
“Manganese and the Insulin-IGF signaling network in 
Huntington’s disease and other neurodegenerative disorders”

Miles R. Bryan1,2,3 and Aaron B. Bowman1,2,3,4

1Dept. of Neurology, Vanderbilt University Medical Center

2Vanderbilt Brain Institute, Vanderbilt University Medical Center

3Dept. of Pediatrics, Vanderbilt University Medical Center

4Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor 

impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-

like growth factor (IGF) treatment in models of HD results in potent amelioration of HD 

phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin 

can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance 

of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor 

abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological 

systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-

mimetic effects of Mn—demonstrating Mn can activate several of the same metabolic kinases and 

increase peripheral and neuronal insulin and IGF1 levels in rodent models. Separate studies have 

shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular 

Mn uptake, indicative of a Mn-deficiency. Furthermore, evidence from the literature reveals a 

striking overlap between cellular consequences of Mn-deficiency (i.e. impaired function of Mn-

dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive 

oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review 

published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on 

HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent 

perturbations in HD may all be functionally related. Together, this review will present the 

intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or 

toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD 

pathology and perhaps, other neurodegenerative diseases (NDDs) and other neuropathological 

conditions.

1.1 Introduction

Between 1–3 out of 100,000 individuals are diagnosed with Huntington’s disease (HD) in 

the U.S. However, given the autosomal dominant etiology and near 100% penetrance of HD, 
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generations of families are devastated by this disease. HD is caused by an expanded tri-

nucleotide CAG repeat in the HTT gene. If these repeats surpass 35–40 repeats, there is a 

near 100% chance that the patient will present with Huntington’s disease at some point in 

their lifetime (usually in middle-late adulthood). While the HTTgene was discovered in 

1993, there is still no cure for HD though several drugs have been used to treat symptoms 

(i.e. tetrabenazine for chorea). Furthermore, researchers still do not fully understand 1) the 

exact function(s) of wild-type HTT is in the human brain or 2) how mutant HTT (HTT >35 

CAG repeats) causes neurotoxicity and HD. Two of the posited causes for HD are 1) 

mitochondrial dysfunction 2) autophagic dysfunction and aggregate accumulation. Recently, 

a series of studies have shown that insulin/insulin-like growth factor (IGF) treatment in HD 

models can ameliorate both of these pathogenic mechanisms.

Manganese (Mn) has only been recently implicated in HD, and studies have suggested that a 

Mn deficiency may underlie some of HD pathology1–5. Interestingly, Mn can modulate 

insulin/IGF homeostasis, shown to be essential for mitochondrial function, and able to 

stimulate neuroprotective pathways associated with the activation of autophagy, namely 

insulin/IGF signaling (IIS). This review explores the functional intersection of these two 

modifiers of HD, (a) Mn biology and (b) insulin/IGF signaling (IIS)—both have been shown 

to regulate autophagy and mitochondrial health/function. Here we will review a role for Mn 

and IGF joint dysregulation in HD pathology and briefly explore some the implications of 

this co-regulation in the context of other neurodegenerative diseases and conditions.

While Huntington’s disease will be discussed in detail, other neurodegenerative diseases 

(NDDs) will also be referenced when studies provide mechanistic understanding of the roles 

of Mn and IGF/insulin given the shared cellular pathologies between NDDs and HD (i.e. 

aggregate accumulation, reactive oxygen species, mitochondrial dysfunction). It is plausible 

that the mechanisms of these NDD pathologies might be quite similar to HD.

1.2.1 IIS signaling and its role in the brain

Insulin and insulin growth factor (IGF) are homologous growth hormones that classically 

regulate cellular metabolism. Their role in peripheral tissues has been well elucidated. 

However, only more recently has their role in brain health and development been studied. In 

the brain, IIS is necessary for synaptic maintenance and activity, neurogenesis, neurite 

outgrowth, neuronal survival, mitochondrial function and maintenance as well as upper-level 

processes including memory and feeding behavior and thus dysregulation in neurotrophic 

support has long been proposed as a mechanism of neurodegenerative diseases6–31. Insulin 

and IGF are mainly produced in the pancreas and liver, respectively, and transported to the 

brain from the periphery through the blood brain barrier. Alternatively, IGF and insulin can 

enter the brain through CSF in the choroid plexus. IGF is also produced locally in all brain 

regions. Upon binding with their respective ligands, IGF receptors (IGFR) and insulin 

receptors (IR) undergo autophosphorylation at three tyrosine residues required for activation. 

