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Abstract

Elucidating resistance mechanisms for therapeutic monoclonal antibodies (MAbs) is challenging, 

because they are difficult to study in non-human models. We therefore developed a strategy to 

genetically map in vitro drug sensitivity, identifying genes that alter responsiveness to rituximab, a 

therapeutic anti-CD20 MAb that provides significant benefit to patients with B-cell malignancies. 

We discovered novel loci with genome-wide mapping analyses and functionally validated one of 

these genes, CBLB, which causes rituximab resistance when knocked down in lymphoma cells. 

This study demonstrates the utility of genome-wide mapping to discover novel biological 

mechanisms of potential clinical advantage.
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INTRODUCTION

Drug resistance, often categorized by intrinsic or acquired mechanisms, remains one of the 

largest challenges in the curative treatment of cancer. The clinical pattern of acquired 

resistance is driven by a combination of selective pressures from molecularly targeted drug 

therapy—for example, monoclonal antibodies (MAbs)1 and kinase inhibitors2—and tumor 

heterogeneity.3,4 In addition to acquired resistance, variations in clinical outcomes are 

undoubtedly confounded by heritable genetic factors intrinsic to the patient as well.

Many studies in chemotherapeutic resistance synergize large-scale, high-throughput omics 

and informatics to identify novel genes and signaling pathways and decipher molecular 

signatures for tumor responsiveness and patient variability during drug treatment.4 The 

machinery of resistance spans diverse molecular mechanisms from drug efflux and 

metabolism to cell survival and death pathways. Although the direct translation of in vitro 
results to clinical efficacy can be tenuous, key observations are gleaned from experiments 

involving cancerous and healthy cell lines to model drug susceptibility and resistance 

mechanisms.5

MAbs are a standard component of cancer therapy, specifically targeting malignant and 

normal B-cells via complement- or antibody-dependent effector pathways and apoptosis,6 

yet resistance mechanisms frequently render them ineffective. There is some evidence 

associating FCGR7–9 and C1QA10 polymorphisms with MAb-mediated effectiveness in 
vitro and in vivo. These polymorphisms presumably affect the effector portions of antibody-

dependent and complement-dependent cytotoxicity (CDC) pathways, respectively. However, 

mechanisms within the target cell itself that lead to MAb resistance remain elusive.

We approached the problem of MAb resistance in vitro using a high-throughput CDC assay 

using immortalized non-malignant as well as cancerous cell lines. First, we investigated the 

heritability of rituximab and ofatumumab response, to ensure the phenotype is indeed 

mappable. Next, we used public information on genotype and gene expression data to 

analyze associations between loci/genes and drug response. Our multitiered analysis strategy 

indicated CBLB as a gene of interest. Finally, we used RNA silencing in several 

immortalized non-malignant and cancerous cell lines to functionally validate the role of 

CBLB expression levels on rituximab response. We are the first to report this role of CBLB 

as a potential mediator for rituximab sensitivity, utilizing the power of an unbiased genome-

wide strategy to find previously unsuspected mediators of rituximab response.

MATERIALS AND METHODS

Cell lines and cell culture

Lymphoma cell lines were obtained from the Lineberger Comprehensive Cancer Center 

Tissue Culture Facility or ATCC. Epstein–Barr virus-immortalized human lymphoblastoid 

cell lines (LCLs) were obtained from two independent sources: a collection of families (100 

samples, 13 families) from Centre d’Etude du Polymorphisme Human (CEPH) obtained 

from the Coriell Institute (Camden, NJ, USA) and an unrelated collection (486 samples) 

obtained from unrelated Caucasian participants of the cholesterol and Pharmacogenetics 
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clinical trial as described previously11 from the Children’s Hospital Oakland Research 

Initiative (CHORI). All cell lines were maintained in RPMI media containing 15% fetal 

bovine serum.

Genotyping quality control

Genotyping for the cholesterol and pharmacogenetics study has been described elsewhere.
11,12 Each individual was genotyped for either 314 621 or 620 901 dinle-nucleotide 

polymorphisms (SNPs), using HumanHap300 (Illumina, Inc., San Diego, CA, USA) bead 

chip or HumanQuad610 (Illumina, Inc., San Diego, CA, USA) bead chip platforms, 

respectively. In addition, imputation was previously performed11 on the data for 2.5 million 

SNPs from HapMap Release 22, using the Caucasian CEPH reference population and the 

software program MACH.13

Quality control for the genotype data was described elsewhere.14 Briefly, PLINK was used 

to filter out SNPs whose genotyping rate was below 90%, whose minor allele frequency was 

below 0.05 or whose P-value from a Hardy–Weinberg test for equilibrium was below 10−5. 

