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ABSTRACT

Motivation: Nucleo-cytoplasmic trafficking of proteins is a core
regulatory process that sustains the integrity of the nuclear space of
eukaryotic cells via an interplay between numerous factors. Despite
progress on experimentally characterizing a number of nuclear
localization signals, their presence alone remains an unreliable
indicator of actual translocation.
Results: This article introduces a probabilistic model that explicitly
recognizes a variety of nuclear localization signals, and integrates
relevant amino acid sequence and interaction data for any candidate
nuclear protein. In particular, we develop and incorporate scoring
functions based on distinct classes of classical nuclear localization
signals. Our empirical results show that the model accurately predicts
whether a protein is imported into the nucleus, surpassing the
classification accuracy of similar predictors when evaluated on
the mouse and yeast proteomes (area under the receiver operator
characteristic curve of 0.84 and 0.80, respectively). The model also
predicts the sequence position of a nuclear localization signal and
whether it interacts with importin-α.
Availability: http://pprowler.itee.uq.edu.au/NucImport
Contact: m.boden@uq.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Nucleo-cytoplasmic trafficking of proteins is a core regulatory
process that involves traversing large membrane structures termed
nuclear pore complexes (NPCs) (Aitchison and Wozniak, 2007;
Alber et al., 2007). The translocation of cargo macromolecules
through the pore is facilitated by a number of nuclear transport
factors, termed karyopherins. To shed light on the mechanisms
that are employed by individual nuclear proteins, this article
proposes a probabilistic model of nuclear import that leverages
recent experimental results to accurately and transparently recognize
biologically relevant features.

The main determinant of nuclear localization of proteins is the
nuclear localization signal (NLS). The best-characterized NLS is the
classical nuclear localization sequence (cNLS), which is recognized
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by the carrier protein importin-α (karyopherin-α). Importin-α acts as
an adaptor protein, binding in turn to importin-β (karyopherin-β1),
which docks the trimeric complex to the nuclear pore complex for
further transport into the nucleus (Marfori et al., 2010). The cNLS
contains one (mono-partite) or two (bi-partite) clusters of basic
amino acids (Hodel et al., 2001; Kosugi et al., 2009a). Structural
studies have shown that peptides bind along a groove in importin-α,
with charged amino acids at ‘minor’ and ‘major’ binding sites along
this groove (Conti et al., 1998; Fontes et al., 2003). A recent study
subdivided cNLSs further into six groups (Kosugi et al., 2009a).

In addition to the classical nuclear import pathway, several
alternative import pathways have been characterized. Features of
the targeting signal have been identified in the case of the proline–
tyrosine (PY)-NLS pathway, which employs the carrier karyopherin-
β2 (Lee et al., 2006). At present, the definition of an NLS common to
different cargoes used by a single carrier has only been possible for
the classical and karyopherin-β2-mediated pathways. Many nuclear
proteins do not contain any known NLS (Christophe et al., 2000).

Many predictors identify homologs of a query protein and assign
their subcellular location to it without explicitly considering if a
localization signal is present. As a consequence, such predictors fail
to provide both mechanistic explanations of predicted translocation
and reliable output in the absence of well-characterized homologs
(Ba et al., 2009; Brameier et al., 2007; Marfori et al., 2010; Nakai
and Horton, 1999). Predicting which proteins are imported on the
basis of targeting signals without resorting to homology is a major
challenge. Simple sequence matching using known NLS patterns
renders many false positives and negatives (Brameier et al., 2007;
Cokol et al., 2000). To explain why import sometimes goes awry
in biological terms, we require models that transparently capture
and appropriately weigh in relevant aspects of nuclear import (e.g.
interaction with karyopherins and cNLS recognition).

A number of predictors are available to identify novel nuclear
proteins from known localization features, against which new
models should be benchmarked. For reasons explained below, we
use NLStradamus (Ba et al., 2009) and cNLS Mapper (Kosugi et al.,
2009a) as representatives for the current state of the art on technical
and biological grounds, respectively.