Subsequently, the IR kinase domain phosphorylates IR substrates (IRSs) which act as 

secondary messengers, impinging upon a variety of cell signaling pathways including PI3K/

AKT, mTOR, and MAPK/ERK to exert their biological effects (e.g. energy metabolism, cell 

stress responses)32. However, individual receptors can heterodimerize forming hybrid IGF/
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insulin receptors which can bind either insulin or IGF and activate both the PI3K/AKT and 

MAPK/ERK pathways. S6, a downstream target of mTOR acts as negative feedback, 

phosphorylating and inactivating IRSs. Six IGF binding proteins exist (IGFBPs) and act to 

regulate IGF-R binding and modulate signaling. IGFBPs show a selective expression 

pattern, being in distinct portions of the brain where they presumably act on specific IIS 

signaling within anatomical subsets of neurons. These proteins have a higher affinity for IGF 

than do IGF receptors, allowing tight control of IGF bioavailability. The regulation of 

neuronal IGFBPs is still quite unknown but evidence suggests specific mechanisms for each 

protein including control by epigenetic markers and neuronal activity of specific cell 

types33,34.

Most kinases in humans are either magnesium (Mg) or Mn dependent. Though most are Mg 

dependent, several are preferentially activated by Mn including ATM and mTOR35,36. While 

little research has been done to explore the role of Mn as a signaling molecule its inherent 

role in kinase activation suggest Mn is essential for cell signaling. Several other proteins are 

also activated by Mn including Arg, MRE11, Mn-SOD, glutamine synthetase, pyruvate 

decarboxylase, protein phosphatase 1, and many integrin-related proteins37–46. Interestingly 

Mn has been shown to activate several of the same pathways as IGF/insulin including AKT, 

mTOR, and ERK/MAPK, and even the insulin/IGF receptor itself— all of which have been 

found to be neuroprotective in HD46–56.

1.2.2 Mn and insulin/IGF homeostasis.

Mn toxicity has been linked to neuronal cell death and neurodegenerative conditions for 

several decades—namely Parkinson’s disease (PD) and manganism. Though recent studies 

have yielded greater understanding of toxic effect of Mn on neuronal function, very little is 

known about basic, neuronal Mn homeostasis. While brain imaging studies have revealed 

where Mn accumulates within the brain, there is disagreement on what sub-compartment(s) 

Mn primarily accumulates within a neural cell. The field is in some contention as some 

studies suggest mitochondria while others suggest within the nucleus57–59. Surprisingly few 

studies have examined whether Mn primarily accumulates in neurons vs glial cells. Lastly, 

there is poor understanding of how Mn is transported within a cell, primarily due to the high 

promiscuity of Mn transporters for other metal ions37,60. Muddying this understanding, at 

present there is only one transporter which seems specific for Mn, SCL30A10, an efflux 

transporter. Interestingly, mutations in this transporter lead to Mn accumulation in vitro and 

in vivo and have been linked to increased brain Mn and PD in patients60–63. The answers to 

these basic questions could offer invaluable understanding of Mn biology in the context of 

both diseased and healthy brains.

Evidence of a role for Mn-dependent regulation of IIS has been steadily amassing since the 

1980’s. Baly and colleagues showed Mn-deficiency caused glucose intolerance and reduced 

insulin production in rats, mimicking diabetic-like phenotypes64–67. In addition, rats fed a 

Mn-deficient exhibited reduced pancreatic insulin output following a glucose stimulus. 

Furthermore, they and others found Mn to be an insulin-mimetic, promoting insulin 

excretion and activating insulin-related metabolic kinases64–69. Around this same time, 

another study showed that Mn-deficient rats exhibited decreased circulating IGF-1 and 
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insulin and increased IGFBP3—potentially suggesting Mn might regulate circulating IGF-1 

levels via modulating IGFBP3 activity70. Later, Lee and colleagues reported that Mn 

supplementation could protect against diet-induced diabetes in mice via increased insulin 

excretion, amelioration of glucose intolerance, and increased expression of Mn superoxide 

dismutase (MnSOD), a Mn-dependent anti-oxidant enzyme in mitochondria71. These results 

were consistent with reports that diabetic patients were responsive to oral Mn treatment as 

well as reports of reduced blood Mn in diabetic patients72–74. Concurrently, other groups 

established that Mn deficiency was associated with reductions of IGF1 in serum and Mn 

supplementation could increase IGR-R and IGF1 expression in the hypothalamus of 

rats53, 54, 56, 70, 75–78 However, the mechanisms bv which Mn increases IGF1 and insulin 
levels remain unknown. Together, these findings suggest a functional link between Mn and 

the regulation of IGFl/insulin levels in both peripheral tissues and brain. While such studies 

clearly link Mn to diabetes and hypothalamic/pubertal development, the role of this potent 

regulatory mechanism has never been studied in the context of a neuronal disease or 

manganese toxicity.