The data after quality control contained 2 100 684 SNPs for subsequent analysis. Principal 

component analysis was used to correct for population stratification. First, SNPs in high 

linkage disequilibrium were removed using PLINK before the principle components 

analysis.15 Specifically, a window of 50 SNPs, a step size of 5 SNPs and a pairwise r2 

threshold of 0.7 was used. From this step, ~ 81% of the remaining SNPs were removed, 

leaving a total of 395 033 SNPs available for principal component analysis. In addition, 

several outlier individuals were also removed. Principal component analysis was performed 

on this set of SNPs using EIGENSTRAT.16 The linkage disequilibrium pruning was used 

only for the principal component analysis and was not used as a filter for association 

analysis. The complete set of 2 100 684 SNPs that passed quality control was used for 

association analysis.

Genotype data for each cell line was downloaded from version 10 of the CEPH database 

using error checked markers.17 Genetic map information was downloaded from the 

Marshfield database.18 Error checking for Mendelian incompatibility, misspecified 

relationships and unlikely recombinations was performed, as previously described.19,20 A 

combined total of 8269 SNPs and microsatellite markers were used for linkage analysis. 

Marker selection for linkage analysis was based on genomic location and overall 

informativeness. Markers were selected using default settings in the MarkerSet tool.21

CDC assay and quality control

LCLs were seeded at 5 × 104 cells in either a 96-well plate (CEPH) or 8.9 × 104 cells in 

384-well plate (CHORI) in a total volume of 50 μl or 100 μl media containing 25% pooled 

human serum with or without 10 μg ml−1 rituximab. Proliferation was then measured using 

Alamar Blue (ThermoScientific Biosource, Waltham, MA, USA) according to 

manufacturer’s instructions. Dye was added to samples and incubated overnight. 

Fluorescence was measured with excitation at 535 nm and emission at 595 nm on Infinite 

F200 microplate reader with Connect Stacker (Tecan Group Ltd, Morrisville, NC, USA) and 
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I Control software (Morrisville, NC, USA, Version 1.6). Proliferation was expressed relative 

to samples without antibody.

Of the 534 plates containing MAb data, 18 were complete replicates in order to determine 

the reproducibility of the data. Correlations between replicates were strong for rituximab (R2 

= 0.85), ofatumumab (R2 = 0.89) and complement (R2 = 0.54). This data was consistent with 

the reproducibility seen in previous similar experiments.14 Some LCLs were noted and 

rejected as outliers based on pairwise comparison across the three treatment options. A few 

LCLs were noted as having rituximab and ofatumumab viabilities more than 3 s.d. from the 

mean. These seven LCLs took place on the experimental same day and were flagged and 

removed from subsequent analysis.

Raw cell viabilities for each cell line were normalized according to negative and positive 

controls to reflect the proportion of cells remaining alive after treatment:

Yi j =
RFUi j − Posi j
Negi j − Posi j

where i denotes the LCL sapmle, j ∈ {complement; rituximab; ofatumamab} indicates the 

treatment, RFUij is the relative fluorescence it from LCL i that was exposed to treatment j, 
Negij is the negative control for LCL i and treatment j, Posij is the positive control for LCL i 
and treatment j. For all treatments, the positive control is 10% dimethyl sulfoxide. For 

complement treatment without drug, the negative control is the RFU for water only. For 

treatment with 10 μg ml−1 rituximab or ofatumumab, the negative control is the RFU for 

complement treatment without drug.

After normalization, a number of cell lines were flagged and removed from subsequent 

analysis. Two cell lines whose raw complement viability was less than two standard 

deviations from the raw mean 10% dimethyl sulfoxide were eliminated. Three plates for 

ofatumumab and rituximab were also removed from analysis due to overinflated normalized 

raw viabilities.

Normalized complement viabilities correlated weakly with both normalized drug viabilities, 

which demonstrates the value of adding normalized complement viabilities as a covariate in 

subsequent analyses. Normalized viabilities for both drugs are correlated (R2 = 0.73) which 

suggested a multivariate analysis of covariance model could be an informative analysis.

