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Abstract Air quality models provide spatial fields of wet deposition (WD) and dry deposition that
explicitly account for the transport and transformation of emissions from thousands of sources. However,
many sources of uncertainty in the air quality model including errors in emissions andmeteorological inputs
(particularly precipitation) and incomplete descriptions of the chemical and physical processes governing
deposition can lead to bias and error in the simulation of WD. We present an approach to bias correct
Community Multiscale Air Quality model output over the contiguous United States using observation‐based
gridded precipitation data generated by the Parameter‐elevation Regressions on Independent Slopes Model
and WD observations at the National Atmospheric Deposition Program National Trends Network sites.
A cross‐validation analysis shows that the adjusted annual accumulated WD for NO3

−, NH4
+, and SO4

2−

from 2002 to 2012 has less bias and higher correlation with observed values than the base model output
without adjustment. Temporal trends in observed WD are captured well by the adjusted model simulations
across the entire contiguous United States. Consistent with previous trend analyses, WD NO3

− and SO4
2−

are shown to decrease during this period in the eastern half of the United States, particularly in the
Northeast, while remaining nearly constant in the West. Trends in WD of NH4

+ are more spatially and
temporally heterogeneous, with some positive trends in the Great Plains and Central Valley of CA and
slightly negative trends in the south.

Plain Language Summary We use observed wet deposition data and observation‐based
interpolated precipitation data to improve the Community Multiscale Air Quality model's performance in
simulating wet deposition in the United States from 2002 to 2012 for nitrate, ammonium, and sulfate.
Performance of the bias‐corrected model output is improved, with lower bias and higher correlation with
observations compared to base model output without adjustment. Community Multiscale Air Quality
bias‐corrected deposition fields can be used to more accurately estimate deposition for comparison to critical
loads (i.e., the level of a pollutant below which no harmful ecological effect occurs) at locations lacking
observations. Model‐estimated trends during the 11‐year time series after the bias correction are better able
to capture observed trends compared to the raw model output. Model‐based methods for estimating
trends in wet deposition are important for accountability studies used to quantify the impact of emission
control measures on ambient concentrations and wet deposition.

1. Introduction

The ultimate fate of atmospheric sulfur (SOx = SO2 + SO4
2−) and reactive nitrogen compounds

(NOy = NO + NO2 + other oxidized forms of N excluding N2O and NHx = NH3 + NH4
+) is removal by

wet scavenging and dry deposition, which in turn lead to a variety of environmental effects including
changes in net primary production (LeBauer & Treseder, 2008), acidification (Driscoll et al., 2003), eutrophi-
cation (Bergström & Jansson, 2006; Bouwman et al., 2002), and other nutrient‐loading effects (Bowman
et al., 2008). Long‐term wet deposition (WD) and dry deposition (DD) data are needed to assess the changes
and trends in total deposition (TD = WD + DD), as well as their effect on ecosystems. In the United States,
the National Atmospheric Deposition Program/National Trends Network (NADP/NTN; https://nadp.slh.
wisc.edu/ntn) provides the nation's primary WD data. These observed WD values are often used to estimate
past and current loads of acidic (S + N) and nutrient (N) deposition on sensitive ecosystems for critical loads
exceedance studies in the United States (Nanus et al., 2003; Sickles & Shadwick, 2007, 2015). Using
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NADP/NTN data from 1985 to 2012, Du et al. (2014) found a positive trend in ammonium WD at the
national scale and a significant negative trend in nitrate WD, especially in the Northeast. Sickles and
Shadwick (2015) found a significant decrease of wet and DD of both S and N in the east from 1990 to
2009, using deposition data from 34 paired dry and wet monitoring sites.

More accurate, highly spatially resolved fields of deposition are needed for regional and national scale assess-
ment of nitrogen and sulfur budgets and comparison of deposition loads of N + S with critical loads (i.e., the
level of a pollutant below which no harmful ecological effect occurs) for different ecosystems and ecological
endpoints. Previous studies have used different spatial interpolation methods, such as inverse distance
weighting or kriging, to estimate the spatial distribution of N deposition (Grimm & Lynch, 1991, 2004; Jia
et al., 2014; Li et al., 2016; Qu et al., 2017; Schwede & Lear, 2014) and temporal trends. Because deposition
monitoring data are relatively sparse (on the order of 230–250 NADP/NTN sites across the United States,
depending on the year) interpolation methods can miss important emission sources and geographic features
that impact deposition unless additional covariate information is incorporated (e.g., regression kriging). Air
quality model simulations offer an alternative to observation‐only interpolation methods and have the
advantage of incorporating detailed emissions information on hundreds of sources while also explicitly
accounting for geographic features in the parameterization of physical and chemical processes.

Air quality model simulations have been extensively used to determine the distribution (Dennis et al., 2013;
Dentener et al., 2006; Gu et al., 2015; Mathur & Dennis, 2003; Zhang et al., 2012) and temporal trends
(Lamarque et al., 2013; Zhang et al., 2018) of nitrogen and sulfur WD and to assess critical load exceedances
(Ellis et al., 2013; Sun et al., 2017;Williams et al., 2017), as they can providemore spatially complete coverage
of TD. However, model simulations also have bias for estimating WD, especially at coarse resolution (Appel
et al., 2011; Lamarque et al., 2013; Simon et al., 2012; Zhao et al., 2017). Zhang et al. (2018) showed that the
long‐term model simulation from coupled Weather Research and Forecasting (WRF)‐Community
Multiscale Air Quality Model (CMAQ) at 36 km underestimated WD of both nitrogen and sulfur in the
United States from 1990 to 2010, as well as their negative trends by more than 20%. The biased model simu-
lation of WD could lead to false negative or false positive deposition exceedances in critical loads analyses
(Williams et al., 2017).