1.3.1 HD pathobiology

HD is an autosomal dominant neurodegenerative disease which results in hyperkinetic 

movements, behavioral changes in cognition and mood, and ultimately death. An expanded 

trinucleo-tide (CAG) repeat in the Huntingtin gene (HTT) resulting in a mutant HTT protein 

(mHTT) causes HD. Higher CAG repeats are correlated with increased disease severity and 

younger age of onset though both are highly variable even between patients with similar 

repeat size79,80. Usually, the disease manifests in adulthood (though juvenile cases do 

occur), and gives rise to a combination of motor, cognitive, and psychiatric symptoms which 

ultimately result in death. A hallmark symptom of HD is chorea, uncontrolled hyperkinetic 

movements, which has been associated with mHTT-dependent cell death within the striatum. 

Degeneration in other brain regions (cortex, hypothalamus) usual follows, contributing to the 

variability in symptoms. As HTT is ubiquitously expressed, the basis for the selective 

neurotoxicity of mHTT for striatal medium spiny neurons (MSNs) and a handful of other 

neuronal sub-populations remains a mystery80–84.

1.3.2 Mn dysregulation in HD.

Mn dysregulation has only recently been implicated in HD. In normal brains, Mn 

accumulation is enriched in the basal ganglia—the part of the brain which most severely 

degenerates in HD—suggesting Mn serves an important role in this brain region59,85, 86. 

Recently a set of studies revealed a Mn transport deficit, indicative of a brain-specific Mn 
deficiency, in an HD immortalized striatal neuroprogenitor cell line (STHdhQ111/Q111), in 

HD hiPSC-derived striatal NPCs cells, and also in the striata of YAC128Q mouse model of 

HD1, 4. The mechanism of this Mn-transport deficit has been difficult to resolve as so little is 

known about Mn sub-cellular transport. Analysis of Mn homeostasis is complicated by the 

high promiscuity of proposed Mn transporters for other essential metals37, 60, 87, 88.

However, Mn is known to activate several of the signaling pathways dysregulated in HD 

including ATM/p53 and AKT/mTOR1, 53, 54, 88–90. STHdh Q111/Q111 and hiPSC-derived 
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striatal neuroprogenitor HD cell models exhibit decreased net Mn up-take leading to 

diminished ATM activation, a Mn-responsive kinase upstream of p53 and other cellular 

stress response proteins1. Similar to ATM/p53, Mn robustly activates AKT and mTOR, both 

of which are neuroprotective in HD91–98. AKT activation can increase HTTSer421 

phosphorylation, shown to facilitate axonal transport, restoring mitochondrial and 

autophagic function in HD models92, 95–97, 99–102. In contrast, Guilarte and colleagues 

reported decreased HTTSer421 phosphorylation by Mn in YAC128 mouse cortical and 

hippocampal primary cultures, though striatal levels were not assessed4, 5. Lastly, 

reinstatement of aberrant mTOR activity in HD models restores autophagic function, 

enhances aggregate clearance, and increases MSN health, though some reports have shown 

mTOR inhibition to be neuroprotective in HD91,103,104.

1.3.3 IIS dysregulation in HD.

Recently, several groups observed impaired IIS in HD. Paradoxically, reduced IGF1 

expression has been detected in patient caudate tissue and skin-fibroblasts as well as other 

non-human HD models, while increased IGF1 has been found peripherally in HD and this 

has been correlated with cognitive decline96,105,106. Previous studies have shown mutant 

HTT disrupts intracellular transport and secretion of insulin while others have shown Mn 

can act as a potent insulin-mimetic in vivo69. Additionally, several groups reported robust 

neuroprotective effects of IGF1 treatment in HD cell and mouse models via increased 1) 

AKT/ERK signaling 2) IRS2/VPS34 (Class III PI3K) signaling and 3) increased HTT 

Ser421 phosphor-ylation. Upregulation of these pathways increased autophagic function, 

aggregate clearance and ameliorated mitochondrial dysfunction96, 97, 100, 101, 107–111. 

Administration of IGF and insulin can also rescue microtubule transport, amelioration of 

motor abnormalities, MSN health, and enhanced survival in cell and rodent models. IGF1 is 

also neuroprotective in models of other NDDs112–119.