Heritability calculation

Heritability was calculated by variance components analysis as implemented in MERLIN 

1.1.2 (University of Michigan, Center for Statistical Genetics, Ann Arbor, MI, USA).22 

First, the genetic relationship matrix is estimated between pairs of individuals. Second, 

restricted maximum likelihood analysis is performed to estimate the variance explained by 

SNPs used to estimate the genetic relationship matrix. Using the Genome-wide Complex 

Trait Analysis23 heritability was estimated for drug response in the group of unrelated 

individuals. Model covariates were used to account for experimental batch effects, growth 

rate estimation and complement.
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Genome-wide association studies

Genome-wide association studies (GWAS) was performed using the MAGWAS software 

package.24 The software employs a multivariate analysis of covariance model design. Three 

different association analyses were performed: two association analyses representing each 

drug individually and one association analyses which jointly models both drug responses as 

a vector. Genotypic and phenotypic data from the 486 unrelated individuals were used in 

each model. Model covariates were included to account for the potentially confounding 

effects from combining the two genotyping technologies—the first two PCs and 

experimental batch effects: the growth rate estimation and adjusted complement. The 

adaptive permutation technique was applied with b = 10 000 000 000 and r = 121.25

Linkage analysis

Linkage analysis was also done with MERLIN 1.1.2. In order to try to address the mode of 

inheritance of rituximab sensitivity, segregation analysis was performed for a range of 

potential genetic models. Quantitative trait models were fitted allowing for no familial 

effects (sporadic), a single major gene (dominant, recessive, or codominant), two major 

genes, polygenes only or major genes plus polygenic effects (mixed models). The models 

allowing for a major gene assume that the phenotype is normally distributed within each 

genotype, with mean varying according to genotype but equal within-genotype variances. 

Analyses were carried out using PAPv5.26 Maximizations were determined from several 

starting values and those at boundary values were scrutinized further to confirm as far as 

possible that the true maxima were achieved and results were evaluated in terms of 

differences in twice the log likelihood for each fitted model compared to the baseline 

sporadic model. Nested models were compared using the likelihood ratio test and non-nested 

models using the Akaike information criterion.27

A permutation-based approach was used for defining LOD score cutoffs, indicating 

significant evidence for linkage. To estimate the probability of obtaining false-positive 

evidence of linkage for each drug and dose combination under the null hypothesis of no 

linkage to observed phenotypes, we conducted gene-dropping permutations using MERLIN. 

Marker data were simulated under the null hypothesis of no linkage or association to 

observed phenotypes while retaining the same pedigree structures, maps, marker allele 

frequencies and missing data patterns. We simulated 10 000 replicates for each phenotype of 

interest (discussed above) and conducted linkage analyses as described earlier for each 

replication. Based on these simulations, null distributions for each phenotype, for each 

chromosome were constructed and significance cutoffs were calculated for each phenotype 

corresponding to P-values ≤ 0.05.

Gene expression data

We obtained raw CEL files from Gene Expression Omnibus record GSE12626. Expression 

profiles from 57 of the original 100 LCLs typed on Affymetrix Human Genome U133A 2.0 

arrays (Waltham, MA, USA) were downloaded and normalized using robust multi-array 

average software implemented by the Bioconductor package in R,22 version 2.12.1. 

Quantitative Significance Analysis of Microarrays revealed 13 genes whose expression was 

correlated with viability in rituximab, using a false discovery rate cutoff of <0.001%.
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CBLB knockdown

Stable CBLB knockdown cell lines were prepared by transduction with lentivirus encoding 

CBLB-specific short hairpin RNA (shRNA sequences) (Open Biosystems TRC1 library) 

obtained through the Lenti-shRNA Core Facility (University of North Carolina). 

Corresponding control cell lines were prepared using a scrambled shRNA sequence. To 

obtain virus, low-passage HEK293T cells were transfected with pLKO.1 plasmids encoding 

five individual CBLB shRNAs, the packaging plasmid pMDG.2 and the envelope plasmid 

pCMV-VSV-G at a ratio of 1:0.75:0.25 with Fugene-6 transfection reagent (Promega, 

Madison, WI, USA). The medium was replaced with fresh media 18 h after transfection and 

viral particles were collected twice at 24 h intervals thereafter. Viral supernatants from the 

five transfections and two collection times were then pooled and filtered through a 0.45 μm 

cellulose acetate filter. Cells were then transduced with viral supernatant supplemented with 

polybrene (4 μg ml−1; Sigma-Aldrich, St Louis, MO, USA). After 48 h, positive selection 

for transduced cells was then conducted using 1 μg ml−1 puromycin for 10 days.

