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Abstract

Accumulating evidence indicates that the health impact of dietary phenolic compounds, including
the principal grape-derived polyphenols, ( + )-catechin and ( — )-epicatechin, is exerted by not only
the parent compounds but also their phenolic metabolites generated by the gut microbiota. In this
work, a new high-throughput, sensitive and reproducible analytical method was developed
employing ultra-high performance liquid chromatography coupled with triple quadrupole tandem
mass spectrometry (UHPLC-QqQ-MS/MS) for the simultaneous analysis of 16 microbial-
generated phenolic acid metabolites (PAMSs) along with their precursors, catechin and epicatechin.
Following optimizing the solvent system, LC conditions and MS parameters, method validation
was carried out to evaluate the sensitivity, selectivity, accuracy and precision of the proposed
method, and to ensure promising recovery of all analytes extracted from the matrix prior to
bioanalysis. Results showed that the optimized analytical method allowed successful confirmation
and quantitation of all analytes under dynamic multiple reaction monitoring mode using #rans-
cinnamic acid-&; as an internal standard (1.S.). Excellent sensitivity and linearity were obtained for
all analytes, with lower limits of detection (LLODs) and lower limits of quantification (LLOQS) in
the ranges of 0.225-2.053 ng/mL and 0.698-8.116 ng/mL, respectively. By examining blank
matrix spiked with standard mixture at different concentration levels, promising recoveries at two
spiking levels (low level, 91.2-115%; high level 90.2-121%), and excellent precision (RSD <
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10%) were obtained. This method was then successfully applied to an /n vitro study where
catechin/epicatechin-enriched broth samples were anaerobically fermented with gut microbes
procured from healthy human donors. All sources of bacteria employed showed remarkable
activity in metabolizing grape polyphenols and distinct variations in the production of PAMSs. The
successful application of this method in the /n vitro fermentation assays demonstrates its
suitability for high-throughput analysis of polyphenol metabolites, particularly catechin/
epicatechin-derived PAMs, in biological studies.
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1. Introduction

Research involving the health benefits of dietary polyphenols continues to increase, echoing
public awareness and consumer interest in foods and nutraceuticals rich in polyphenols.
However, the actual /n vivo bioefficacy of phenolic compounds, especially the polyphenolic
constituents, remains unclear [1,2]. Among the most popular polyphenol-rich foods, grape-
derived products encompass an abundant array of polyphenols, with proanthocyanidins
(PACs), including monomeric flavan-3-ols, anthocyanidins, flavonols, stilbenes and phenolic
acids, being the primary contributors [3]. Following oral ingestion, phenolic compounds are
metabolized by phase I/I1 enzymes and gut microbiota, and as such the bioavailability of
grape polyphenols can vary from very low to moderate levels depending on their chemical
and physiological properties [4—6]. Considering that parent phenolic compounds are present
at much lower abundances in biological fluids or tissues than their metabolites [7], their
wide spectrum of bioactivities should be largely attributed to their metabolites rather than
the native compounds. The extensive efforts devoted to elucidating the metabolic fates of
dietary polyphenols [8] also propel the evolution of metabolomics research including the
related bio-analytical techniques [9-12].

The human gastrointestinal (GI) microbiota represents a unique and versatile bio-reactor
responsible for metabolism of the non-absorbed phenolic proportions, generating a wealth of
microbial phenolic metabolites [8,13]. The combination of major monomeric PAC microbial
metabolites has been recognized as an excellent biomarker for indicting profound colonic
microbial activity towards grape polyphenols and for partially evaluating their bioefficacy /n
vivo [14]. Microbial-derived phenolic metabolites are generally comprised of derivatives of
carboxylic acid, particularly hydroxybenzoic and hydroxycinnamic acids, representing a
cluster of low molecular weight, highly polar and chemically distinct compounds [5,6].
Challenges in the analysis of these small polar organic acids reside in the difficulties in
resolving chromatographic peaks, e.g. serious coelution and peak distortion problem [15],
and problems with mass spectrometry (MS) detection, e.g. in-source fragmentation,
ionization suppression and ion cluster formation [16]. The best metabolomics analytical
method today appears to be based on tandem mass spectrometry (MS/MS), coupled with a
gas or liquid chromatography system. More specifically, for quantitative analysis of known

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2019 June 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhao et al.

2.