1.3.4 Autophagy deficits in HD, potential links to Mn and IIS.

The inability to clear toxic mHTT aggregates may be a principle mechanism of HD-related 

cell death though there is contention about which form(s) and fragment(s) are truly toxic and 

which are a compensatory/protective reaction to cellular toxicity120–123. Autophagy, a 

process by which cells degrade complex organelles and proteins to base nutrients, is also the 

primary process in clearing mHTT aggregates121, 123–129. HTT acts as a scaffold for 

autophagy and this activity is altered or impaired by mHTT, potentially exacerbating 

pathogenesis126, 130–133. In HD, autophagic impairment causes failure of cargo-recognition 

and lysosomal function resulting in the accumulation of cellular waste and protein 

aggregates134. This may trigger a feed-forward pathogenic loop with ever increasing mHTT 

levels further impairing clearance126.

IGF treatment incurs robust amelioration of autophagy defects in HD models. Rothman and 

colleagues observed that IGF1 upregulates autophagy via an IRS2/VPS34-dependent 

mechanism in HD cells, resulting in a marked increase in aggregate clearance. This is an 

AKT/mTOR-independent process, though both AKT and mTOR are activated by IGF1107. 

Additionally, other groups have shown that upregulation of mTOR in HD models increases 

autophagy and aggregate clearance, rescuing HD-related phenotypes even though mTOR 
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canonically acts as a negative regulator of autophagy by inhibiting ULK191,135. 

Interestingly, published studies indicate Mn both increases and decreases autophagy in 

neuronal systems in a biphasic, time-dependent manner55, 136. Given this regulation of 

autophagy by Mn and Mn-responsive pathways, it seems plausible that correcting Mn 

homeostasis in HD models may ameliorate aspects of autophagic dysfunction. To date 

however, there has been only a handful of studies exploring the role of Mn in autophagy—

and the majority have been done in the context of Mn toxicity, instead of Mn 

essentiality55, 137. Given clear ties of Mn biology to pathways upstream of autophagy, future 

studies should interrogate the role of Mn in autophagy during normal neuronal function, in 

addition to disease states. In particular, we need to establish whether Mn plays a role in basal 

autophagy or only in the context of Mn toxicity.

1.3.5 Mitochondrial pathology in HD, possible links to Mn and IIS

Mitochondrial dysfunction is another mechanism by which mHTT may cause selective 

neurodegeneration in HD. Mitochondrial dysfunction may contribute to neurodegenerative 

diseases (NDD) for several reasons; 1) High mitochondrial respiration is needed to 

accommodate high ATP usage in neurons, 2) mitochondria, out of all organelles, produce the 

highest amount of intracellular reactive oxygen species (ROS), 3) mitochondria are a critical 

regulator of cell death, a common feature of most NDDs, 4) mitophagy (mitochondrial 

selective autophagy) is often defective in NDD, and 5) perturbations in various metabolic 

processes, indicative of mitochondrial dysfunction, are often associated with NDD138–140. In 

HD, specifically, overt metabolic effects such as rapid weight changes and defects in glucose 

homeostasis have been observed in HD patients and models141–151. Also, WT HTT has been 

shown essential for mitochondrial health152. To this end, several basic studies and clinical 

trials have investigated metabolic targets as potential therapeutics for HD including creatine 

and Coenzyme Q10, but have found little success153–159.

Several landmark studies demonstrate IGF1 restores mitochondrial health in HD 

models97, 100, 101. Given the IIS-mimetic effects of Mn, correcting Mn homeostasis may 

ameliorate some facets of mitochondrial dysfunction in HD. This hypothesis is consistent 

with established roles for Mn in mitochondria: 1) Mn accumulates in mitochondria more so 

than other organelles supporting a functional need in this organelle; 2) Mn has anti-oxidant 

functions via the Mn-dependent, mitochondrial enzyme, MnSOD; and 3) Mn is essential for 

the function at least two gluconeogenesis enyzmes37, 57,58,60,88. Rego and colleagues have 

reported a series of studies providing a mechanistic understanding of how IGF is capable of 

such robust amelioration of HD symptoms100, 101, 139, 153, 160–169. They found HD models 

exhibit reduced ATP/ADP ratio, decreased O2 consumption, increased mitochondrial ROS 

and fragmentation, aberrant lactate/pyruvate levels and decreased mitochondrial membrane 

potential— all of which indicates mitochondrial dysfunction. Each of these was shown to be 

ameliorated by IGF treatment via upregulation of PI3K/AKT signaling in cellular and mouse 

models of HD.
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1.4.1 IIS signaling and Mn in other NDDs