PredictNLS (Cokol et al., 2000) explicitly matches a protein
sequence against entries in the NLSdb database (Nair et al.,
2003). NucPred also uses sequence matching (Brameier et al.,
2007) complemented by ‘genetic programming’ to recognize new
putative NLSs. According to its authors, NucPred is more accurate
than PredictNLS, LOCtree (Nair and Rost, 2005) and BaCelLo
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(Pierleoni et al., 2006). Ba et al. (2009) evaluated the performance of
localization signal predictors, finding that they do not perform well
on truly novel examples which suggests that current methods are
unable to identify the features relevant to import. They developed
NLStradamus (Ba et al., 2009) in response to this observation.
NLStradamus is a hidden Markov model that predicts localization
signal sites more accurately than those benchmarked against in their
study. Its high accuracy is potentially due to the flexibility in signal
recognition afforded by the probabilistic model. It is trained on
alignments of yeast NLSs but extends well to other species (Ba
et al., 2009).

Kosugi et al. (2009a) generated and experimentally screened
random peptide libraries to identify importin-α binding sequences.
Using yeast, plant (rice) and mammalian (human) importin-α
proteins, six different groups of mono- and bi-partite cNLSs were
identified by cluster analyses of the sequences of the bound (and
imported) peptides. The authors developed a computational method,
cNLS Mapper, that incorporates a sequence scoring matrix based
directly on the statistics gathered from the collected peptides (Kosugi
et al., 2009b). cNLS Mapper is more accurate than PSORT II (Nakai
and Horton, 1999) and PredictNLS (Cokol et al., 2000) on several
yeast positive-only datasets (Kosugi et al., 2009b).

cNLS Mapper identified 406 mono-partite, and 306 bi-partite
cNLSs in the yeast proteome. The yeast–GFP fusion localization
database by Huh et al. (2003) identifies 447 of these as nuclear.
Yeast–GFP records nuclear import status confirmed by microscopy
for yeast strains tagged with green fluorescent protein (GFP). Kosugi
et al. experimentally demonstrated that 29 out of 30 false ‘mono-
partite’ positives indeed exhibited NLS activity, attesting to the high
specificity of their predictor.

NLSs appear to operate similarly across species. Indeed, only
one group in Kosugi and colleagues’ study was deemed specific
to a single species (rice). It is, thus, of general interest to
gauge the ability of nuclear import models to deal with not only
yeast but also a mammalian system. We note that NucProt (Fink
et al., 2008) offers a complementary resource for developing and
evaluating models of nuclear import. NucProt maps the mouse
nuclear proteome, identified primarily from experimental assays,
enriched using computational methods.

To enhance a model’s ability to recognize species-specific
targeting signals in sequence data, we develop probabilistic
scoring functions from experimentally determined sequence patterns
matched to actual sequences from the proteome under consideration.
As a result, these functions accurately reflect the proteome-specific
distributions. We use data from the studies by Kosugi et al. (2009a),
Huh et al. (2003) and Fink et al. (2008) to develop and evaluate our
model.

Protein interaction data offer a complementary view of how
cargoes interface with the import machinery. Thus, to improve
further on their recognition, we extract data indicating interaction
with importin-α/β and the GTP-binding protein Ran–all of which
are essential for the translocation of proteins through the NPC.
Finally, to increase the sensitivity to non-classical import signals,
we incorporate matching of all patterns stored in NLSdb. We also
use a support vector machine (SVM) to detect more subtle sequence
similarities.

We develop a model that recognizes NLSs, links interactions
to localization signals and incorporates sequence similarity. We
demonstrate that the model predicts the protein import into the

nucleus more accurately than both NLStradamus and cNLS Mapper.
It identifies interactions with core NPC members, and correctly
identifies cNLSs for novel proteins in both mouse and yeast.
Our probabilistic model is transparent and provides biologically
meaningful explanations for predictions.