Reverse-transcriptase PCR for MS4A1 (CD20) and CBLB

Quantitative PCR was performed as previously described28 using 5 × 106 cells as starting 

material and additionally included primers for CBLB (CblbF: 5′-

TTACGGCATGGCAGGAGTCGGA-3′ and CblbR: 5′-CGGGTCTCTGGAAGG 

CACGC-3′).

Western blotting for CD20 and CBLB

Western blotting was performed as previously described28 using a rabbit anti-CD20 antibody 

(Thermo Scientific, Waltham, MA, USA) and a mouse anti-Cbl-b (G-1) from Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA, USA). Anti-β-actin (Sigma, St Louis, MO, USA) was 

used as a load control. Anti-horseradish peroxidase-conjugated secondary antibodies were 

used as needed with ECL or ECL Prime detection reagent (GE Healthcare Bio-Sciences, 

Corp., Piscataway Township, NJ USA) to visualize immunoreactive bands. Protein levels 

were quantified from scanned autoradiographs followed by densitometry using NIH Image 

1.61 (http://macgui.com/downloads/?file_id=25143).

Immunofluoresence for CD20

Cells (5 × 105) were washed and resuspended in RPMI with 1% fetal bovine serum at 4 °C 

for 20 min. Ten microliters of Fluor-conjugated antibodies and, for some experiments, FITC-

cholera toxin B subunit (Sigma) were then added for an additional 30 min. Cells were then 

washed and resuspended in 50 μl RPMI. Cells were incubated at 37 °C for the indicated 

times then fixed with ice-cold 4% paraformaldehyde for 20 min. Cells were washed and 

placed on poly-D-lysine-coated slides (Fisher Scientific, Pittsburgh, PA, USA). Coverslips 

were mounted with Vectashield mounting medium with DAPI (Vector Laboratories, Inc. 

Bulingame, CA, USA). Cells were visualized using a Zeiss fluorescent Axioskop 2 

microscope with a × 40 1.3 numerical aperture objective and Axiocam camera (Thornwood, 

NY, USA).
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RESULTS

Assessment of drug sensitivity and heritability

The response of LCLs in the presence or absence of 10 μg ml−1 rituximab or 10 μg ml−1 

ofatumumab treatment was quantitated using AlamarBlue to indicate the viability/cellular 

health of remaining cells (summarized in Supplementary Table 1). Across both populations, 

CHORI and CEPH, the viability after rituximab treatment ranged from 7.4% to 138.6% with 

a median of 51.5%. Ofatumumab response showed increased levels of CDC, but the results 

were comparable with viability ranging from 0.2% to 106.5% and a median of 32.0%. For 

each population, there were strong correlations between rituximab and ofatumumab 

responses: R2 = 0.65 and R2 = 0.72 for CEPH and CHORI, respectively.

Publicly available pedigree information identified 62 out of 100 of the CEPH cell lines as 

members of complete trios. These individuals were used to estimate heritability: H2 = 

21.53% and H2 = 21.07% for rituximab and ofatumumab, respectively. An alternative 

approach, using the Genome-wide Complex Trait Analysis software23 and the 486 unrelated 

samples, estimated heritability of rituximab and ofatumumab sensitivity at H2 = 34.54% and 

H2 = 35.05%, respectively.

Satisfied with the heritability of cellular sensitivity to MAbs, we sought to generate 

candidate genes for functional validation experiments through genome wide association, 

linkage, and gene expression analysis.

Association analysis

Using genotype data on 2.1 million SNPs for the CHORI samples, three separate GWAS 

were performed: (a) rituximab response, (b) ofatumumab response and (c) the vector of both 

responses modeled jointly. With a suggestive threshold cutoff (− log10(P) >6), there were 

five peak associations detected across all three GWAS (summarized in Supplementary Table 

2).

Four out of five of the peak associations occurred on SNPs with rare homozygous major or 

minor genotypes. Filtering out rare variants—that is, any SNP with few heterozygous or 

homozygous genotypes (nAA<20, nAa<20 or naa<20)—resulted in one statistically 

significant result association with rituximab response. The SNP, rs9295079, exists in the 

gene encoding region for SMOC2 on chromosome 6.