Abnormal levels of IGF/insulin and decreased IIS signaling (namely, reduced AKT 

signaling) have been observed in all neuro-degenerative diseases including PD, Alzheimer’s 

disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), spinocerebellar 

ataxias (SCA), and other NDD-like conditions such as ataxia telangiectasia (AT). In the case 

for many models of these diseases, IGF or insulin have been successfully used to ameliorate 

pathologies in vitro and in vivo; and they have been used or targeted in clinical 

trials114,170–172. Unfortunately, these clinical trials have reported little success. One possible 

reason for this is control of IGF-1 bioavailability by IGFBPs. This could be overcome by 

using a modified IGF-1-like peptide which is unable to bind IGFBPs173. Furthermore, 

although many studies have shown perturbation in metal ion homeostasis in these diseases, 

few have explored a more specific role for Mn dysregulation. Recent studies elucidating Mn 

or IGF/Insulin dysregulation in NDDs will be reviewed next, emphasizing developments in 

recent years.

1.4.2 PD and IIS/Mn

PD is a neurodegenerative disorder resulting in bradykinesia and motor rigidity affecting an 

estimated 10 million people worldwide. Symptoms of the disease mostly occur in late 

adulthood as a threshold of dopaminergic neurons in the substantia nigra degenerate. Unlike 

HD, there is no clear genetic predisposition for most cases of PD, though mutations in some 

genes are correlated to increased risk for PD. Given this and the late-onset of the disease, 

many studies have focused on environmental modifiers of the disease174. PD has long been 

associated with perturbations in metal ion homeostasis—particularly iron (Fe) and Mn. Mn 

toxicity causes parkinsonian-like symptoms and a disease-state known as manganism, but 

most agree that its pathology is different from that seen in PD. This is mainly because 

neurodegeneration in PD occurs primarily in the dopaminergic neurons of the substantia 

nigra while Mn toxicity manifests within the globus pallidus. Furthermore, at least some 

patients with Mn induced parkinsonism do not produce Lewy bodies and can be 

unresponsive to levodopa treatment175–177. While these two diseases may be distinct, several 

lines of evidence support a role for Mn dysregulation in PD. Chronic exposure to Mn is 

associated with increased risk for PD. Also, Mn toxicity has been linked to reduced tyrosine 

hydroxylase and dopamine levels and DAT cell surface expression but reports regarding 

impaired neuro-transmission and viability in dopaminergic neurons have been 

inconsistent37, 177–181. Mn toxicity has also been associated with increased alpha synuclein 

build-up, but it is unclear if this response is neuroprotective or enhances 

neurodegeneration182–184.

IGF has been studied in the context of PD as well. Previous studies have revealed 

neuroprotective effects of IGF in PD models and associated with increased dopaminergic 

survival in the substantia nigra112, 182, 185–187. However, the majority of recent studies 

mainly focus on plasma IGF-1 levels as a biomarker for PD progression. Several groups 

published studies suggesting IGF-1 levels were increased in the sera of PD patients 

compared to control188, 189. Furthermore, studies revealed that increased plasma IGF-1 

levels correlate with cognitive decline and motor symptoms188, 190. While these studies have 
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great utility as a clinical tool and seem to be quite sensitive, they have added minimal 

mechanistic insight as to if or why IGF-1/insulin and related signaling may be dysregulated 

or pathogenic consequences. Thus, continued basic and mechanistic experiment to 

understanding of IGF’s role in PD are needed to resolve inconsistencies and provide detail.

AKT has received considerable attention in the PD field via its neuroprotective roles in the 

brain. Aside from reduced p-AKT levels found in post-mortem PD brains, several studies 

have linked increased AKT and IIS signaling to both reduced dopaminergic cell death, 

reduced alpha synuclein toxicity and complex interactions with PD-related proteins 

including PARKIN, PINK1, and DJ1112,185, 191–195.

1.4.3 AD and IIS/Mn

AD results primarily from the degeneration of hippocampal neurons which leads to severe 

cognitive defects in late-adulthood. Disease is defined by two hallmark pathological 

features, neurofibrillary tangles (hyperphosphorylated tau) and amyloid beta plaques, two 

aggregates which incur neurotoxic stress. Heavy metals have also been associated with AD 

and its aggregate pathology, though few studies have examined Mn levels or 

dysregulation196,197. However, two recent studies investigated plasma Mn levels in AD and 

reported opposing results. Dehua and colleagues reported elevated Mn levels which were 

correlated with increased amyloid beta expression and reduced cognition while Bush et al 

reported reduced Mn levels in sera but no difference in patient erythrocytes198, 199.