Page 3

compounds, triple quadrupole (QqQ) and Q-trap MS, normally operated under the multiple
reaction monitoring (MRM) or selective reaction monitoring (SRM) mode, are two of the
preferred techniques [13,17]. The QqQ-MS/MS technique enables simultaneous profiling of
multiple analytes with high selectivity and sensitivity and, as such, allows for large-scale
screening of potential gut bacteria candidates with high capacity in bioconverting
polyphenols into bioactive phenolic metabolites [18, 19].

To better understand the metabolic fates of grape polyphenols in human intestine following
oral administration, this study aimed to develop and validate an efficient and reliable
analytical method for the precise measuring of the most characteristic microbial PAMs
derived from two major grape polyphenols, ( + )-catechin (( +)-C) and ( - )-epicatechin

(( -)-EC), in biosamples.

Materials and methods

2.1. Standards and reagents

Phenolic standards including gallic acid (GA), caffeic acid (CA), trans-p-coumaric acid (p-
CA), catechin (( +)-C), epicatechin (( - )-EC), dihydrocoumaric acid (diHCA), 3-(3,4-
dihydroxyphenyl)propionic acid (3,4-diHPPA), 3,4-dihydroxybenzoic acid (3,4-diHBA),
hippuric acid (HA), homovanillic acid (HVA), 3-hydroxybenzoic acid (3-HBA), 4-
hydroxybenzoic acid (4-HBA), 3-hydroxyphenylacetic acid (3-HPAA), 3-(3-
hydroxyphenyl)propionic acid (3-HPPA), vanillic acid (VA) and #rans-cinnamic acid-d as
well as ascorbic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA); 3,4-
dihydroxyphenylacetic acid (3,4-diHPAA) and ferulic acid (FA) were from ChromaDex Inc.
(Irvine CA); 5-(4-hydroxyphenyl)valeric acid (4-HPVA) was from Alfa Aesar (Lancashire,
UK). The structures of two grape polyphenol precursors and phenolic acid metabolites
investigated in this study are presented in Fig. 1. Acids and solvents (all HPLC Grade)
including glacial acetic acid (AA), formic acid, acetonitrile (ACN), methanol (MeOH) and
ethyl acetate were obtained from Fisher Scientific (Pittsburgh, PA, USA), and Pierce™ LC-
MS water from Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Standard solution preparation

Stock solution (ca. 0.5 mg/mL) of 18 phenolic compounds and the internal standard were
prepared in 70% MeOH in water containing 0.1% formic acid. Stock solutions of phenolic
compounds were aliquoted into 1.0 mL Eppendorf tubes and stored at —20 °C in dark.
Working solutions were prepared by diluting stock solutions (after conditioned to room
temperature) in 45% aqueous MeOH containing 0.1% formic acid. For preparing the
calibration dilution series, all 18 standards were pipetted into one container and constituted
to form a single standard mixture with each analyte at 20 ug/mL and the mixture was then
serially diluted to 15 concentration levels (ca. 1.25 to 6000 ng/mL) in 45% aqueous MeOH
containing 0.1% formic acid. An internal standard (1.S.) (ca. 20 pg/mL), trans-cinnamic
acid-d, was spiked into each dilution to a final concentration of 100 ng/mL. All standard
solutions were filtered through a 0.45-um Millex-FH membrane (Millipore, Bedford, MA,
USA) before loaded onto a UHPLC column.

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2019 June 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhao et al.

Page 4

2.3. UHPLC QgQ MS/MS method optimization

2.3.1. Apparatus—Analysis of ( +)-catechin, ( - )-epicatechin and phenolic acids was
performed on an Agilent 1290 Infinity 11 UHPLC (Agilent Technology, Palo Alto, CA,
USA) system interfaced with an Agilent 6470 Triple Quadrupole Mass Spectrometer with an
electrospray ionization (ESI) source. Chromatographic separation of compounds was
achieved with a Waters Acquity UHPLC BEH C8 column (2 x 150 mm, 1.7 um) (Milford,
Massachusetts, USA) equipped with a Waters VanGuard Acquity C8 guard column (2.1 x 5
mm, 1.7 um).

2.3.2. Optimization of LC-MS conditions—To ensure the best performance of the
LC-MS system for individual analytes, optimization was carried out in regard to dilution
solvent, LC conditions and MS-related parameters.