As an alternative to filtering out rare variant associations, we used an adaptive permutation 

method25 to further test these associations. After applying the adaptive permutation testing, 

three out of five of peak associations surpassed the suggestive significance threshold cutoff 

based on the effective number of markers across the genome (− log10(P)>6).29,30 The SNP, 

rs10070859, had suggestive significance for ofatumumab and the combined analysis. This 

SNP is within 100 Kbp of the gene encoding region for APC. The results of all three GWAS 

are illustrated in Figure 1 where all suggestive association results (− log10(p)>6) have the 

final P-values from the permutation testing results.
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Linkage analysis

Linkage analysis performed on the CEPH revealed one significant linkage peak on 

chromosome 12 for rituximab and two significant peaks for ofatumumab, on chromosome 

12 and 3 (Figure 2). Significance thresholds were determined by 10 000 simulations and 

several quantitative trait models were explored to determine which mode of inheritance best 

fit these data. Although these results reemphasized a genetic component of drug response 

(with heritability estimates under each model ranging from 0–58%), there was not a clear 

model that best fit the data. The single locus mixed model and two-locus mixed model 

estimates were each significant compared to the sporadic model (both P<0.001), but were 

not significantly different from each other (P<0.344).

Correlations between gene expression and MAb sensitivity

Using publicly available gene expression profiling data, expression profiles from 57 of the 

original 100 LCLs typed on Affymetrix Human Genome U133A 2.0 arrays were 

downloaded and normalized. Quantitative Significance Analysis of Microarrays revealed 13 

genes whose expression was correlated with viability in rituximab (Supplementary Table 3) 

and 25 genes whose expression was correlated with viability in ofatumumab (Supplementary 

Table 4), using a false discovery rate cutoff of <0.001%. All were negatively correlated with 

viability—that is, as gene expression increased, rituximab/ofatumumab sensitivity increased. 

CBLB, present in both tables, was the only gene that was also implicated in the union of 

linkage peaks and genome-wide expression differences. Hence, CBLB was chosen for 

further functional validation.

CBLB knockdown increases rituximab resistance and alters localization of CD20

To validate CBLB, identified as both a candidate gene in the chromosome 3 linkage peak 

and independently as a gene whose expression is correlated with rituximab sensitivity, we 

reduced protein expression in a number of malignant and non-malignant B-cell lines using 

an shRNA construct. Knockdown of CBLB resulted in >95% reduction in CBLB protein 

levels, as evidenced by western blotting analysis (Figure 3a). Resulting cell lines, both LCLs 

and lymphoma cell lines, were more resistant to both rituximab (Figure 3b) and ofatumumab 

(Supplementary Figure 1).

It has been shown previously that CD20 surface protein expression levels are correlated with 

sensitivity to anti-CD20 antibodies.31–33 To determine whether absence of CBLB alters 

CD20 expression, we measured total cellular protein levels of CD20, which were not altered 

by CBLB knockdown (Figure 4a). Furthermore, when we quantified surface expression of 

CD20, it was not reduced in CBLB knockdown cells (Figure 4b). To further examine CD20 

localization as a possible mechanism for the effects of reduced CBLB levels, we also 

performed immunofluorescence in CBLB knockdown cells. CD20 localization was altered 

in cells with CBLB knockdown with a greater number of concentrated ‘patches’ in the 

membrane staining, while in the wild-type cells, the membrane localization of CD20 was 

more diffuse (Figure 5), This may suggest a potential mechanism for CBLB’s effects that 

could be explored in future studies.
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DISCUSSION

Our results provide some hypotheses and new insight into mechanisms of resistance for the 

MAbs, rituximab and ofatumumab. We have approached the problem using combined 

approaches involving heritability, GWAS, linkage analysis and functional validation with 

knockdown models showing altered localization of CD20.

Deciphering intrinsic and acquired resistance is a primary goal in precision or personalized 

medicine for cancer therapy: predicting the best treatment strategy based on the genetics and 

molecular features of individual cases. In vitro studies linking genotype to phenotype via 

GWAS and linkage analysis are common approaches to identify key loci in small molecule 

drug resistance and susceptibility. Here we sought to discover some of the genetic factors in 

MAb sensitivity, specifically rituximab and ofatumumab sensitivity, using multiple 

approaches—that is, association, linkage and gene expression analysis—and discovered a 

previously undescribed role for rituximab drug sensitivity mediated by CBLB, which was 

functionally validated through additional experimental work. Two other genes, SMOC2 and 