Measurement‐model fusionmethods have been widely used to improve air quality model output for ambient
concentrations (e.g., Berrocal et al., 2010a, 2010b; Berrocal et al., 2012; Robichaud et al., 2016; Robichaud &
Ménard, 2014), with more limited application to WD data (e.g., Makar et al., 2018; Sahu et al., 2010). In 2017
the World Meteorology Organization hosted a 3‐day workshop on measurement‐model fusion for global
total atmospheric deposition. The resulting published report summarizes existing products and plans for
developing improved maps of wet, dry, and total atmospheric deposition to “enable research into biogeo-
chemical cycles and assessments of ecosystems and human health effects” (World Meteorological
Organization (WMO), 2017).

One of the modeling products included in the WMO report was the annual TD maps for the contiguous
United States (CONUS) developed by the NADP Total Deposition Science Committee (TDEP; Schwede
& Lear, 2014). TDEP maps for DD are based on a measurement‐model fusion method using CMAQ out-
put and observations from the Clean Air Status and Trends Network, while spatial maps of annual WD
are based on NADP/NTN measurements and Parameter‐elevation Regressions on Independent Slopes
Model (PRISM) precipitation data. In this study, we evaluate a measurement‐model fusion method to
combine CMAQ‐simulated WD of major nitrogen (NO3

− and NH4
+) and sulfur (SO4

2−) species with
the NADP/NTN measurements and PRISM precipitation data used by TDEP. Bias‐adjusted CMAQ
WD fields are created for 2002–2012 and evaluated against NADP/NTN measurements through a
cross‐validation analysis. The bias‐adjusted spatial fields reduce bias and improve correlation with
observed values, without smoothing out the spatial heterogeneity of the original model output. We
assess the long‐term trends in WD of these species in the United States during the same period and find
that estimated trends in bias‐adjusted model WD evaluate well against observed trends. Although TD of
both nitrate and sulfate can be dominated by DD in the United States (Zhang et al., 2018), improve-
ments to DD maps are beyond the scope of the current work due to the lack of measured DD data
currently available.
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2. Methodology
2.1. Model Inputs and Outputs

The model simulations used in this analysis were conducted using CMAQ (Byun & Schere, 2006) version
5.0.2 (Appel et al., 2013; doi:10.5281/zenodo.1079898), which includes bidirectional NH3 air‐surface
exchange (Bash et al., 2013; Pleim et al., 2013) and the Carbon Bond version 2005 (CB05) chemical mechan-
ism (Yarwood et al., 2005) updated with toluene reactions (CB05‐TU; Whitten et al., 2010). The simulations
were performed over the CONUS from 1 January 2002 to 31 December 2012 at 12‐km × 12‐km horizontal
resolution with 35 vertical layers from the surface to the top of the free troposphere and a nominal height
of 19 m for layer one. Meteorological inputs were developed using the WRF model version 3.4 using the
Kain‐Fritsch trigger for convective precipitation (Ma & Tan, 2009), the Pleim‐Xiu land‐surface model
(Gilliam & Pleim, 2010), and four‐dimensional data assimilation (Gilliam et al., 2012). From 2002 to 2005,
the 2001 National Land Cover Database((NLCD) land cover data were used as an input to the WRF simula-
tions; remaining years were based on 2006 NLCD land cover data. The land use classification methods and
changes in the land use over time were documented and evaluated in Homer et al. (2015). Output fromWRF
was processed to create inputs for CMAQ using the Meteorology‐Chemistry Interface Processor (Otte &
Pleim, 2010) version 4.1.3. Emission inputs were based on 2002, 2005, 2008, and 2011 National Emission
Inventory data (NEI; https://www.epa.gov/air‐emissions‐inventories, accessed April 26, 2018) using the
Sparse Matrix Operator Kernel Emissions (Houyoux et al., 2000) processing system version 3.1 and included
year‐specific continuous emission monitoring system data for large combustion and industrial processes
(mainly electric generating units). Year‐specific mobile emissions were derived from U.S. Environmental
Protection Agency (EPA) Motor Vehicle Emission Simulator (www.epa.gov/otaq/models/moves, accessed
26 April 2018) version 2010b, and the Biogenic Emissions Inventory System version 3.14 was used for inline
biogenic emissions (Carlton & Baker, 2011). NEI data on annual total ammonia emissions from confined
animal feeding operations were based on national estimates from the Carnegie Mellon University model
(Davidson et al., 2004) and state submitted information. These annual totals were temporally allocated using
the Sparse Matrix Operator Kernel Emissions programme with the temporalization from Zhu et al. (2015).
Ammonia emissions from fertilizer were estimated using CMAQ with bidirectional exchange; in this para-
meterization, the net flux is broken into emissions and deposition components, the former making use of a
compensation point concentration with zero ambient ammonia, the latter from assuming zero stomatal and
soil compensation point concentrations (Bash et al., 2013). Emission inputs also included inline NO pro-
duced from lightning using year‐specific flash rate data from the National Lightning Detection Network
(Allen et al., 2012). For simulation years 2005 to 2012 chemical boundary conditions for CMAQ were based
on year‐specific simulations of GEOS‐Chem version 8–03‐02 (http://wiki.seas.harvard.edu/geos‐chem/
index.php/Main_Page, accessed 26 April 2018) using version 8‐02‐01 chemistry, GEOS‐5 meteorology and
ICOADS shipping emissions (Henderson et al., 2014). The CB05 aerosol chemical mechanism used in
CMAQ has more aerosol species than that in GEOS‐Chem, and so speciation remapping between these
two models was done following Henderson et al. (2014). GEOS‐Chem simulations were not available for
2002–2004; chemical boundary conditions for these years were based on the monthly median values from
the 2005 simulation. We expect the influence of these boundary conditions to be relatively small, especially
compared to other uncertainties in themodeling system such as uncertainties in the emissions inventories in
the early 2000s. Additional information on model inputs is provided in the supporting information.