2 MATERIAL AND METHODS
To integrate the information gleaned from the datasets and to enforce
constraints from known relationships between features (discussed below),
we use a custom-designed Bayesian network.

2.1 Bayesian network
Bayesian networks are directed acyclic graphs in which nodes are (random)
variables and directed edges represent (causal) dependencies between the
variables (parent to child). The full joint probability distribution for all
random variables X1 =x1,X2 =x2,...,Xn =xn can be calculated by taking the
product of related elements of the conditional probability tables (CPTs) in the
probabilistic network; P(x1,x2,.....,xn)=∏N

i=1(P(xi|pa(Xi)) where pa(Xi) is
the set of parents of Xi.

In our Bayesian network model, variables are either ‘Boolean’ (true/false)
or ‘continuous’ (real valued). Nodes with Boolean parents are essentially
conditional probability tables, in which each entry consists of a binomial
distribution (Boolean nodes) or a Gaussian density (continuous nodes).

The parameters in the conditional probability tables are learned from
the data using expectation–maximization (EM) (Do and Batzoglou, 2008).
Prior probabilities (root nodes) are determined from the relative counts
of observations in training data. The conditional probabilities (nodes with
parents) are similarly determined from the relative counts of outcomes, but
are subject to observed conditions of parent nodes. In some cases, values of
variables are not observed in datasets. For so-called latent variables, the
expected values—computed from those variables that are observed—are
used to maximize the likelihood of the data.

To understand the contribution of different features to accuracy, we design
several smaller Bayesian networks, and then two Bayesian networks that
combine the full range of features in ways reflecting domain knowledge. Each
can take a protein as input—represented by sequence and/or interactions—
and can output the probability of nuclear import (see Section 2.3). We fix
the network structure. Some of the models utilize the output of position
weight matrices (PWMs) and support vector machines (SVMs). The SVM
and PWMs are trained separately (on non-overlapping data) and prior to
invoking EM as explained below.

2.2 Model features
Below we discuss features that can be used to assign values to variables in
the model to support accurate inference of nuclear import.

2.2.1 Classical nuclear localization signals: f (c,x) The detection of
NLSs is crucial to accurate modeling of nuclear import. Kosugi and
colleagues recently identified six groups of cNLSs corresponding to distinct
importin-α binding properties. Classes 1 and 2 interface with the major
binding site of importin-α while classes 3 and 4 bind to the minor binding
site. Class 6 is the bi-partite nuclear localization signal. Class 5 is a plant-
specific cNLS variant (Kosugi et al., 2009a) and is not included in our mouse
or yeast specific models. We also omit Class 3 because there are very few
matches in the yeast and mouse datasets, preventing reliable analysis. Below
we discuss how we use cNLS Classes 1, 2, 4 and 6 as features in our models.

From their peptide data, Kosugi et al. constructed ‘optimal consensus
patterns’ in the form of regular expressions for each of the six cNLS classes.
They also remarked that flanking residues exerted some influence on NLS
activity, but that this was species specific. cNLS Mapper is directly based
on the statistics of their random peptide library, captured by matrices with
scores for each amino acid at each position in an NLS. This scoring method
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demonstrates an ability to deal with the degeneracy of real sites, not afforded
by direct matching of regular expressions. Rather than using the matrices
of Kosugi et al., to account for any species bias, we infer parameters for
probabilistic PWMs directly from proteomes.

First, we use the four regular expressions to identify all candidate NLSs
in the known nuclear proteins of mouse and yeast, respectively. Secondly,
for each cNLS class and species, we form an alignment by centering each
match to create an PWM. We define a probability matrix PC for a cNLS class
C ∈{1,2,4,6} as in Equation (1).

PC (a,i)= nC,a,i +s(a)

NC +∑
a′∈A s(a′)

(1)

PC (a,i) is the probability of amino acid a, at position i of the cNLS-specific
alignment, nC,a,i is the count of a at the i-th position (in class C-matching
nuclear protein sequences), s(a) is a pseudocount function (here a unit
increment), NC is the total number of matches to the regular expression
for NLS class C and A is the set of the 20 amino acids.