AD may have the most significant ties to IGF dysregulation of all NDDs. AD has been 

heavily correlated to diabetic status and mechanistic understanding of metabolic dysfunction 

in AD has led to it being referred to as “type 3 diabetes”, a form of diabetes that specifically 

affects the brain200. In recent years, studies have focused primarily on the effects of IGF/

insulin on amyloid beta accumulation and the use of IGF-1 levels as a biomarker for disease 

risk and progression. Two studies in 2009 reported that reduced IGF signaling protects 

against AB accumulation, potentially by acting on the plaques themselves, condensing them 

to less toxic forms201–204. These were contrary to a flurry of studies in the early-mid 2000’s 

revealing IGF resistance and ameliorative effects by IGF treatment on AB accumulation and 

cognitive function115,205–212. A few years later, insulin resistance and reduced IIS signaling 

was found in postmortem AD brain tissue and soon after that, lower serum IGF-1 levels 

were correlated to an increased risk for AD and dementia while higher levels were 

associated with greater brain volume212, 213. Interestingly, increased IGF has been reported 

in CSF of patients214,215. Thus, even though conflicting results have been reported, these 

studies reveal that AD is deeply tied to IGF biology.

Contrary to PD, excessive AKT signaling has been observed in AD. Several studies have 

reduced or inhibited IIS signaling and observed delays in symptoms and reduced AB 

pathology206,216, 217. These results, of course, are contrary to aforementioned studies 

utilizing IGF treatment in AD models. Such conflicting results may be explained by an 

initial hyperactivation of IIS signaling which eventually desensitizes the pathway. In this 

way, both IIS inhibition early or IIS treatment late in disease progression may result in 

ameliorative effects. However, further research will have to be done across disease 

progression to see if this is indeed the case.
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1.4.4 ALS and IIS/Mn

ALS is a neurodegenerative disease which affects more than 12,000 people in the U.S. 

Disease onset is more variable than other diseases and can often occur in younger people. 

The cause of ALS is unknown but pathology is attributed to loss of motor neurons in the 

brain and spinal cord resulting in loss of voluntary muscle control and, in late-stage, patients 

are unable to move or breathe without ventilator support. ALS has also been associated with 

metal ion dysregulation. Again, few studies focused on Mn levels but a few studies have 

reported increased Mn in CSF and plasma while the other reports no change in Mn but 

significant increases in copper and zinc and a reduction in selenium218–221.

IGF dysregulation and insulin resistance has been reported in ALS222–224. These data led to 

a few in vivo studies using IGF-1 treatment in ALS models. While subcutaneous injection 

into the periphery with IGF-1 was largely found to be ineffective, direct intrathecal 

injections directly into the CSF resulted in some decrease in motor atrophy170,225. Given 

these results, a few clinical trials have been attempted in ALS but have found little 

success171, 226,227. One reason may be that these treatments are given peripherally instead of 

intrathecally173. More recently, IGF2 has been found to be neuroprotective in ALS 

models113.

1.4.5 Autophagy in other neurodegenerative diseases

Autophagy has been linked to every neurodegenerative disease—namely because most 

NDDs develop aggregate pathology which is often processed by autophagy. While 

autophagy is activated as a protective process in order to maintain healthy homeostasis of the 

cell, if hyperactivated can result in autophagy-mediated cell death. Thus, interactions 

between aggregates and autophagy play a precarious role in NDDs228. Recent studies have 

begun to explore the effects of metal toxicity on autophagy as well55, 137. In PD, autophagy 

has primarily been investigated in the context of mitophagy (mitochondrial specific 

autophagy). PD has been linked to mitochondrial toxicity and dysfunction which incurs 

mitophagy in an attempt to remove unhealthy mitochondria from the neurons to reestablish 

cellular integrity. PARKIN and PINK1, two proteins associated with familial forms of PD, 

are essential members of the mitophagy process229–234. In AD, autophagy is known to 

regulate both the secretion and degradation of AB which adds increased complexity to its 

role in disease pathology. Several studies have revealed increased autophagasome 

accumulation in AD models, but these results have been inconsistent across disease 

progression235–238. Recently, ALS studies have revealed that two ALS associated proteins, 

TDP-43 and SOD1, are often dysregulated in ALS patients and models239–241. Interestingly, 

mutations in these proteins (amongst several other observed ALS mutation-associated 

proteins) cause aberrant autophagic processing in neuronal and spinal cord neurons242. 

Further studies are needed to elucidate mechanistic understanding of these complex 

relationships to determine whether dysregulated autophagy is a pathogenic mechanism or 

compensatory “rescue” response. Future investigation must interrogate autophagic flux 

rather than commonly used end-point measurements as the directionality and capacity of 

autophagy is necessary for forther understanding and therapeutics. The connections that 

have been drawn between autophagy and Mn or IGF/insulin warrant continued exploration 
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but studies should consider potential co-regulation of Mn and IGF/insulin on autophagy 

processes and dysregulation.