2.2. Observational Data Sets

Model predicted WD for nitrate (NO3
−), ammonium (NH4

+), and sulfate (SO4
2−) were compared to

observed WD values from NADP/NTN (National Atmospheric Deposition Program) (NRSP‐3) (2019).
Modeled and observed values were paired in space by matching the observations to the model values from
the grid cell that contains the monitor. See Appel et al. (2011), section 2.4, for a description of how the che-
mical species in the CMAQ model were configured to match the measured WD values. There were 282
NADP/NTN sites that had data for at least 1 year of the study period. The number of sites with available data
in each year ranged from 231 to 252. In addition, NADP/NTN provides four completeness criteria (CC) to
ensure the reported values represent a valid annual accumulated measurement. About 20% of the sites in
the network in any given year are dropped through application of these CC. As a result, only 68 sites met
all four criteria for the full 11‐year time series, complicating spatial analysis of temporal trends. Here we
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have relaxed the CC and included any site that had 10 or 11 years of data that met the revised criteria,
resulting in a final sample size of 183 sites. Figure 1 shows the location of the 183 sites used in the
analysis and highlights which of these sites met the full NADP/NTN criteria. A full description of the CC
used in this analysis is included in the supporting information.

The observation‐based gridded precipitation fields generated by the PRISM (Daly et al., 2008; PRISM
Climate Group, Oregon State University, http://prism.oregonstate.edu, created 10 September 2015) were
used to evaluate model‐predicted accumulated precipitation from the WRF meteorological model. Annual
accumulated PRISM precipitation data at 4‐km resolution were regridded to the CMAQ 12‐km resolution
grid for the entire time series, which were then used to scale the CMAQ WD fields, as described in
section 2.3. The precipitation estimates from PRISM have been used to improve maps of WD provided by
NADP/NTN and TDEP in complex terrain regions in the United States, as PRISM incorporates point obser-
vation, elevation, and climatic factors when estimating precipitation (Latysh &Wetherbee, 2012; Schwede &
Lear, 2014). The gridded PRISM precipitation estimates are also more commensurable with the WRF grid
cell volume precipitation values compared to the precipitation measurements at NADP/NTN sites which
represent rainfall totals at a single point location.

2.3. Description of the Measurement‐Model Fusion Approach to Combine CMAQ Output
and Observations

The relationship between WD and precipitation is affected by the frequency, duration, and intensity of the
rainfall as well as the ambient concentration. While this relationship is typically nonlinear on hourly and
daily time scales, on an annual accumulation basis the relationship can become more linear. For example,
Figure 2 shows the modeled and observed relationship between annual accumulated precipitation and
WD of sulfate at the 42 sites in the Great Lakes subregion. At locations where themodeled and observed rela-
tionships are similar, the model/observed errors in annual accumulated WD can also be highly correlated
with model/observed errors in precipitation as shown in Figure 3.

The variability in the log of the ratio of model/observed annual accumulated precipitation explains at least
40% of the variability in the log of the ratio of annual accumulated modeled/observed WD at 94, 78, and 104
of the observation stations for nitrate, ammonium, and sulfate, respectively (i.e., 52%, 43%, and 57% of the
stations). For about a quarter of the locations in the eastern half of the United States, these R2 values are
on the order of 60–90%, particularly in the Great Lakes subregion (Figures 3a and 3c). While high correla-
tions do not hold for all stations, we have made use of the calculated linear relationships to recalculate
the modeled WD using PRISM rainfall volume. Specifically, the modeled WD for grid cell s and year t

Figure 1. Location of 183 NADP/NTNmonitors used in the analysis. Color‐coded regions are used in Figure 4 and Figures
S3, S4, and S7 provided in the supporting information. The black‐boarded colored circles (NTN CCmet) indicate sites that
met the full NADP/NTN completeness criteria for the entire 11‐year time series. NADP = National Atmospheric
Deposition Program; NTN = National Trends Network; CC = completeness criteria.
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(WDmod(s,t)) was converted to precipitation concentration by dividing the modeled precipitation
(Precipmod(s,t)) and then converted back to deposition by multiplying by the gridded PRISM precipitation
(Precipobs(s,t)) for that location and year

WDprecip−adj s; tð Þ ¼ WDmod s; tð Þ
Precipmod s; tð Þ×Precipobs s; tð Þ (2:1)

where WDprecip − adj(s, t) is the precipitation adjusted WD at grid cell s and year t.

While this precipitation adjustment (precip‐adj) increased the correlation between observed and modeled
WD, model bias remained due to (1) cases where the WD does not scale with changes in precipitation in a
one‐to‐one linear fashion and (2) bias in emission inputs (including missing emissions sources) and/or
errors in other model processes effecting deposition. A second bias‐adjustment (bias‐adjust) was applied
to the precip‐adj WD (WDprecip‐adj(s,t)), based on interpolating the ratio of the precip‐adj WD and the
NADP/NTNWD observations using a kriging model. A cross‐validation analysis was used to select the inter-
polation approach used in the bias adjustment. Cross‐validation results are provided in section 3.2 with sup-
porting figures in the supporting information. The cross‐validation analysis showed that the model bias at a
single NADP/NTN site can be influenced by very local emission sources and precipitation events and is not
necessarily representative of the bias at surrounding grid cells. Specifically, the cross‐validation analysis
showed that kriging the bias extended the influence of sites with very high bias to other locations, degrading
the effectiveness of the bias‐adjustment. To account for this, a moving window averaging approach was
applied prior to kriging to reduce the influence of these very site‐specific biases. At each site, the median
of the ratio, WDprecip‐adj/WDobs, of all sites within a 300‐km radius was calculated, dampening any large bias

Figure 2. Strength of linear relationship between annual accumulated precipitation and sulfate wet deposition at NTN sites in the Great Lakes subregion based on
observed data (left) and modeled data (right). NTN = National Trends Network.