APC, were associated with variability in drug response across individuals and may warrant 

additional investigation in future work. These results suggest interesting insights into the 

etiology of response to anti-CD20 MAbs. The linkage results indicate that there are both 

shared regions of the genome linked to response and at least one region that is unique to 

ofatumumab. However, a candidate gene from that region, CBLB, appears to mediate both 

rituximab and ofatumumab, suggesting the specificity to ofatumumab could be merely a 

statistical one. The gene expression data results also reflect potential differences between the 

two MAbs in that there are a larger number of genes whose expression is significantly 

different for ofatumumab (25 in total) than for rituximab.13 This may be due to the higher 

CDC activity that has been reported for ofatumumab.34

Successful previous studies mapping genes to drug resistance have utilized candidate gene 

approaches relying on a priori assumptions. These approaches, although undoubtedly useful, 

cannot capture the unanticipated genetic factors involved in drug resistance. To the best of 

our knowledge, our study is the first to map a drug resistance gene in humans using an 

agnostic approach without assumption about mechanism. We have systematically run the 

gamut—from heritability to gene expression, association and linkage analysis followed by 

functional validation via genetic knockdown and immunohistochemistry. We have shown 

that CBLB expression affects localization of CD20 and susceptibility to CDC induced by 

MAb treatment.

As is the case with any in vitro study, the in vivo significance of the suggested genes of 

interest must be investigated. The application of these results to the clinical setting is yet 

unknown. There are notable confounders in extrapolating in vitro results to in vivo 
actionable items. Generally speaking, there are obvious immunologic and systemic features 

lacking in in vitro systems which would affect B-cell survival and fate in vivo. For example, 

natural killer cells and IL2 are powerful mediators of rituximab response.35 Moreover, 

polymorphisms in FCGR3A seem to affect rituximab response and natural killer cell-

mediated lysis.36 Here we investigated one type of cell death by MAbs—i.e., CDC; however, 
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it is well known that MAbs also work through apoptotic and antibody-dependent cell death 

mechanisms.

Although cell lines do not always lead directly to clinical efficacy prediction, they are often 

successfully used for hypothesis generation and elaborating on existing hypotheses.37 The 

LCLs used in our study came from healthy individuals. Although there is strong precedent 

that interindividual drug resistance and susceptibility can be understood using healthy 

donors, there are other factors that affect tumor resistance in vivo. For instance, tumor 

acquired alterations and tumor heterogeneity have an important role in drug resistance that is 

not reflected in our model system. However, this can also be an advantage, since our system 

is able to isolate and focus only on the effects of heritable (that is, germline) variability on 

drug response.

High-throughput in vitro assays, omics and informatics provide a compelling alternative 

approach to study cancer resistance mechanisms. We have successfully used the LCL model 

to explore two clinically important MAbs: rituximab and ofatumumab. Our current work has 

uncovered new mechanistic insight into the relationship between MAb susceptibility, CBLB 

and CD20. However, the full mechanism through which CBLB expression leads to 

differential localization of CD20 and confirmation that this is indeed the reason for altered 

anti-CD20 antibody susceptibility will require additional studies. As CBLB is a component 

of complement-dependent cell death by anti-CD20 MAbs, it will also be interesting to 

explore additional newly developed anti-CD20 antibodies, some of which have altered CDC 

effectiveness, to further test the hypotheses generated in our current work. Understanding the 

role of CBLB in MAb treatment could pave the way to using patient genotypes to enable 

decision making in the clinical setting: determining which anti-CD20 antibody would be 

most effective in which patients, or finding ways to restore rituximab sensitivity in patients 

who have inherited or acquired resistance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This work was supported a Mentored Research Scholar Grant in Applied and Clinical Research (MSRG-12-086-01-
TBG) from the American Cancer Society, an R01 Grant (5R01 CA185372) from the National Cancer Institute to 
KLR and an RO1 (5R01CA161608) from the National Cancer Institute to AMR and HLM.

REFERENCES

1. Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin 
Cancer Biol 2012; 22: 3–13. [PubMed: 22245472] 

2. Ng KP, Hillmer AM, Chuah CTH, Juan WC, Ko TK, Teo ASM et al. A common BIM deletion 
polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in 
cancer. Nat Med 2012; 18: 521–528. [PubMed: 22426421] 

3. Turner NC, Reis-Filho JS. Genetic heterogeneity and cancer drug resistance. Lancet Oncol 2012; 
13: e178–e185. [PubMed: 22469128] 

4. Lee AJX, Swanton C. Tumour heterogeneity and drug resistance: personalising cancer medicine 
through functional genomics. Biochem Pharmacol 2012; 83: 1013–1020. [PubMed: 22192819] 