1.5.1 Manganese toxicity and IGF

Little investigation has been done to examine the role of IGF in manganese toxicity. Tong 

and colleagues found Mn toxicity caused reduced ATP and insulin/IGF receptor expression. 

Additionally, as mentioned before, Hiney and colleagues have been revealing a role for Mn-

induced toxicity in hypothalamic development via IGF/mTOR related 

pathways56,53, 54, 56, 76–78. It is likely that Mn toxicity in other brain regions are regulated a 

similar manner. Given that Mn accumulates in the brain primarily in the basal ganglia, not 

the hypothalamus, it seems likely that and IGF/Mn interaction may play even more crucial 

roles in other brain regions, particularly in aged model systems. Thus, future studies on Mn 

toxicity and IGF could be informative on developmental toxicity, chronic environmental 

exposures, and overall brain health.

1.5.2 The co-regulation of ATM, Mn, and insulin/IGF

Interestingly ATM, a Mn activated kinase, has been linked to both IGF/insulin and Mn 

signaling. Previous studies have shown that Mn induced p53 activity is regulated by ATM. 

Furthermore, this Mn-induced activity is blunted in HD due to lack of bioavailable Mn1. 

Separately, low levels of the IGF-1 receptor and loss of IGF-1 sensitivity have been observed 

in Ataxia Telangiectasia (AT), the disease resulting from loss of function mutations in ATM, 

and in loss-of-function ATM models243–246. Additionally, studies have shown patients with 

AT have significantly decreased IGF-1 levels247–250. Additionally, others have shown ATM 

is essential for IGF and IGF-R transcription by phosphorylating and relieving transcription 

factors and complexes including p53 from their respective promotors, allowing for 

transcription243, 244, 251–254. Concurrently, downregulation of IGF-R results in increased 

radiosensitivity and decreased ATM protein levels (mRNA was unchanged) revealing a 

potential circular regulation between ATM and IGF-R244, 255, 256. Also, given that ATM is 

required for full activation of AKT, it seems likely that the connections between ATM, Mn, 

and IGF carry some biological relevance in the context of Mn/IGF co-regulation in NDD257. 

Mn could act as an initiating signaling molecule within this cascade where Mn activates 

ATM/p53 which results in increased IGF/IGF-R transcription and subsequent activation of 

the PI3K/AKT pathway. This hypothetical, albeit plausible, interaction could explain how a 

Mn deficiency in HD might contribute to decreased IIS (AKT/mTOR) and Mn-induced 

ATM/p53 signaling.

1.5.3 IIS signaling, Mn and cancer

Given the striking parallels and potential co-regulation between Mn and IIS and the 

pronounced and well-studied roles of IIS in cancer progression, one must wonder if there is 

role for Mn/IIS co-regulation in cancer etiology. As a pro-growth signaling pathway, IIS is 

often highly upregulated in cancers particularly during tumor progression258. However, most 

findings suggest Mn is not significantly carcinogenic, even to exposed workers. In fact, Mn 

deficiency leads to a higher risk. A plethora of studies, namely clinical examination of Mn 

levels in cancer patients, support the role for Mn deficiency in cancer via reduced MnSOD 

Bryan and Bowman Page 10

Adv Neurobiol. Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity and enhanced ROS accumulation in various cancer types259–263. Of note, Mn has 

been shown to be essential for the activation of ATM and MRE11, two DNA-damage repair 

proteins, and able to increase phosphorylation of p53, the most-well studied tumor 

suppressor gene which exerts control on cell cycle supporting a role for Mn deficiency in 

cancer. In fact, many cancers contain mutations in these same proteins. Somewhat 

paradoxically, HD is associated with reduced Mn bioavailability and reduced risk for 

cancers264. Accumulating data, studies, and clinical trials support a hypothesis that 

perturbations in IIS and metal ion homeostasis separately contribute to both NDDs and 

cancer in somewhat opposite fashions while a dearth of investigation exists to study their 

potential co-regulation in either disease.

1.6 Conclusions

The roles for IGF and Mn separately in HD are far from being fully elucidated. However, the 

sizeable overlap between their homeostasis and downstream effects supports a need to 

consider their coregulation in the context of diseased and healthy states. Neuroprotective cell 

signaling (i.e. AKT, mTOR, ERK/MAPK), mitochondrial health, and autophagic function 

have been implicated in all NDDs repeatedly by multiple groups. Past and present research 

has revealed an essential role for IIS in coordinating these cellular processes. However, little 

attention has been given to Mn role even though distinct lines of evidence substantiate its 

essentiality in these very same processes and even the upstream regulation of insulin/IGF. 