Figure 3. Coefficient of determination (i.e., Pearson correlation squared or R2) between the natural log of model/observed annual wet deposition, (a) for NO3
−, (b)

for NH4
+, and (c) for SO4

2−, for 2002–2012. A seasonal version of this plot is included in the supporting information (Figure S1).
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values to create a more regional estimate of bias. The new median biases were then interpolated using uni-
versal kriging with a linear trend in the spatial coordinates and an exponential covariance structure (Cressie,
1993). Note that since the bias metric was a ratio, the averaging and kriging steps were done on a log scale
and then back transformed. Both the moving average calculation and the universal kriging were done using
the gstat library in the R statistical software package (Pebesma, 2004) The cross‐validation analysis was used
to determine the size of the moving window (300 km) and the choice of the type of kriging model.

The result of the spatial interpolation steps above is a set of estimated spatial bias fields for each year,bb s; tð Þ.
The final adjusted WD for a given grid cell and year twas calculated based on multiplying the WDprecip‐adj(s,
t) and the inverse of the estimated bias at that location:

WDadj s; tð Þ ¼ 1
bb s; tð Þ

×WDprecip−adj s; tð Þ (2:2)

An example of the spatial bias field and the map of the final adjustment factor for WD of nitrate in 2012 is
provided in the supporting information (Figure S5).

A second cross‐validation analysis was performed to compare this precip‐adjusted and bias‐adjusted
approach (Method 1) with three other measurement‐model fusion methods. First, the individual precipita-
tion and bias adjustments were tested separately. Method 2 includes the precipitation adjustment (precip‐
adj) of CMAQWD using PRISM based on equation (2.1) with no additional bias adjustment. Method 3 uses
the bias‐adj CMAQ model outputs using NADP/NTN WD data with no initial PRISM adjustment. A fourth
method (Method 4) that does not use CMAQ output was also compared. In this case, WD measurements
from NADP/NTN were divided by the regridded 12‐km resolution PRISM precipitation for the grid cell con-
taining the monitor to create a precipitation‐weighted wet concentration value. The precipitation‐weighted
wet concentrations for each ion were kriged using the same kriging approach asMethod 1 (i.e., universal kri-
ging with a linear trend and exponential covariance) to produce a spatial field (units = mg/L) and then mul-
tiplied by the full PRISM precipitation grid (units converted to millimeter per year) to estimate WD at every
grid cell (units = kg/ha) (Latysh &Wetherbee, 2012; Nanus et al., 2003). Results of the cross‐validation ana-
lysis comparing the different methods are provided in section 3.2.

Note that Method 4 differs from the TDEP approach for combining PRISM andWD observations. TDEP uses
inverse distance weighting to interpolate precipitation‐weighted concentrations from NADP/NTN and
AIRMoN and adjusts the PRISM data based on the precipitation amounts measured at NADP/NTNmonitor-
ing network sites (http://nadp.slh.wisc.edu/committees/tdep/tdepmaps/; accessed 26 April 2018). It was not
possible to incorporate this method into the cross‐validation study applied in this paper; however, differ-
ences between the TDEP maps and the methods applied here are discussed in section 3.3.

2.4. Description of Trend Analysis

The temporal trends in modeled and observed WDwere estimated using the Theil‐Sen slope estimator (Sen,
1968; Theil, 1950). Theil‐Sen slopes were calculated using the mblm library in the R statistical software pack-
age. The Theil‐Sen estimator is a nonparametric method for estimating the slope through a set of points, in
this case the annual accumulated deposition for each year at a given grid cell or NADP/NTN location. This
data set has a very small sample size (n= 10 or 11) and can exhibit large interannual variability in some loca-
tions driven by year‐to‐year changes in precipitation. The Theil‐Sen estimator was used because it is insen-
sitive to outliers and offers a more robust approach compared to simple linear regression. The Kendall rank
test was used to test if the linear trend in the observed time series was statistically significant.

3. Results
3.1. Evaluation of Model Estimated WD

Figure 4 provides the normalized mean bias (NMB) of annual precipitation (top left), WD of sulfate (top
right), nitrate (bottom left), and ammonium (bottom right) based onWRF precipitation and CMAQWD esti-
mates compared to NADP/NTN observations from 2002 to 2012. The time series of NMB was calculated for
each of the five subregions to compare how the bias differs across space. Observed precipitation totals in the
intermountainWest are very low yet are consistently overestimated by the model by 20–40%. Precipitation is
also overestimated every year in Pacific Coast states, with the greatest overestimation in 2008 (NMB = 35%).
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There is less model bias throughout the eastern half of the United States, particularly for the latter half of the
time series when the NMB is within ±10%. For most years, the NMB for both NO3

− and SO4
2− WD is less

than 10% in the Northeast, Great Lakes and Southeast, with a slight tendency toward more underestimation
of SO4

2− WD. In the Pacific Coast states NO3
− and SO4

2− WD are overestimated with SO4
2− WD NMB

values exceeding 100% in seven of the 10 years. The year with the largest NMB for the Pacific region for
all three WD species is 2008, corresponding to the peak in the precipitation bias. The modeled ammonium
WD is comparable to observations in the Northeast and Southeast regions (NMB within ±15%) but is under-
estimated in the Great Lakes and Pacific regions. The underprediction of ammonium WD in the central
United States may be the result of missing emissions from large concentrated animal feeding operations
(Warner et al., 2017; Zhang et al., 2018). The overestimation in Pacific Coast states is seen in previous studies
(Appel et al., 2011; Zhang et al., 2018) and could be caused by complex terrain effects. Besides the errors in
modeled precipitation, other errors could also lead to the bias inmodeledWD: errors in atmospheric concen-
trations due to misspecification of precursor emission levels, imperfect representation of the chemical and
physical processes related to the nitrogen and sulfur cycles, the underestimation of deposition velocity of
ammonia gas, and errors in the bidirectional fluxes (Bash et al., 2013; Pleim et al., 2013).

