the 

test data. Table 1 shows the demographic data of all 20 subjects used in our study.

All the CT data have an isotropic voxel resolution of 625 mm. The manual segmentation for 

each of data was created by Mr. Masanori Kume using a graph cut-based interactive method 

implemented in the common software platform called “PLUTO” (http://pluto.newves.org/

trac) [16].

The obtained segmentation was then verified and corrected slice by slice by an anatomical 

specialist.

Implementation details

We trained and tested the random forest classifiers in two different scales. In order to train 

“Classifier 1” and “Classifier 2” in low resolution, we first down-sampled each training data 

into its one fourth of its original resolution along each axis. During training, we always 

sample evenly distributed data points from each training data, i.e., half of the data points 

sampled from the paraspinal muscle region and the other half from background. Specifically, 

in training “Classifier 1,” we randomly sampled 20,000 points from each training data and 

compute 10,000 Haar-like features for each data point. The size of R was chosen to be 25 

voxels. In training “Classifier 2,” again we randomly sampled 20,000 data points from each 

training data. For each data point, we computed 10,000 multi-source Haar-like features with 

5000 from the appearance and the other 5000 from the initial probability maps obtained 

from “Classifier 1.” The size of R was chosen to be 45 voxels. “Classifier 3” was trained 

with data in the original resolution. We constrained the region to sample the data points for 

each training data to be within a ROI computed from the ground-truth segmentation. Again, 

we sampled 20,000 evenly distributed data points, and for each data point, we computed 

10,000 multi-source features for each data point where 5000 features were computed from 

the training data and the other 5000 features from the up-sampled probability maps as shown 

in Fig. 2. The size of R for computing Haar-like features in high resolution was chosen to be 

180 voxels.

Evaluation metrics

Assuming the automatically segmented set of voxels as AS and the manually defined ground 

truth as GT, we used both volume overlap metrics and distance-based metrics to evaluate the 

present method.

Volume overlap metrics—We computed following volume overlap metrics:
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– Dice Coefficients (DC) It quantifies the match of two sets by normalizing the size of their 

intersection over the average of their sizes and is defined as follows:

DC = 2 AS ∩ GT
AS + GT (2)

where the operator | · | returns the number of voxels contained in a region.

– Jaccard Similarity Coefficients (JSC) It is defined as the number of common voxels of the 

automatically segmented and ground-truth regions over their union:

JSC = AS ∩ GT
AS ∪ GT (3)

– Precision (PR) It is defined as the fraction of all automatically segmented voxels that are 

correct:

PR = AS ∩ GT
AS (4)

– Recall (RC) It is defined as the fraction of all ground- truth voxels that have been corrected 

segmented by an automatic method:

PR = AS ∩ GT
GT (5)

Distance-based metrics—Before we present the definitions of different distance-based 

metrics, we first define a distance measure for a voxel x from a set of voxels A as:

d(x, A) = min
y ∈ A

d(x, y) (6)

where d (x, y) is the Euclidean distance of the voxels incorporating the real spatial resolution 

of the volume data.

We further define the directed Hausdorff measure from a point set A to a point set B as the 

maximum distance, for all points in A, to the closest point in B. Mathematically, this is given 

as:

d H(A, B) = max
x ∈ A

( min
y ∈ B

(d(x, y))) (7)
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The directed percent Hausdorff measure, for a percentile r, is the rth percentile distance over 

all distances from points in A to their closest point in B. For example, the directed 95% 

Hausdorff distance is the point in A with the distance to its closest point in B is greater or 

equal to exactly 95% of the other points in A. Mathematically, denoting the rth percentile as 

Kr, this is given as:

d H, r(A, B) = Kr( min
y ∈ B

d(x, y)), ∀x ∈ A (8)

With these definitions, we can define a number of distance-based metrics to quantify the 

dissimilarity of the automatic segmentation from the ground truth:

– Average Surface Distance (ASD) It is defined as the average of all the distances from 

points on the boundary of AS (we denote them as BAS) to the boundary of GT (BGT):

ASD = 1
BAS

∑
x ∈ BAS

d(x, BGT) (9)

– Average Symmetric Surface Distance (ASSD) It is defined as the average of all the 

distances from points on the boundary BAS to the boundary BGT and from points on BGT to 

BAS:

ASSD = 1
BAS + BGT

× ( ∑
x ∈ BAS

d(x, BGT) + ∑
y ∈ BGT

d(y, BAS))

(10)

– Modified Hausdorff Distance (MHD) It is defined as the undirected 95 percentile 

Hausdorff measure [4]:

MHD =
d H, 95(AS, GT) + d H, 95(GT, AS)

2 (11)

Experimental design and results

Experimental design

We conducted two different studies in order to evaluate the efficacy of the present method. 