The methanol percentages of the diluent for preparing standard working solutions from
stock solutions (Section 2.2) and for re-constituting phenolic compounds after sample
extraction (Section 2.4.2) were examined. Water:MeOH (v/v) combinations of 4/96, 20/80,
40/60, 45/55, 50/50, 60/40 and 80/20 were tested and 45/55 was finally selected as the best
combination. The subsequent optimization experiments were carried out using standard
working solutions diluted with water:MeOH:formic acid (45/55/0.1, viviv).

To optimize LC-dependent conditions, we tested multiple mobile phase compositions
focusing on the type and the concentration of mobile phase organic modifiers added to the
aqueous and the organic phases. The following aqueous phase modifiers were tested:
ammonium acetate (5 mM, at pH 3, 4 and 6.5), ammonium hydroxide (5 mM, pH 4), formic
acid (0.1%, 0.2%, 1.0%, 2.0%) and AA (0.1%, 0.2%, 0.25%, 0.5%, 1.0%, 2.0%). AA (0.1%,
0.2% and 1.0%), and formic acid (0.1% and 1.0%) were also tested as additives to the
organic phase. Following selection of the optimal mobile phase, elution gradient, column
temperature and solvent flow rate were also adjusted.

The third part of optimization focused on source-dependent and compound-dependent MS
operation parameters. The source-dependent parameters applied to all target compounds
included sheath gas temperature, capillary voltage, multiplier voltage (delta EMV) and cell
accelerator voltage (CAV). For individual analytes, parameters of precursor-product ion pair
transition operated under multiple reaction monitoring (MRM) mode was tuned by the
Agilent MassHunter Optimizer (software version B.07.00) using authentic standards for
reference. Two of the most intense precursor-product ion transitions were identified. For the
two transitions of each analyte, the one with higher response was selected to be the
quantifier ion, while the other one was the qualifier ion.

2.3.3. Optimized LC-MS conditions and compound identification—After
optimizing the LC-MS system, a binary mobile phase system consisting of phase A (0.2%
AA in water) and phase B (0.1 % AA in ACN) and a flow rate at 0.3 mL/min were used for
qualitative and quantitative analysis of targeted phenolic compounds. Thermostats of the
column and the autosampler were set at 40 °C and 4 °C, respectively. Injection volume was
5 uL for all standards and biosamples studied. The LC gradient program for each run started
at 4% (B%), held for 1.5 min before increasing to 12% in 12.5 min, to 90% in 1 min and
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held for another 2Zmin, and then returned to initial conditions in 1 min. The column was
equilibrated for another 6 min before the next injection.

Mass spectral data acquisition was achieved under negative polarity (ESI —) and dynamic
multiple reaction monitoring ((IMRM) mode. Two specific transitions for each analyte were
monitored over a 1-min delta retention time frame with a dwell time of 150 ms. Integral MS
parameters were set as follows: ESI capillary voltage at —2.5kV, nozzle voltage at —1.0 kV,
nebulizer gas (N5) pressure at 30 psi, dry gas temperature at 350 °C with a flow rate of 12.0
L/min, sheath gas temperature at 200 °C with a flow rate of 12.0L/min.

Identification of PAMs, (+)-C and ( — )-EC was accomplished by comparing their MRM
precursor-product ion pair transitions (both quantifier and qualifier) and retention times with
those of the authentic standards. Quantitation was achieved with calibration curves
established using the analyte-to-1.S. peak area of quantifier ions.

2.3.4. Method validation—To ensure analytical consistency, in most cases the
analytical sequence consisted of a calibration standard set, quality control (QC) samples and
biological samples. All QC samples and biological samples were processed with the same
procedures each time. Four analysis sequences were completed within one month with each
preparation injected twice.

2.3.5. Selectivity—Selectivity was evaluated by comparing the MS chromatograms of
blank broth, broth spiked with 18 analytes and an 1.S. With the final chromatographic
conditions and MRM transition used, all the analytes should be resolved without
interference from the matrix at the retention time and both mass transitions of the analytes,
also as compared to the standards analyzed in solvent.

2.3.6. Calibration, linearity and sensitivity—The standard mixtures were analyzed
using the optimized LC-MS method under dAMRM maode. The calibration standard mixtures
were prepared at 15 concentration levels ranging from ca. 1.25 to 6000 ng/mL. The analyte-
to-1.S. peak area ratios were plotted against the exact concentration of individual analyte
spiked in blank broth to establish calibration curves with four replicates at each
concentration. Due to the diverse concentration levels of individual analytes in different
biosamples, two calibration curves were constructed for each analyte, corresponding to the
lower (ca. 1.25-1000 ng/mL) and the higher (ca. 1000-6000 ng/mL) concentration ranges,
using linear regression and the origins were not forced through zero.