Jack et al. Page 10

Pharmacogenomics J. Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Gonzalez de Castro D, Clarke PA, Al-Lazikani B, Workman P. Personalized cancer medicine: 
molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther 2013; 93: 
252–259. [PubMed: 23361103] 

6. Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20 monoclonal 
antibodies. Mol Immunol 2007; 44: 3823–3837. [PubMed: 17768100] 

7. Weng W-K, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently 
predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003; 21: 3940–
3947. [PubMed: 12975461] 

8. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P et al. Therapeutic activity 
of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor 
FcgammaRIIIa gene. Blood 2002; 99: 754–758. [PubMed: 11806974] 

9. Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A. A critical review of the role of Fc 
gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol 
Oncol 2013; 6: 1. [PubMed: 23286345] 

10. Racila E, Link BK, Weng W-K, Witzig TE, Ansell S, Maurer MJ et al. A polymorphism in the 
complement component C1qA correlates with prolonged response following rituximab therapy of 
follicular lymphoma. Clin Cancer Res 2008; 14: 6697–6703. [PubMed: 18927313] 

11. Medina MW, Gao F, Ruan W, Rotter JI, Krauss RM. Alternative splicing of 3-hydroxy-3-
methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein 
cholesterol response to simvastatin. Circulation 2008; 118: 355–362. [PubMed: 18559695] 

12. Barber MJ, Mangravite LM, Hyde CL, Chasman DI, Smith JD, McCarty CA et al. Genome-wide 
association of lipid-lowering response to statins in combined study populations. PLoS ONE 2010; 
5: e9763. [PubMed: 20339536] 

13. Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annu Rev Genomics Hum Genet 2009; 
10: 387–406. [PubMed: 19715440] 

14. Brown CC, Havener TM, Medina MW, Jack JR, Krauss RM, McLeod HL et al. Genome-wide 
association and pharmacological profiling of 29 anticancer agents using lymphoblastoid cell lines. 
Pharmacogenomics 2014; 15: 137–146. [PubMed: 24444404] 

15. Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T et al. Quality control and 
quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 2010; 
34: 591–602. [PubMed: 20718045] 

16. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components 
analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–
909. [PubMed: 16862161] 

17. HGDP-CEPH Human Genome Diversity Cell Line Panel. 2016 (cited 1 January 2015). Available 
from http://www.cephb.fr/en/hgdp_panel.php.

18. Marshfield Genetic Map Mammalian Genotyping Service. 1995 2006. Available from http://
research.marshfieldclinic.org/genetics/home/index.asp.

19. Watters JW, Kraja A, Meucci MA, Province MA, McLeod HL. Genome-wide discovery of loci 
influencing chemotherapy cytotoxicity. Proc Natl Acad Sci USA 2004; 101: 11809–11814. 
[PubMed: 15282376] 

20. Peters EJ, Motsinger-Reif A, Havener TM, Everitt L, Hardison NE, Watson VG et al. 
Pharmacogenomic characterization of US FDA-approved cytotoxic drugs. Pharmacogenomics 
2011; 12: 1407–1415. [PubMed: 22008047] 

21. Demeure O, Lecerf F. MarkerSet: a marker selection tool based on markers location and 
informativity in experimental designs. BMC Res Notes 2008; 1: 9. [PubMed: 18710478] 

22. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin--rapid analysis of dense genetic maps 
using sparse gene flow trees. Nat Genet 2002; 30: 97–101. [PubMed: 11731797] 

23. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait 
analysis. Am J Hum Genet 2011; 88: 76–82. [PubMed: 21167468] 

24. Brown CC, Havener TM, Medina MW, Krauss RM, McLeod HL, Motsinger-Reif AA. Multivariate 
methods and software for association mapping in dose-response genome-wide association studies. 
BioData Min 2012; 5: 21. [PubMed: 23234571] 

Jack et al. Page 11

Pharmacogenomics J. Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cephb.fr/en/hgdp_panel.php
http://research.marshfieldclinic.org/genetics/home/index.asp
http://research.marshfieldclinic.org/genetics/home/index.asp


25. Che R, Jack JR, Motsinger-Reif AA, Brown CC. An adaptive permutation approach for genome-
wide association study: evaluation and recommendations for use. BioData Min 2014; 7: 9. 
[PubMed: 24976866] 

26. Snow GL, Wijsman EM. Pedigree analysis package (PAP) vs. MORGAN: model selection and 
hypothesis testing on a large pedigree. Genet Epidemiol 1998; 15 (4): 355–369. [PubMed: 
9671986] 