Table 1 provides performance statistics for the simulated annual and seasonal totals for WRF precipitation
and CMAQWD of nitrate, ammonium, and sulfate for the entire time series. The model consistently overes-
timates precipitation except during fall, with NMB for the annual total of 5.3%. R2 between modeled and
observed seasonal precipitation is lowest in summer (0.47) and highest in winter (0.65). Correlation for the
annual accumulated precipitation is higher, with an R2 value of 0.67. The model overestimates nitrate WD
in winter (8.6%) and fall (12.4%) and underestimates it in spring (−8.2%) and summer (−6.7%) with NMB
of the annual accumulation values of −11.0%. R2 for seasonal nitrate WD between the model and measure-
ments is highest in spring (0.73) and lowest in summer (0.54), with a higher annual R2 of 0.76. The model

Figure 4. Time series of normalized mean bias (NMB; %) of annual Weather Research and Forecasting precipitation and
annual Community Multiscale Air Quality Model wet deposition for 2002 to 2012 based on model sums compared to
National Atmospheric Deposition Program/National Trends Network observations. NMB values were calculated for each
of the five subregions shown in Figure 1. NMB = normalized mean bias.
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generally underestimates ammonium WD for all seasons except for summer (NMB = 12.6%), with annual
NMB of −11.0%. R2 for seasonal accumulated ammonium WD is below 0.5 except for spring (0.55), with
an annual R2of 0.60. For sulfate WD, the model only overestimates in summer (2.0%), with annual NMB of
−4.5%. The R2 is comparable for all seasons (from 0.69 to 0.71), with slightly lower values in winter (0.57).
In general, the model had better performance in simulating the WD of nitrate and sulfate than that of
ammonium. As an additional reference, Table S1 in the supporting information provides the NMB for the
precipitation and WD of nitrate, ammonium, and sulfate, based on years 2002–2006 compared to the
analogous statistics from the evaluation of CMAQv4.7 WD estimates published in Appel et al. (2011).

3.2. Cross‐Validation Comparison of Five Methods for Creating WD Maps

Two leave‐one‐out, cross‐validation analyses were conducted to evaluate different methods for combining
NADP/NTN, PRISM, and model data to create WD maps. The cross validation was conducted as follows.
For each year and each monitoring location, the annual WD from that site and any site within 48 km (four
grid cells) was withheld from the estimation of the bias adjustment field for that year. This approach was
used to evaluate how well the methods perform in areas without a NADP/NTN measurement. The cross‐
validation prediction for the location and year of the withheld observation was then compared to the original
NADP/NTN measurement.
3.2.1. Smoothing Radius
The first cross‐validation comparison was used to select the radius of the moving window averaging used to
smooth the bias in the precipitation‐adjusted model values. The first row of Figure S2 shows the NMB, NME,
and R2 values for WD of nitrate, ammonium, and sulfate for a radius of 100–700 km compared to not per-
forming the smoothing step prior to creating bias maps via kriging. Results for a radius of 300–600 km are
very similar. A radius of 300 km was selected because, on aggregate, this distance produced the best cross‐
validation statistics for WD of sulfate and nitrate. For ammonium, the moving window smoothing increases
the bias but decreases the error and improves the R2. The second row of Figure S2 shows a similar compar-
ison across seven spatial interpolation methods available in the gstat library. Inverse distance weight (IDW)
was compared to ordinary kriging (constant mean) and universal kriging (linear trend in site coordinates).

Table 1
Performance Metrics for Annual and Seasonal Accumulated WRF Precipitation Predictions and CMAQv5.0.2 Wet Deposition Predictions for Sulfate, Nitrate, and
Ammonium Including Observation Mean (MEAN OBS), Model Mean (MEAN MOD), Mean Bias (MB), Normalized Mean Bias (NMB), Root‐Mean‐Square Error
(RMSE), Mean Error (ME), Normalized Mean Error (NME), and Pearson Correlation Squared (R2)

Seasons Variables N MEAN OBS MEAN MOD MB NMB (%) RMSE ME NME (%) R2

Precipitation 1,964 94.41 99.4 4.99 5.3 26.81 19.82 21.9 0.67
NO3

− 1,964 7.53 7.43 −0.09 −1.2 2.19 1.60 21.2 0.76
Annual NH4

+ 1,964 2.46 2.19 −0.27 −11.0 0.94 0.68 27.6 0.60
SO4

2− 1,964 8.87 8.47 −0.40 −4.5 2.76 1.92 21.7 0.81
Precipitation 1,631 20.94 22.37 1.43 6.8 9.69 7.02 33.5 0.65

NO3
− 1,631 1.45 1.58 0.13 8.6 0.77 0.55 37.8 0.58

Winter NH4
+ 1,631 0.32 0.24 −0.07 −23.4 0.20 .012 37.9 0.46

SO4
2− 1,631 1.51 1.23 −0.28 −18.6 0.85 0.57 37.4 0.57

Precipitation 1,801 24.35 29.06 2.71 11.1 9.61 6.99 28.7 0.61
NO3

− 1,801 2.20 2.02 −0.18 −8.2 0.77 0.57 26.0 0.73
Spring NH4

+ 1,801 0.85 0.63 −0.22 −26.2 0.46 0.31 36.9 0.55
SO4

2− 1,801 2.63 2.53 −0.10 −3.7 1.09 0.74 28.3 0.71
Precipitation 1,802 27.24 29.15 1.91 7.0 13.35 9.34 34.3 0.47