Sensitivity of the method were evaluated by investigating the response of target analytes in
consecutive dilutions of a concentrated working solution (in solvent) until the signal-to-noise
(S/N) ratio of individual analyte reached > 3 for lower limit of detection (LLOD), and > 10
for lower limit of quantification (LLOQ).

2.3.7. Accuracy and precision—For quantitative analyses of diverse phenolic
compounds in biological samples, method accuracy and precision were evaluated by
analyzing six replicates of blank broth samples and spiked QC samples at two concentration
levels, LQC and HQC. Specifically, 10 uL of 20 ug/mL or 200 ug/mL standard mixture were
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spiked into 1 mL of blank broth to achieve a final concentration at ca. 200 ng/mL for LQC,
or a final concentration at ca. 2000 ng/mL for HQC, with the addition of 5 pL of LS. (final
concentration at ca. 100 ng/mL). Precision was expressed as relative standard deviation
(RSD, %) of the measured concentrations in spiked replicates. Accuracy was reported as
relative error (RE, %) between the measured and the actual concentrations spiked, calculated
using the following equation:

Accuracy

_ Actual concentration—[Measured concentration (spiked matrix) — Measured concentration (blank matrix)]

- x 100
Actual concentration

2.3.8. Recovery and matrix effect—Recoveries of analytes from bacterial broth
samples were also determined at two QC levels as aforementioned. Matrix effect was
evaluated by comparing the measured peak area from analytes extracted from spiked broth
samples and the theoretical value obtained with standards prepared in solvent. Six
independent replicates were prepared and injected into the LC-MS system in duplicate.
Recovery was calculated using the following formula:

Peak area (spiked matrix) — Peak area (blank matrix)

Peak area (solvent) x 100%

Recovery =

where “Peak area (spiked matrix/blank matrix/solvent)” refers to the peak area of target
quantifier ion observed in standard-spiked broth/non-spiked blank broth/standards dissolved
in 45% aqueous MeOH containing 0.1% formic acid.

2.4. Method application to analysis of microbial phenolic acid metabolites

2.4.1. Invitro anaerobic fermentation of catechins by human gut microbiota
—A nutrient-rich broth (see Supplementary material 1 for the detailed composition) with or
without the supplementation of ( +)-C and (=)-EC was inoculated with gut microbiota from
a healthy human donor and incubated under anaerobic conditions at 37 °C for 24 h. Blank
nutrient broth sample, and broth samples incubated in the absence of bacteria with or
without ( +)-C and ( — )-EC served as controls. After incubation, all samples were
centrifuged at 4000 xg for 5 min. The clarified bacterial broth samples were then recovered
and immediately acidified with formic acid to a final concentration of 0.2%.

2.4.2. Preparation of phenolic extracts—For extracting phenolic compounds from
bacterial broth, 500 pL of bacterial broth was acidified with 100 pL of 4 M HCI solution and
spiked with 5 uL of #rans-cinnamic acid (&;) solution (20 pg/mL in 70% MeOH containing
0.1% formic acid), and the cocktail was then mixed well. The mixture was then extracted
with ethyl acetate (500 pL), followed by vortexing vigorously for 1 min, and centrifuged at
3000 x g for 5 min using a micro-centrifuge. The upper organic phase (450 uL) was
transferred to a 1-dram glass vial. The aqueous phase was extracted twice more with ethyl
acetate (500 pL). All the recovered organic supernatants were combined, mixed with 10 uL
of 2% ascorbic acid and dried under a gentle stream of nitrogen. The residue was
reconstituted in 1000 pL of 45% methanol containing 0.1% formic acid and centrifuged at
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16,000 x g for 10 min. For each sample extract, 5 L was injected into the LC-MS system for
analysis. Each extract was injected twice to prevent any instrumental error that may affect
identification and quantitation of analytes. The final measured concentrations were
multiplied by two to compensate for the two-fold dilution made during extraction.