There is not enough evidence one way or another to draw a clear conclusion whether Mn 

may be at the heart of IIS dysregulation in NDDs, but there is certainly enough to warrant 

serious consideration of its role as a contributing factor.

It is still unclear how Mn is exerting its effects on IGF/insulin levels and signaling. Is Mn 

acting at the levels of transcription, translation, or post-translationally? The intriguing 

possibility that Mn might regulate IGF and IGF-R transcription through ATM/p53 is one that 

merits further study as it may have implications in not only NDDs but cancer and diabetes as 

well. Furthermore, given the widespread transcriptional targets of p53, Mn could be widely 

essential for the transcription of various proteins. Mn could also be exerting its control post-

transcriptionally - potentially at the blood brain barrier or via interactions with IGF binding 

proteins. Clegg and colleagues reported that Mn deficiency resulted in increased IGF-BP3 

which they suspected might reduce IGF bioavailability70. However, little investigation has 

been done to follow up on these findings or explore Mn’s role on other IGF-BPs which 

could offer a clear mechanism of Mn’s regulation of IGF.

We discussed here many examples of overlap between HD etiology, IGF/insulin biology, and 

Mn homeostasis. While these connections have been more fully elucidated in HD, the 

inherent overlap between NDD pathology suggests similar roles for Mn and IGF/insulin in 

other NDDs. However, as reviewed here, there is preliminary evidence that these NDDs 

often exhibit different trends in Mn and/or insulin/IGF homeostasis— for example PD is 

associated with increased Mn while HD is associated with Mn-deficiency. However, these 

observations lead to the following additional questions——1) are we exploring IGF/insulin 

and Mn dysregulation at the “right” times during disease progression 2) are we inspecting 

the levels of Mn or IGF/insulin in the correct tissues and 3) is this dysregulation truly a 
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contributor to disease pathology or simply a downstream effect of a higher mechanism? If 

IGF/insulin and/or Mn are truly dysregulated in NDDs, one would imagine that there are 

defined stages of disease progression when specific defects can be observed. Mn or 

insulin/IGF could be affected early on in the disease prior to symptoms, during early 

symptom manifestation, or during late-stage progression once significant brain atrophy has 

occurred (or across the entirety of disease progression). Furthermore, it is likely that this 

dysregulation may differ in not only magnitude, but directionality, between each stage of the 

disease as molecular signaling attempts to compensate or desensitize. While serum and 

plasma levels offer a potential biomarker of brain Mn dysregulation, further studies must 

examine how these levels correlate to what is seen in actual brain tissue. Studies have found 

that changes in IGF by age, sex, diet, BMI, and secondary disease status can cause immense 

variability between patients, particularly in peripheral samples118. Several heavy metals are 

reported to accumulate in the brain with age and can differ by similar confounds suggesting 

peripheral Mn may also be an inappropriate measurement for brain Mn. Furthermore, 

regulation of IGF/insulin and Mn across the blood brain barrier has been somewhat 

elucidated, but strict regulation of these molecules is needed to establish brain integrity 

suggesting that they might be very different from what is seen in serum/plasma or even CSF. 

Confirming consistencies between serum, plasma, blood, CSF and the brain should be done 

in rodent models across disease progression to validate IGF/insulin and Mn biomarkers—

substantiating their use in clinical studies. For other NDDs, a higher mechanistic 

understanding of IGF/insulin and Mn biology should be explored at the molecular and 

cellular levels, similar to what has been done in the HD field. Lastly, given the extended time 

it takes prior to NDD manifestation, one must ask whether observed defects in IGF/insulin 

or Mn are either a cause of the disease or instead a consequence of the neurodegeneration. 

This is a difficult question to answer given the inherent difficulty in working with aged 

models—namely mouse models which often do not fully recapitulate the pathology 

observed in humans.

Currently, available methods and technology make it quite difficult to truly investigate these 

questions in a high-through put manner. Highly sensitive biomarkers for Mn and IGF/insulin 

levels in the brain are likely required to observe changes across disease progression which 

are currently unavailable. The high variability and contradictory data of IGF/insulin levels in 

serum/plasma compared to brain suggest these are not always appropriate measurements for 

brain levels. While existing techniques can quantify levels of Mn in tissues or cells (ICP-

MS, graphite furnace, cellular fura-2 Mn extraction assay (CFMEA)) as well as techniques 

that allow a cellular/sub-cellar resolution of Mn localization (XANESX-ray absorption near 

edge structure), high costs and complexities related to maintaining in vivo patterns has 

limited understanding of Mn brain homeostasis2. Thus, creative approaches will be 

necessary to answer the outstanding questions.
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