NO3
− 1,802 2.59 2.42 −0.17 −6.7 1.04 0.77 29.7 0.54

Summer NH4
+ 1,802 0.87 0.98 0.11 12.6 0.49 0.36 41.3 0.41

SO4
2− 1,802 3.14 3.20 0.06 2.0 1.51 0.99 31.5 0.69

precipitation 1,853 23.77 22.11 −1.65 −7.0 8.87 6.38 26.9 0.64
NO3

− 1,853 1.44 1.62 0.18 12.4 0.71 0.48 33.5 0.65
Fall NH4

+ 1,853 0.46 0.39 −0.07 −14.9 0.25 0.17 36.5 0.50
SO4

2− 1,853 1.83 1.73 −0.10 −5.4 0.79 0.54 29.6 0.69

Note. The definition of the evaluationmetrics can be found in the supporting information. Statistics are based on themodeled and observed data from 183 NADP/
NTN sites. Note that not all 183 sites have a valid observation for every season of every year (i.e., N < 183 sites×11 years). Modeled and observed values were
paired in space by matching the observations to the model values from the grid cell that contains the monitor. The units are centimeter for precipitation, and
kilogram/hectare for wet deposition. WRF = Weather Research and Forecasting; cmaq = Community Multiscale Air Quality Model.
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Five different spatial covariance models were also compared: spherical and Matérn with smoothness
parameter 0.5, 1.0, 1.5, and 2.0. The bias and error are reduced for all three species by using a kriging
approach as opposed to the IDW. The statistics for the different kriging approaches are very similar, with
some worsening of performance with the increased smoothness parameters. Universal kriging was
selected with a Matérn covariance model with smoothness parameter 0.5, which is equivalent to what is
referred to as an exponential covariance model.
3.2.2. Comparison of Five Methods for Creating WD Maps
A second cross validation was used to compare the raw CMAQ output and four methods for combining dif-
ferent sources of model and observed data. Table 2 provides evaluation summary statistics based on 1,964
observations, which include the 10 or 11 years of data from the 183 sites used in the study. Using only a
precip‐adj (Method 2) or only a multiplicative deposition bias‐adjustment (Method 3) to adjust the modeled
WD decreases the negative bias and increases the correlation with observations, compared to the unadjusted
model values. Method 1, which combines both adjustments, provides additional improvement over using
only one adjustment (i.e., even lower bias and higher R2 compared to Methods 2 and 3; see Table 2). The
precip‐adj and bias‐adj results show very good agreement with observations, with NMB within 3% and R2

values between 0.77 and 0.90 (Figure S4). This is a clear improvement over the raw model output, especially
for the Pacific, West, and Great Lakes regions (Figures S3 and S4) where the model performance for WD is
usually poor due to terrain effects (Appel et al., 2011; Zhang et al., 2018). This result illustrates the value in
incorporating data for both precipitation and WD in the bias‐adjusting of the model‐simulated WD. By tak-
ing advantage of the improved WD estimations from Method 1 in this study, Williams et al. (2017) found
reduced bias in informing critical load exceedance calculations in the Pacific Northwest.

Using NADP/NTN wet concentration and PRISM data alone (NTN × PRISM) in Method 4 provides esti-
mates for WD of sulfate and nitrate that have similar correlation and bias compared to the approach of
precip‐adj and bias‐adj, which utilizes CMAQ output. For ammonium, Method 1 offers a higher correlation
(R2 of 0.77 compared to 0.67) as well as slightly lower bias (NMB of −2.9% compared to 3.6%) compared to
Method 4, which relies on observations only. Additional differences in the methods that are not reflected in
the cross‐validation are evident in the final spatial maps of WD shown in the next section.

3.3. Spatial Maps of WD

Figure 5 shows maps of annual accumulated WD of nitrate in 2012 based on four different approaches.
TDEP in the top left and the NTN × PRISM approach (Method 4) in the bottom left are observation‐based

Table 2
Cross‐Validation Statistics for the WD From CMAQv5.0.2 Output Only and Four Measurement‐Model Fusion Methods (Precip‐ Adj and Bias‐Adj (Method 1), Only
Precipitation‐Adjustment (Precip‐Adj, Method 2), Only Bias‐Adjustment (Bias‐Adj, Method 3), and NTN × PRISM (Method 4)

Species Fusion method
Mean Obs
(kg/ha)

Mean mod
(kg/ha)

MB
(kg/ha) NMB (%)

RMSE
(kg/ha)

ME
(kg/ha) NME (%) R2

NO3
− CMAQ outputs 7.53 7.43 −0.09 −1.2 2.19 1.60 21.2 0.76

Method 1 (precip‐adj and bias‐adj) 7.53 7.53 0.00 0.0 1.53 1.10 14.6 0.86
Method 2 (precip‐adj) 7.53 7.47 −0.05 −0.7 1.95 1.48 19.6 0.81
Method 3 (bias‐adj) 7.53 7.63 0.10 1.4 1.92 1.36 18.1 0.79
Method 4 (NTN × PRISM) 7.53 7.54 0.00 0.1 1.48 1.09 14.5 0.86