3. Results and discussion
3.1. UHPLC-QgqQ-MS/MS method development and optimization

To meet the ever-growing demands for large-scale identification of target metabolites in
biological samples and to better understand the actual metabolites responsible for
nutraceutical and medicinal importance of grape-derived products, a sensitive and
reproducible UHPLC-QgQ-MS/MS method was developed for the analysis of major
phenolic acid metabolites derived from grape polyphenols. Optimization of the method was
achieved by fine-tuning multiple key parameters closely related to chromatographic and
mass spectrometric behaviors. Structural information of 18 phenolic compounds and an I.S.,
corresponding retention time, optimized MS parameters, and precursor-product ion pair
transitions specific to individual analytes are summarized in Table 1.

In addition to LC-MS methodologies, we also optimized the composition of the dilution
solvent, which can greatly affect the injection solution composition, compound solubility in
matrix and in mobile phase, peak shape and MS detector response [20,21]. Preliminary tests
in SIM mode indicated that the QqQ analyzer was unable to acquire strong precursor ion
signals for some of the analytes, particularly 3, 4-diHPAA, 3-HBA and diHCA. In addition,
peak shape of 4-HPVA, diHCA and ( — )-EC was distorted when using high-water-content
diluent (H,0% > 60%). Thus, the effects of varying MeOH percentages in the dilution
solvent for preparing standard working solutions and for reconstituting phenolic compounds
extracted from biosamples were investigated. As illustrated in Fig. 2 (left column), a higher
organic content supported much better ionization and MS response and improved peak shape
compared to the using of high-water-content solvents. The optimum water:MeOH
composition was found to be 45/55 (v/v), with the addition of 0.1% formic acid as modifier
that helps sharpen peaks and prevents degradation of phenolic compounds during sample
preparation.

Another influential factor on LC-MS performance is mobile phase composition, especially
the modifier, which can dramatically affect MS ionization efficiency. The mobile phase ionic
strength and pH are known to influence chromatographic behaviors (analyte solubility,
retention, resolution and peak shape), and MS performance (selectivity, reproducibility and
sensitivity) [22,23]. To date, the preferred modifiers have mainly been volatile organic acids,
such as acetic acid and formic acid [22,24], although neutral or alkaline additives have also
been reported [23,25]. Following the investigation of a series of mobile phase compositions,
the results indicated that the addition of low concentrations of acid (AA and formic acid) to
aqueous phase greatly improved peak shape, detector signal intensity and S/N ratio of the
precursor ion detected under SIM mode. In terms of peak shape and sensitivity, AA
exhibited advantages over formic acid at concentrations of 0.1 % and 0.2%. As shown in
Fig. 2 (middle column), at lower AA percentages (< 1.0%), the response to HA (m/zat
178.1), for example, was much stronger than that obtained at 1.0% or 2.0%, and retention
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time of HA was delayed. Theoretically, the target compounds are all Lewis acids and should
better ionize under alkaline conditions. To test this hypothesis, we also tested the influence
of two weak bases (ammonium acetate and ammonium hydroxide) on the ionization and
retention of target analytes. However, results showed distorted peaks, poor ionization and
serious coelution of the target compounds. Considering all these factors and results, AA was
selected as the modifier, and the analytical performance of organic phase (ACN) with the
addition of varying amounts of AA was also similarly optimized. The optimal mobile phase
system was 0.2% AA in water and 0.1% AA in ACN. Afterwards, the gradient elution
program was also tuned to facilitate the separation of analytes and to attain better resolution
and MS response.

3.2. Triple quadrupole MS conditions

One great challenge in detecting and quantifying PAMSs in complicated matrix originates
from their high polarity, low retention in reversed phase LC column and the tendency of
becoming clustered during ionization [15,24]. In this investigation, the operating parameters
of the QqQ analyzer, including source-dependent and compound-dependent ones, were fully
optimized to obtain the best MS performance for the analysis of PAMs and their precursors
(Table 1).