The class-specific PWM, WC , is the ‘log-odds’ of the position-specific
probability and a zero-order background probability of the amino acid a at
position i in the matching sequence [see Equation (2)].

WC (a,i)= log
PC (a,i)

PC (a)
(2)

PC (a) is the background probability (prior) of amino acid a in all C-matching
sequences.

We define a scoring function f (c,x) for a cNLS class c where x is any
amino acid sequence. Each of the resulting PWMs can generate a cNLS-
specific score for each position i in a query sequence x [see Equation (3)].

f (c,x,i)=
|W |∑

j=1

WC=c(xi+j−1,j) (3)

The overall class c score for the sequence, is f (c,x)=maxi f (c,x,i). We
additionally define the location of a candidate cNLS of class c as l(c,x)=
argmaxi f (c,x,i).

To find an appropriate PWM width (common to all classes), we also
considered amino acids at the flanks of matching sequences. A total matrix
width of 20 positions (for each cNLS class) gave the maximum accuracy in
preliminary tests on a subset of the full protein dataset. We show the resulting
PWMs in Supplementary Figure S1.

In summary, the features described above require the specification of a
sequence x, and assign a real value that indicates the presence of cNLS
c∈{1,2,4,6} in x.

2.2.2 Alternative localization signals: NLSdb(x) The classical import
pathway involving the interaction with importin-α is utilized by a
large number of proteins. Alternative pathways, possibly involving direct
interaction with other karyopherins, are not normally detected via cNLS.

NLSdb contains 114 experimentally determined nuclear localization
signals. These signals are described by regular expressions. It also contains
194 carefully qualified permutations of the original 114, required not to
overlap with a negative reference set (Nair et al., 2003).

As a feature complementary to cNLSs, we define NLSdb(x) where x is
the amino acid sequence of a protein. The function assigns true or false by
simply matching the sequence to all regular expressions in NLSdb.

2.2.3 Protein interaction: ppiα(x), ppiβ(x) and ppiRan(x) Compared with
detailed binding sites in cargo (NLSs), protein interaction datasets offer
a different experimental resource to determine the probability of nuclear
translocation. In particular, interactions with karyopherins are relevant and
below we discuss their incorporation as features.

We collect all interaction partners of importin-α, importin-β and Ran in the
BioGRID protein–protein interaction datasets (Stark et al., 2006). We note
that coverage is very limited. For our mouse data, there are only 9 interactions
with importin-α, 32 interactions with importin-β and 184 interactions with

Ran. For yeast, the respective numbers are 215, 375 and 132. To compensate
for this lack of data for mouse, we also included indirect interactions with
importin-α and importin-β, i.e. interactions via a single ‘proxy’ partner.

In order to incorporate protein interaction dataset, we define three features
ppiα(x), ppiβ(x) and ppiRan(x), assigning true or false depending on whether
the query protein is known to interact with importin-α, importin-β and Ran,
respectively.

2.2.4 Sequence similarity based on shared k-mers: SVM(x) There may
be yet unknown sequence signals and domains that are involved in nuclear
import. Hawkins et al. (2007) demonstrated that detecting sequence segments
that were shared with already known nuclear proteins can be used to establish
import status. SVMs have been used successfully in the past for predicting
nuclear import (Hawkins et al., 2007; Nair and Rost, 2005) and are known
to be very sensitive to sequence similarity and domain sharing.

We use an SVM to classify known nuclear and non-nuclear protein
sequences. We define a feature SVM(x) to assign a score to a sequence
x, indicating whether it is similar to known nuclear proteins, or not.