For the first study, the segmented result of each test data obtained by the present method was 

compared with the associated manual segmentation. For the second study, due to the large 

size of input data, we implemented a 2D fully convolutional network (FCN) [14] based on 

the network structure of VGG 16 [24]. In this FCN, the fully connected layer in VGG 16 is 
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replaced by a convolutional layer, which is then followed by a 1 × 1 convolutional layer to 

generate segmentation in a down-sampled resolution. In order to get the segmentation in full 

resolution, up-sampling is done via deconvolutions [23].

Results

Quantitative segmentation results of the 10 test data is shown in Table 2. Our approach 

achieved a mean DC of 93.0±2.1%, a mean JSC of 87.0 ± 3.5%, a mean RC of 96.4 ± 1.5%, 

a mean PR of 89.9 ± 3.6%, a mean ASD of 0.79 ± 0.20 mm, a mean ASSD of 0.85 ± 0.19 

mm and a mean MHD of 2.85±0.56 mm. Figure 5 shows the segmentation procedures for 

the best case (top row) and the worst case (bottom row). Qualitatively, it can be found that 

without incorporating context features, the probability maps (the second column) from 

“Classifier 1” show high values in relatively large portion of false positive regions. After 

integrating context features, the area of false positive regions is reduced as reflected by the 

probability maps (the third column) from “Classifier 2” but not completely removed. By 

incorporating the up-sampled context features with the constrained region of interest in the 

high-resolution image space, “Classifier 3” generates probability maps (the forth column) 

that have significantly reduced false positive regions, demonstrating the efficacy of the 

present method.

Implemented on a machine with a 3.5GHz Intel(R) i7 CPU with 12 cores and 64 GB RAM, 

it took on average 46.5 s to segment a torso CT image with the size ranging from 512 × 512 

× 802 voxels to 512 × 512 × 1031 voxels. In contrast, without using the proposed multi-scale 

strategy, we have to test each voxel in a given 3D scan, which leads to an average test time 

of 205.0 s.

The results of the second study are shown in Table 3. In comparison with the 2D FCN 

method, our method demonstrated better performance. More specifically, the 2D FCN 

method achieved a mean DC of 89.9 ± 2.0%, a mean JSC of 81.7 ± 3.2%, a mean RC of 

92.8 ± 5.0% and a mean PR of 87.5 ± 4.3%. In contrast, our method achieved a mean DC of 

93.0 ± 2.1%, a mean JSC of 87.0 ± 3.5%, a mean RC of 96.4 ± 1.5%, and a mean PR of 89.9 

± 3.6%.

Discussions and conclusions

Manual and automated segmentation of individual muscles in CT images has been 

recognized as a challenging task, given the high variability of shapes between muscles and 

subjects and the discontinuity or lack of visible boundaries between the target muscles and 

surrounding muscles. In this paper, we proposed a novel learning-based method for 

automatic segmentation of paraspinal muscles from 3D torso CT images and conducted a 

validation study to confirm the efficacy of the proposed method.

The results achieved by our method are better than those reported in previous work. For 

example, based on deep learning techniques, Kume et al. reported a mean DC of 86.3%, 

while our method achieved a mean DC of 93.0%. Using higher-order shape prior, Inoue et 

al. [7] reported an average JSC of 76.5% in segmenting psoas major muscles which is lower 

than what our method achieved. The reason why our method achieved better results than 
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others is probably due to the integration of the multi-source information in a multi-scale 

learning-based framework. As shown in Fig. 5, the integration of multi-source information 

and the adoption of the multi-scale strategy progressively refine the probability maps 

obtained in different stages, leading to an accurate segmentation at the final stage. To get a 

fair comparison, we implemented a 2D FCN method. Our experimental results showed that 

the results achieved by our method were better than those achieved by the 2D FCN method.

The present method is not only accurate but also fast, largely due to the proposed multi-scale 

strategy. It is known that for random forest classification, the test time is proportional to the 

number of voxels in the test data. The initial segmentation obtained from “Classifier 2” at 

low resolution allows us to define a mask to constrain the test at high resolution to a smaller 

region of interest. This can not only improve the learning efficacy, as we concentrate on a 

smaller region than the complete image space, but also lead to faster algorithm as we will 

test on less number of voxels. Our experimental results demonstrate that our algorithm is 

four times faster than the one without using the multi-scale strategy.