NH4
+ CMAQ outputs 2.46 2.19 −0.27 −11.0 0.94 0.68 27.6 0.60

Method 1 (precip‐and bias‐adj) 2.46 2.39 −0.07 −2.9 0.69 0.48 19.6 0.76
Method 2 (precip‐adj) 2.46 2.21 −0.25 −10.2 0.87 0.65 26.3 0.66
Method 3 (bias‐adj) 2.46 2.41 −0.05 −1.8 0.79 0.57 23.0 0.70
Method 4 (NTN × PRISM) 2.46 2.37 −0.09 −3.6 0.82 0.58 23.5 0.67

SO4
2− CMAQ outputs 8.87 8.47 −0.40 −4.5 2.76 1.92 21.7 0.81

Method 1 (precip‐and bias‐adj) 8.87 8.84 −0.03 −0.3 1.98 1.35 15.3 0.90
Method 2 (precip‐adj) 8.88 8.56 −0.31 −3.4 2.37 1.66 18.7 0.86
Method 3 (bias‐adj) 8.87 8.97 0.10 1.1 2.57 1.72 19.4 0.84
Method 4 (NTN × PRISM) 8.87 8.86 −0.01 −0.1 2.08 1.39 15.7 0.89

Note. Summary statistics are based on N = 1,964 observations and include observation mean (MEAN OBS), model mean (MEAN MOD), mean bias (MB), nor-
malized mean bias (NMB), root mean square error (RMSE), mean error (ME), normalized mean error (NME), and Pearson correlation squared (R2). Evaluation
metrics with the best performance values are shown in bold. WD=wet deposition; NTN=National Trends Network; PRISM= Parameter‐elevation Regressions
on Independent Slopes Model.
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approaches. The base model CMAQ and precip‐adjusted and bias‐adjusted CMAQ maps (Method 2) are
shown in the top right and bottom right, respectively. Maps of the bias adjustment applied to the base
model output to produce the final map of WD of nitrate are shown in supporting information Figure S5.
Maps of precip‐adjusted and bias‐adjusted CMAQ WD of sulfate and ammonium for 2012 are provided in
Figure S6.

The TDEPmap in Figure 5 is more spatially smooth than the other approaches, with some “bullseye” spatial
gradients common with IDW interpolation. The NTN × PRISM map has less of this bullseye effect but is
missing some of the hot spots in the Northeast that are captured by themodel. The base model output under-
estimates the WD throughout much of the domain west of the Mississippi River. The spatial gradients in the
precip‐ adjusted and bias‐adjusted map in this region are more consistent with the observation‐only based
maps without smoothing out the spatial heterogeneity of the original model output. These differences are
not necessarily reflected in the evaluation in section 3.2 because the cross validation is limited by the spatial
coverage of the observation network. The model‐based approaches reflect spatial heterogeneity in local
emissions sources that cannot be captured by the measurement network.

3.4. Evaluation of Model Predicted Trends

A trend analysis was used to assess the CMAQv5.0.2 system's ability to predict changes inWD during 2002 to
2012 with and without the precipitation and bias adjustments. During this 11‐year period, emission reduc-
tion programs such as the EPA's Acid Rain Program, Nitrogen Oxides State Implementation Plan Call,
and Clear Air Interstate Rule led to a substantial decrease in emissions of nitrogen oxides and sulfur dioxide
(e.g., Gilliland et al., 2008; Hand et al., 2014). The impact of such emission reductions onWD can be seen in
Figure 6 which shows the Theil‐Sen slope estimator for the annual WD of nitrate, ammonium, and sulfate.
The trends shown in Figure 6 are based on raw CMAQ output (left column) and adjusted CMAQ values
(right column, Method 1). Trends based on the NADP/NTN measurements are overlaid on these spatial
fields and show that there has been a steady decrease in WD of nitrate and sulfate from 2002 to 2012 in
the eastern half of the United States, particularly in the Northeast where the average decrease across the

Figure 5. Annual wet deposition of nitrate (kg/ha) in 2012 based on TDEP (top left), CMAQ (top right), NTN × PRISM
(Method 4; bottom left) and precip‐adjusted and bias‐adjusted CMAQ (Method 2; bottom right). National Atmospheric
Deposition Program/National Trends Network monitor locations with annual data for 2012 are shown on all the maps.
Sites that were dropped from the trend analysis in section 3.4 because they did not have a sufficiently long time series of
measurements are shown in gray. TDEP = NADP Total Deposition; CMAQ = Community Multiscale Air Quality Model;
NTN = National Trends Network; PRISM = Parameter‐elevation Regressions on Independent Slopes Model.
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entire 11 years is 30% for nitrate and 50% for sulfate. Figure S7 provides scatterplots of the observed versus
modeled and adjusted modeled trends at the 68 NADP/NTN locations that met the full CC. Use of the raw
CMAQ output led to an overestimation of this observed negative trend in the Great Lakes and Northeast
regions and parts of states on the Pacific Coast. The trends inWD of nitrate based on the adjusted model out-
put are more consistent with the spatial patterns in the observed data, with the root‐mean‐square error
(RMSE) of the estimated trends decreasing from 0.35 to 0.24 kg/ha/year in the Northeast and from 0.22 to
0.18 in the Great Lakes (Figure S7). Trends in WD of nitrate and sulfate are also improved in the
Southeast with the RMSE for nitrate decreasing from 0.29 to 0.10 kg/ha/year and the RMSE for sulfate
decreasing from 0.29 to 0.17 kg/ha/year. This improvement illustrates the value of adjusting the model out-
put to account for errors in modeled precipitation and model bias due to emissions or other processes
impacting WD. Note that the 68 NADP/NTN locations that met the full CC are plotted in Figure 5 as circles.
The sites that were added with the relaxed CC (plotted as squares) help fill in spatial information, while not
changing the overall conclusions drawn from the model predicted trends.