Source-dependent parameters affect the integral MS performance for all target compounds.
Both positive and negative polarities were tested to ensure efficient ionization of target
analytes and acquisition of adequate MS responses. Negative mode was finally selected
since it facilitated ionization of the majority of analytes although 3, 4-diHPAA, p-CA and
(+)-C gave higher responses in positive mode (data not shown). One possible explanation
for the polarity preference is that polyphenols and their metabolites do not contain any
nitrogen atom (except for HA), and thus ionization (protonation) is more difficult in the
positive mode than in the negative mode [26]. By tuning delta EMV, the additional voltage
applied to the MS detector, from 0 to 350 V, an 8-fold increase in S/N was observed. In
excess of 350 V, there was compromise in S/N ratios despite of minor augmentation in the
response to certain analytes. By adjusting sheath gas temperatures, the MS performance was
further improved. Taking 4-HBA as an example (Fig. 2, right column), the peak area
obtained at the default temperature 400 °C was only 72% of that obtained at 200 °C.
Moreover, the precursor ion of 3, 4-diHPAA (m/z at 167.0), diHCA (/m/zat 165.1) and GA
(m/z at 160.0) were not detected in high abundance at 400 °C under SIM mode, while when
the temperature was tuned to 200 °C, the signal increased by more than three times. This
could be attributed to the reduced in-source fragmentation at a lower temperature. As
Ostrowski et al. pointed out, registration the low molecular mass compounds with an ESI
method, as employed in our study, can easily trigger bond cleavage of parent compounds,
reducing abundances of these ions, and consequently lowering detector sensitivity [16].
Taking these factors into consideration, the generic MS parameters were optimized to
produce high peak intensity at high S/N ratios for most analytes, as described in Section
2.3.3.

To finely adjust the compound-dependent parameters, /.e. the MRM transitions specific to
each analyte, the MassHuntcr Optimizer was employed. It first selected the most abundant
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[M = H]™ ion under MS2 scan mode as the precursor ion, after which the fragmentor voltage
and collision energy (CE) were tuned stepwisely by a difference of 2 V in order to acquire
two strongest precursor-product ion transitions. For the two transitions of each analyte, the
one with higher response was selected as the quantifier for quantification purpose and the
other one as the qualifier for confirmation. It should be noted that fragmentation of 3-HBA
and 3, 4-diHPAA to form a second product ion with a strong signal was not successful even
when the upper limit of CE was set to 60 V. This was not surprising, given that no qualifier
ion for either of these compounds has been reported under negative mode in other related
studies [26,27]. Since MS response to the respective MRM transition for 3-HBA and 3, 4-
diHPAA was very strong and both were resolved without interference from the broth matrix
at their respective retention time, 3-HBA and 3, 4-diHPAA were confirmed and quantified
using a single ion pair transition. In addition, the efficiency and reproducibility of the
developed method can also be attributed to the advanced dynamic MRM mode. In contrast
to traditional MRM which continuously performs ion pair transition scans throughout the
entire run, dAMRM allows peak clusters to be better resolved, and MRM transitions to be
more accurate and sensitive due to the longer dwell time around the expected retention time
of the analyte [28].

3.3. Method validation

Following method optimization (parameters summarized in Section 2.3.3 and Table 1), the
proposed LC-MS method was validated in terms of selectivity, linearity, low limit of
detection/quantification (LLOD/LLOQ), accuracy, precision and recovery. Method
validation was carried out following method optimization and complied with FDA
guidelines [29], Validation results are presented in Table 2 with detailed calibration curve
parameters of target compounds included in Supplementary material 2.

3.3.1. Selectivity—Selectivity of the method was evaluated by comparing the SIM and
MRM chromatograms of blank broth samples with those obtained from the spiked ones. No
interference was observed at the retention time of individual analytes and I.S. from
substances existing endogenously, 7.e. there were no peaks overlapping within the 1-min
delta retention time frame operated under dAMRM mode, and complete separation of all
analytes was achieved using the optimized method described. These characteristics indicate
promising specificity and selectivity with our method.

3.3.2. Calibration, linearity and sensitivity—Calibration curve parameters,
coefficient of determination (R2), LLODs and LLOQs of all target compounds were
obtained with authentic standard solutions analyzed under the optimized LC-MS conditions
(Table 2). Great calibration linearity was achieved over two concentration ranges for each
compound present at low (ca. 1.25 to 1000 ng/mL) and high (ca. 1000 to 6000 ng/mL)
levels, with coefficients of determination above 0.994 in all instances. The linear dynamic
ranges were separated into two to obtain better fitted lines, particularly at higher
concentrations. The measured LLODs and LLOQs were in the ranges of 0.22-2.05 ng/mL
and 0.69-8.11 ng/mL, respectively, evincing the great sensitivity achieved with this
analytical method. The lowest LODs/LOQs were obtained for three compounds #cinnamic
acid, CA and p-CA, possibly attributed to the same skeletal structure. We also tried to
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perform the matrix-matching calibration test, but the endogenous presence of high level of a
few phenolic acids, namely 4-HBA, HA, VA, diHCA and 3-HPPA, greatly complicated the
study. Consequently, calibration series were only prepared in the dilution solvent. An
efficient and well-validated method for profiling polyphenol microbial metabolites
developed by Gasperotti et al. included 19 PAMs [27], while our method was able to reach
much lower LODs and LOQs, considering the different injection volumes in their study (10
uL) and ours (5 pL).