It is worth to compare the method introduced in [21] with the present method. First, both 

methods are based on random forest classification with auto-context model [25]. Second, 

both studies confirm the effectiveness of incorporating context features for refined 

segmentation, despite the fact that the method introduced in [21] is applied to multi-

parametric prostate MR images while the present method is evaluated on torso CT data. The 

differences between these two methods, however, are also apparent. More specifically, due 

to the purpose of the study reported in [21], which aims to localize prostate cancer from in 

vivo MR images, the resolution of their data is relatively low, leading to small data 

dimension along the out of plane direction. For example, the highest resolution of the multi-

parametric MR images used in [21] is 0.3125 × 0.3125 × 3 mm3. Additionally, their data 

were cropped around the prostate, which is a relatively small organ, in order to localize the 

prostate cancer from the cropped MR images. This is the reason why they can repeatedly 

apply the random forest classification with auto-context model in the original data space to 

get refined results. In contrast, the resolutions of our data are high in all three axes, leading 

to large data dimensions. Additionally, as we shown in Fig. 1, the paraspinal muscles are 

quite large, running along almost the complete spine. Furthermore, we did not purposely 

crop our torso CT data around the paraspinal muscles, which complicated the learning task 

for our problem. This has been demonstrated in the second and third columns of Fig. 5, 

where false positive predictions appear above and below the paraspinal muscles. By 

combining information extracted from the outputs of two classifiers that are trained in low 

resolution, we focus the third classifier on learning important multi-source features in a 

constrained region instead of the whole volume. As demonstrated in the fourth column of 

Fig. 5, such a strategy significantly reduced the false positive prediction, leading to refined 

segmentation.

There are limitations in our study. First, the dataset used in our study is relatively small. We 

are expecting to enlarge the dataset to include torso CT data of over 50 subjects, but the 

main challenge is to get the ground-truth annotations. Second, all the CT data used in this 

study were acquired with the same scanner from Gifu University Hospital. It would be 

interesting to apply our trained model to CT images from other scanners in order to test the 
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inter-scanner robustness. Considering the fact that unlike MR image values, CT values are 

correlated with tissue attenuation coefficients, we hypothesize that we can directly apply our 

trained model to CT data acquired from other scanners. Such a hypothesis needs to be 

verified in our future work. Last but not least, the present method was evaluated on CT data 

collected with a standard clinical protocol. Whether it will work or not on heterogeneous 

data acquired in clinical routine needs to be further checked in the future.

In summary, we proposed a novel learning-based method to address the challenging problem 

of automatic segmentation of paraspinal muscles from 3D torso CT images. Our method is 

based on multi-scale iterative random forest classifications with multi-source information. 

The experimental results demonstrated the efficacy of our proposed approach.
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Fig. 1. 
Left: the paraspinal muscles (red) and bone (gray) in the 3D image. The paraspinal muscles 

are quite large and run along almost the complete spine. Right: the paraspinal muscles seen 

in an axial slice (top) and the expert manual segmentation (red contours in the bottom 

image)
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Fig. 2. 
A schematic illustration of how the training procedure works. The appearance features 

extracted from down-sampled CT images are used to train “Classifier 1,” and then, both 

appearance features and the context features from probability maps are used to train the 

subsequent classifiers. We also employed a multi-scale strategy to speed up the training in 

high resolution
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Fig. 3. 
A schematic illustration of how the testing procedure works. We used “Classifier 1” to get 

the tissue probability maps of the down-sampled test image. Then, in the later iterations, the 

tissue probability maps obtained from previous iteration are also fed into the next classifier 

for refinement. Multi-scale strategy is used to speed up the testing
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Fig. 4. 
A schematic illustration of how the Haar-like features as defined by Eq. (1) are computed for 

two different situations: when b = 0 (left) and when b = 1 (right)
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Fig. 5. 
Segmentation of the best (top, test case 05) and the worst (bottom, test case 03) cases. From 

left to right, the input image, the probability map from “Classifier 1,” the probability map 

from “Classifier 2,” the probability map from “Classifier 3,” the final segmentation result, 

and the ground truth segmentation
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Table 3

Comparison of the results obtained by a 2D FCN and our method

Methods JSC DC RC PR

2D FCN 81.7 ± 3.2 89.9 ± 2.0 92.8 ± 5.0 87.5 ± 4.3

our method 87.0 ± 3.5 93.0 ± 2.1 96.4 ± 1.5 89.9 ± 3.6
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