A kernel function K maps a pair of data items (in our case protein
sequences) to a feature space in which their inner product is evaluated. In
all our tests, we use the Spectrum kernel (Hawkins et al., 2007; Leslie et al.,
2002) which simply counts the occurrences of shared sequence segments
known as k-mers. Since known NLSs are naturally represented as short
sequence patterns, we expect this kernel to be suited to capturing such signals
but not limited to them. We consistently use k =3, i.e. segments are three
amino acids long. As a result of training, the SVM finds a hyperplane in this
3mer feature space (defined in terms of the so-called support vectors) that
optimally separates items of the two classes.

2.3 Model designs
We develop three basic Bayesian network models, a ‘cNLS-only model’, a
‘PPI-NLSdb model’ and a ‘SVM-sequence model’. Each model involves a
distinct set of input features: cNLSs, protein interactions and k-mer sequence
similarity, respectively. We then construct two versions of a full-blown
model by combining the three basic models, thereby integrating the different
features (see Fig. 1 for an illustration of the combined Bayesian network,
composed of the basic models). Each model has a Boolean node ‘Import’
that represents the probability of nuclear import. Each model is trained to
maximize the likelihood of reproducing the training data using EM, and can
be used to predict import status from input features.

2.3.1 cNLS-only model We are interested in evaluating the presence and
impact of classical nuclear localization signals in isolation and design a
cNLS-only model to this end. This model incorporates a feature set and
operation very similar to that of cNLS Mapper, enabling us to analyse their
differences.

For a query protein x, we have four cNLS class-specific scores, fC (x) :
C ∈{1,2,4,6}. In our model, we represent them as four continuous random
variables, each with a latent Boolean parent variable (see Fig. 1). Each
of these unobserved variables represents the (independent) probability of a
functional cNLS binding site using two Gaussian densities N , each specified
by a mean µ and a variance σ2 [see Equation (4)].

P(fC (x)|x is C)=〈N(µTrue
C ,σTrue

C ),N(µFalse
C ,σFalse

C )〉 (4)

Of course with C unknown, the truth value of ‘x is C’ is not known. Instead,
each ‘class’ node (C =1, C =2, C =4 and C =6) is a parent of the ‘Import’
node whose value is available during training. The latent nodes can thus
be inferred, and their parameters can be learned using EM. After training
these cNLS, class nodes will indicate the presence (the score is in the ‘true’
density) or absence (‘false’ density) of each cNLS in the query sequence.

To avoid overfitting, we divide training data between training the
parameters of the cNLS PWMs and the parameters of the Bayesian network.

2.3.2 The PPI-NLSdb model The PPI-NLSdb model incorporates
information of interactions with essential import factors and the presence
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Fig. 1. Version 1 of a combined model for nuclear import of proteins, with
nodes shown as rounded rectangles, with solid arrows illustrating causal
dependencies (parent to child). Version 2 subsumes version 1 and adds parent
to child dependencies as shown by dotted arrows. Modules of nodes are
shaded to indicate the structure of the three basic models. Latent nodes have
a dashed outline. Other nodes are labelled with the features that assign values
to them, Boolean nodes have a thicker outline than continuous nodes.

of uncategorized NLSs. Specifically, this model has four Boolean variables
assigned values according to ppiα, ppiβ , ppiRan and NLSdb for a candidate
cargo x. These variables are all parents to Import (see Fig. 1).

There may be dependencies between different interactions and some of
the patterns in NLSdb, and the structure of the PPI-NLSdb model enables the
capture of some of these. Note that ppiα and fC :C ∈{1,2,4,6} are dependent,
but fC is not represented in PPI-NLSdb model.

2.3.3 The SVM-sequence model The final basic model incorporates
sequence similarity between a query protein and each of the known nuclear
and non-nuclear proteins in the training set via a SVM. The model only
contains a continuous variable that takes the value of SVM(x) and Import as
its parent (see Fig. 1). We fit two Gaussian densities over the continuous SVM
score similar to each of the PWM scores above. In this case, the component
labels are known during training (Import is known to be true or false).