3.3.3. Accuracy and precision—For GA, 3, 4-diHBA, 3, 4-diHPAA, 4-HBA, HA, VA,
diHCA, p-CA, FA and 3-HPPA, which existed endogenously in blank broth, the
determination of accuracy and precision was done by subtracting content in blank broth
from that in spiked broth samples. Thus, the corrected concentrations corresponded to the
net changes occurred before and after /n7 vitro fermentation. The values of accuracy,
measured at two QC concentrations and expressed as relative error (RE, %), were within

+ 12% in most cases, except for the slightly higher values determined for GA, 3, 4-diHPAA,
3, 4-diHPPA and diHCA (Table 2). For almost all compounds, the precision results,
expressed as RSD (%), fell below 10%. These results met the criteria set forth in FDA
guidelines [29], indicating that phenolic contents measured in samples using the proposed
method should be consistent and exact at both low and high concentrations.

3.3.4. Recovery and matrix effect—Consistent and satisfactory results for recovery
evaluation at different concentration levels are regarded as one prerequisite for a well-
established analytical method. The recovery of spiked samples was similarly measured as for
accuracy. By using the proposed method, we obtained excellent recoveries ranging from
91.2% to 115% at LQC, and 90.2% to 121% at HQC (Table 2). The mean recovery values
for all analytes were 103%. Complex matrices can exert serious interfering effects on the
stability of target compounds during processing, and the extraction efficiencies, which may
account for the slightly over-ranged values obtained for some compounds [27,30]. Prior
research using the traditional LC-MS/MS instrumentations has demonstrated the importance
of matrix effects [31,32]. As such, we carefully considered potential matrix effects during
method development to ensure minimal ion suppression and to reduce chances that matrix
components and our analytes share the same MRM transitions or similar retention times. In
the recovery test, matrix effects were also taken into account by comparing the analyte
response obtained from spiked blank broth with those obtained from authentic standard
prepared in pure solvent. There was no significant signal suppression or augmentation
observed for all analytes studied. This is in agreement with the minimal matrix effects in
various complex bio-matrices as reported by Hurtado-Gaitan et al., who focused on
grapevine stilbcncs while employing a similar state-of-the-art analytical instrument as ours
[33]. lon suppression of a few phenolic compounds was however observed by Caprioli et al.
also using the advanced analytical instrumentation but this was likely due to the high protein
and carbohydrate content found in their pulse extracts [34]. Overall, the holistic performance
of the extraction process and LC-MS method should be considered satisfactory, and analyses
of biological samples containing the broth matrix were not affected by the matrix effect.
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3.4. Method application

Using the proposed UHPLC-QgQ-MS/MS method, two precursor polyphenols, ( +)-C and
(- )-EC, and their characteristic PAMs (structures shown in Fig. 1) were successfully
identified and quantified in ( +)-C/ ( — )-EC-enriched nutrient broth anaerobically fermented
with gut microbiota from health human donors. This allows us to acquire a comprehensive
metabolic profile of the two major monomeric PACs in grape-related products. The
developed analytical method proved to be efficient, sensitive and reproducible for the
quantitative analysis of (+)-C, ( —)-EC and their phenolic acid catabolites in bacterial
broth. All analyte peaks were well resolved within 16 min without interference from
endogenous components in the matrix. The representative MRM chromatograms showing
the precursor-product ion pair transitions of 18 target phenolic compounds, and an I.S. in a
blank and a fermented bacterial sample are presented in Figs. 3 and 4, respectively. Detailed
quantitation results are presented in Table 3.