Figure 6. Theil‐Sen trends (i.e., slopes) for the 2002–2012 time series of annual wet deposition at each NADP/NTN loca-
tion and each model grid cell based on raw Community Multiscale Air Quality Model output (left column) and precip‐and
bias‐adjusted Community Multiscale Air Quality Model output (right column) for wet deposition of nitrate (top row),
ammonium (middle row) and sulfate (bottom row). Note the change in scale for ammonium. Trends at the NADP/NTN
locations that met the full NADP/NTN completeness criteria are shown as colored circles with the remaining sites used in
the analysis shown as colored squares. The size of the circle/square is based on the p‐value of a nonparametric Kendall
rank test. A larger symbol indicates a statistically significant linear trend in the time series. NADP/NTN = National
Atmospheric Deposition Program/National Trends Network; CC = completeness criteria.
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Trends in WD of ammonium from the adjusted model outputs are more spatially and temporally heteroge-
neous, with essentially no trend throughout much of the CONUS except for some slightly positive trends in
parts of the Great Plains and Central Valley of California. (Note the change in scale in Figure 6 for ammo-
nium compared to the maps for nitrate and sulfate.) Spatial features in ammonium are better captured by
the adjusted model time series compared to the raw model output, with the RMSE of the trends decreasing
in the West, Southeast, and Great Lakes and remaining constant in the other regions (Figure S7).

4. Summary and Conclusions

Using observational data fromNADP/NTN, we evaluated an 11‐year time series of CMAQv5.0.2 simulations
to assess the model's performance in estimating annual WD. The model underestimates the annual WD of
NO3

−, NH4
+, and SO4

2−, with NMB of−1.2%,−11.0%, and−4.5%, respectively. To further improve the mod-
el's performance in simulating annual WD, we developed an approach to bias correct CMAQmodel outputs
using observation‐based gridded PRISM precipitation and the WD measurements at the NADP/NTN sites.
Cross‐validation analysis shows that the new bias‐adjusted model outputs have much lower bias and higher
R2 compared to the unadjusted model values. The NMB values for the annual WD of NO3

−, NH4
+, and

SO4
2− from the adjusted model outputs are 0.0%, −2.9%, and 0.3%, respectively. Spatial maps of the adjusted

WD reflect spatial heterogeneity in local emissions and precipitation compared to the observation‐based
approaches considered here that tended to be more spatially smooth. The improved measurement‐model
fused WD estimates can be used to develop more precise cause‐effect relationships between atmospheric
deposition and sensitive aquatic and terrestrial ecosystems, particularly at high elevations that are impacted
by orographic effects on precipitation.

The temporal trends in annual WD of NO3
−, NH4

+, and SO4
2− are also captured by the model. Statistically

significant negative trends are found for WD of NO3
− and SO4

2−, especially in the eastern United States
using the precipitation‐ adjusted and bias‐adjusted model outputs, while this trend is underestimated using
the raw model outputs. The trends based on the precipitation‐ adjusted and bias‐adjusted model outputs
show much greater consistency with the spatial patterns in the observed data, illustrating the merits of
our newmethods. The use of air quality modeling for estimating trends offers the ability to perform account-
ability studies where simulations are used to quantify the impact of the control measures on ambient con-
centrations and WD. Air quality modeling also allows for assessment of alternative emission strategies,
changes in land use and meteorology. Future simulations are typically run using base‐year meteorology,
allowing for the same precipitation adjustment to be applied. The appropriateness of applying the second
bias adjustment to future or alternative simulations will depend on the scenario being modeled.

Accurate quantification ofWD andDD is essential for assessing critical loads exceedances and effects on eco-
systems. Improvements toWDhave been demonstrated in the current work.Measurement‐model fusion can
be used to correct biases in model output while maintaining the spatial detail that the model provides. As
described in the GAW report (WMO, 2017), measurement‐model fusion approaches for deposition have
already been adopted by multiple groups. TDEP is widely used in the United States and uses a
measurement‐model fusion approach for the calculation of DD. Inclusion of measurement‐model fusion
for WD has been identified by the NADP TDEP committee as a next step for U.S. TDmaps. The analysis pre-
sented here can inform the selection of the fusion method for WD. Note that the incommensurability
between volume‐average model output values and point measurements can impact evaluation results and
interpretation. This issue is present in model evaluation and data fusion methods for all modeled pollutants
and has been discussed in the literature most frequently for ambient concentration of ozone and PM2.5 (e.g.,
Gelfand et al. (2001); Fuentes and Raftery (2005); Swall and Foley (2009)). Addressing the issue of incom-
mensurability in WD estimates is complicated by the fact that the subgrid variability in precipitation can
be quite different from the subgrid variability in concentrations, and these differences will vary across the
country. For example, a WD measurement in the Rocky Mountains might be different from a 12‐km × 12‐
km average due to orographic effects while a measurement site in the Ohio River Valley may not be
representative because it is upwind of a large source that does influence the 12‐km × 12‐km volume aver-
age. The NADP/NTN network is not dense enough to evaluate how much subgrid variability in WD can
be expected within a 12‐km × 12‐km grid cell and how this subgrid variability changes across the country.
Based on our current and prior analyses, we believe that the issue of incommensurability does not
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preclude the use of the NADP/NTN measurements to provide information on broad regional biases in the
model due to errors in emissions, meteorology, chemistry, and boundary conditions. Future work will
include a comparison of alternative fusion methods such as the optimal interpolation methods developed
by Robichaud et al. for the GEM‐MACH air quality model (WMO, 2017). Improvements to deposition
modeling within the CMAQ system can also reduce the need for bias correction of model outputs.
Finally, the analysis methods developed here focused on the estimation of annual total WD. An assess-
ment of data fusion methods for seasonal totals is needed to evaluate the effectiveness of these adjustment
methods across different seasons.
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