27. Akaike H A new look at the statistical model identification. IEEE Trans Automat Contr 1974; 19: 
716–723.

28. Small GW, McLeod HL, Richards KL. Analysis of innate and acquired resistance to anti-CD20 
antibodies in malignant and nonmalignant B cells. PeerJ 2013; 1: e31. [PubMed: 23638367] 

29. Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for 
genomewide association studies of nearly all common variants. Genet Epidemiol 2008; 32: 381–
385. [PubMed: 18348202] 

30. Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value 
threshold to control the family-wide type 1 error in genome wide association studies. BMC 
Genomics 2008; 9: 516. [PubMed: 18976480] 

31. Davis TA, Czerwinski DK, Levy R. Therapy of B-cell lymphoma with anti-CD20 antibodies can 
result in the loss of CD20 antigen expression. Clin Cancer Res 1999; 5: 611–615. [PubMed: 
10100713] 

32. Foran JM, Norton andrew J, Micallef INM, Taussig DC, Amess JAL, Rohatiner AZS et al. Loss of 
CD20 expression following treatment with rituximab (chimaeric monoclonal anti-CD20): a 
retrospective cohort analysis. Br J Haematol 2001; 114: 881–883. [PubMed: 11564080] 

33. Kennedy GA, Tey S-K, Cobcroft R, Marlton P, Cull G, Grimmett K et al. Incidence and nature of 
CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin’s 
lymphoma: a retrospective review. Br J Haematol 2002; 119: 412–416. [PubMed: 12406079] 

34. Pawluczkowycz AW, Beurskens FJ, Beum PV, Lindorfer MA, van de Winkel JGJ, Parren PWHI et 
al. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells 
opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher 
levels of CDC are induced by OFA than by RTX. J Immunol 2009; 183: 749–758. [PubMed: 
19535640] 

35. Golay J, Manganini M, Facchinetti V, Gramigna R, Broady R, Borleri G et al. Rituximab-mediated 
antibody-dependent cellular cytotoxicity against neoplastic B cells is stimulated strongly by 
interleukin-2. Haematologica 2003; 88: 1002–1012. [PubMed: 12969808] 

36. Dall’Ozzo S Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A 
polymorphism on the concentration-effect relationship. Cancer Res 2004; 64: 4664–4669. 
[PubMed: 15231679] 

37. Weinstein JN, Lorenzi PL. Cancer: discrepancies in drug sensitivity. Nature 2013; 504: 381–383. 
[PubMed: 24284624] 

Jack et al. Page 12

Pharmacogenomics J. Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Manhattan plot for (a) rituximab, (b) ofatumumab, and (c) multivariate (rituximab + 

ofatumumab) GWAS. The negative log transform of P-values for three GWAS are given for 

2.1 million SNPs. Nominal P-values are provided for all cases except any significant 

associations (− log10(p)>6). For all significant associations, the P-values are adjusted for 

multiple comparisons via permutation testing.
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Figure 2. 
Linkage mapping of rituximab sensitivity. (a) Chromosome 12 LOD scores plotted on the y 
axis are shown with chromosome coordinates along the x axis in centimorgans (cM). The 

gray trace is for ofatumumab; black for rituximab. They perfectly overlap at peaks centered 

at 94cM. (b) Chromosome 3 LOD score peak reached significance only for ofatumumab 

sensitivity.
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Figure 3. 
Cbl-b knockdown increases rituximab resistance. (a) Cbl-b protein levels are shown by 

western blot (four representative cell lines are shown) in cells with empty vector (pLKO) or 

Cbl-b knockdown (shCBL-B). (b) Viability in rituximab CDC assay, relative to cells with no 

rituximab added. Three lymphoblastoid and one lymphoma cell line, each with empty vector 

(pLKO), CBLB shRNA (shCBL) or MS4A1 shRNA (shCD20) are shown.
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Figure 4. 
CD20 expression is not diminished by Cbl-b knockdown. (a) Western blot showing total 

Cbl-b and CD20 levels in three representative cell lines with and without Cbl-b knockdown. 

(b) Flow cytometry to measure cell surface expression of CD20 in four representative cell 

lines shows no decrease in cells with Cbl-b knockdown (shCBL).
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Figure 5. 
CD20 localization is altered in cells with Cbl-b knockdown. Left column shows CD20 

localization in four control cell lines (empty vector) and right column shows the same cell 

lines with Cbl-b knockdown.
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