As shown in Table 3, gut bacteria from different human donors were able to degrade ( + )-
C/(-)-EC, but showed varying capacities to generate PAMs. With respect to the precursor
polyphenols, it is clear that microbiota from both healthy donors showed greater capacity in
metabolizing ( + )-C/( - )-EC compared with the isolated bacteria culture. Almost all ( +)-C
and ( - )-EC were metabolized by bacteria from two donors following 24 h fermentation,
while 63% of ( +)-C and 84% of ( - )-EC remained in the broths treated with the bacterial
isolate. Regarding the PAMs, the presence of endogenous phenolic acids was confirmed by
examining the phenolic extract of blank nutrient broth (Fig. 3). Both the blank sample
(Blank) and negative control sample (Ctl ( - )) were found to contain moderate levels of GA,
3, 4-diHBA, 3, 4-diHPAA, 4-HBA, HA, VA, 3-HBA, HVA, diHCA, p-CA, 3-HPPA and FA.
Following incubation of broths containing ( + )-C and ( — )-EC with the complete microbiota
collection or the isolated strain, there were significant production of GA, 3, 4-diHBA, HVA
and slight increases in 4-HPVA and 3-HBA. By contrast, varying degrees of reduction in
HA, VA and p-CA (Donor 1 only) were observed. Concentrations of 3, 4-diHPAA, diHCA,
3-HPPA and 4-HBA remained relatively constant in all samples regardless of the treatment
applied. There was none or only trace amount of 3, 4-diHPPA, 3-HPAA and CA detected in
samples. Considering the changes in the abundance of precursors and PAMs in bacterial
broth before and after fermentation (Table 3), it appears that the GI microbiota from
different donors possessed similar metabolic activity towards polyphenols but distinct
capacity in generating PAMSs. This also highlights the well-recognized inter-personal
differences in gut microbiota that are responsible for the varied bioefficacies of orally
ingested polyphenols in human subjects [35]. In addition, single bacterial isolate also
demonstrated remarkable ability to metabolize ( +)-C and ( - )-EC into multiple PAMs,
showing potential to be developed into “next-generation probiotics”. This new functional
culture may assist in improving bioefficacy of polyphenols with low absorption in the upper
Gl tract, and also in generating bioavailable and bioactive phenolic metabolites with
extended half-life and/or increased tissue deposition.
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4. Conclusion

In this study, a high-throughput, sensitive and reproducible UHPLC-QqQ-MS/MS method
was developed and validated for the identification and quantification of 16 microbial PAMs
derived from ( +)-C and ( — )-EC. Optimization of the method was conducted by adjusting
parameters in relation to dilution solvent, LC conditions and MS behaviors. Results obtained
from optimization and validation studies indicated that the developed LC-MS method was
highly selective, sensitive, accurate and reproducible for the detection and quantitation of
target phenolic compounds even at trace levels in complex biological matrices. The
analytical method developed was then applied to /n7 vitro fermentation studies incorporating
grape polyphenols and human gut microbiota.

To the best of our knowledge, this is the most sensitive and comprehensive LC-MS/MS-
based method for targeted analysis of GI microbial PAMSs derived from grape polyphenols.
The accurate measuring of major microbial phenolic metabolites can lead to a
comprehensive elucidation of the metabolic pathway of polyphenols in human intestine and
a better interpretation of the beneficial effects of consuming grape-derived products. In
addition, this new analytical method can be of great value to polyphenol-associated
metabolomics investigations for the discovery of reliable biomarkers in animals and human
subjects exposed to polyphenol-rich botanical preparations.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Chemical structures of grape polyphenol precursors (catechin and epicatechin) and phenolic

acid metabolites included in the study. Abbreviations are presented in Table 1.
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Fig. 2.

Representative SIM chromatograms of selected phenolic compounds (4-hydroxybenzoic
acid (4-HBA) and hippuric acid (HA) obtained under different optimization conditions
showing changes in instrument response (arbitrary unit), peak shape and retention time
(min). Left column: dilution solvent composition for preparing standard working solutions
and for reconstituting phenolic extract; Middle column: acetic acid concentration in aqueous
mobile phase; Right column: sheath gas temperature of the QgQ analyzer.
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Fig. 3.
Representative LC-MS chromatograms obtained under dynamic MRM mode showing

precursor/product ion transitions of target phenolic compounds and the internal standard
(trans-cinnamic acid) detected in a blank broth sample. Abbreviations are presented in Table
1.
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Fig. 4.
Representative LC-MS chromatograms obtained under dynamic MRM mode showing

precursor/product ion transitions of target phenolic compounds and the internal standard
(trans-cinnamic acid) in a bacterial broth sample. The broth was enriched with catechin and
epicatechin followed by fermentation with gut microbiota from a healthy human donor.
Abbreviations are presented in Table 1.
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