With this simple transformation of the SVM’s output to a probability, the
SVM sequence model essentially doubles as a benchmark for how well the
import classification problem is handled by the machine learning method
alone. [As an aside we did explore a SVM with a logistic output function
(Platt et al., 2000) with near identical import classification accuracy.] The
advantage of designing the network such that the SVM is a continuous node
becomes apparent in the combined model where the SVM is one out of many
variables that inform the final decision.

Similar to the cNLS-only model, training data are divided so that the SVM
is trained on separate data from that used for training the Bayesian network.

2.3.4 A combined model It is intuitive to combine the basic models to
construct a more powerful model (see Fig. 1). We propose two versions
of a combined model. Version 1 combines the basic models as three
modules in the simplest possible way without recognizing any dependencies
that may exist between feature sets. Two new latent nodes are added to
alleviate generalization issues brought by an increase of model parameters.
(The number of parameters increase exponentially with the number of
parents. For example, Import with 2 Boolean parent nodes implies 22

parameters, Import with 4 + 4 Boolean parents implies 28 parameters.)
Version 2 explicitly connects the node for ppiα to the latent cNLS class
nodes, thereby recognizing dependencies between importin-α interactions
and cNLSs.

2.4 Model inference
From the joint probability, it is trivial to determine conditional probabilities
involving a subset of the variables (including latent) using marginalization.

We describe and use three inference scenarios of biological interest, of many
afforded by our probabilistic modelling framework.

2.4.1 Predicting nuclear import To predict import status of a query
protein, we infer P(Import = true|e) where e is the possibly incomplete
‘evidence’ for a query protein, i.e. a set of instantiated variables representing
features. In particular, we consider the probability of nuclear import of
a protein given its sequence and interactions with the import machinery.
From the sequence, we can determine cNLS scores, NLSdb matches and the
SVM score, all of which are typically used as evidence when the variable is
represented by the model.

It is sometimes useful to view the inferred probability of nuclear import
as either true or false, in particular for validation purposes. We thus need
to set a probability threshold θ that needs to be exceeded for a ‘positive’
prediction.

2.4.2 Predicting location of cNLS In the combined models, we are able
to infer cNLS class and location from evidence of sequence, and interaction.
Specifically, we determine P(C =c|e) :C ∈{1,2,4,6}, and find the class with
the greatest probability. With c known, we use l(c,x) to find the most likely
location of the cNLS.

2.4.3 Predicting importin-α interaction The combined models integrate
several features that complement one another. We are particularly interested
in investigating whether we can predict the interaction with the adapter
importin-α from sequence-based scores, i.e. P(ppiα |e) where e includes
evidence of sequence, import and interaction with non-importin-α partners.
Again, to validate prediction it is useful to threshold the inferred probability.

2.5 Evaluation metrics, datasets and methodology
All three inference scenarios produce a probability as output, e.g. the
posterior probability of import or the posterior probability of importin-α
interaction. To measure the accuracy of predictions, we rely on two standard
metrics for classifiers: the area under the receiver operator characteristic
curve (AUC) (Fawcett, 2004) and the Matthews’ Correlation Coefficient
(MCC; specific to a threshold θ) (Baldi et al., 2000).

The performance coefficient (PC) (Tompa et al., 2005) is used to quantify
the accuracy of NLS location and width predictions. It measures the accuracy
by considering the overlap of residue-level predictions and actual sites.
Definitions of each metric are provided in the Supplementary Material.

NucProt (Fink et al., 2008) is used for training and testing mouse-specific
models. The yeast–GFP fusion dataset (Huh et al., 2003) is used for training
and testing yeast-specific models. An independent test dataset is extracted
from UniProt (Hawkins et al., 2007). We use BioGRID (Stark et al., 2006)
to identify relevant protein–protein interaction data. Finally, NLS test data
are extracted from UniProt. We describe the construction of all datasets in
detail in the Supplementary Material.

We use 6-fold cross-validation for all models: the dataset is split into
six subsets, with one kept aside for testing and the remaining five are used
for training the Bayesian network, the SVM and the set of PWMs. The
process is repeated so that all permutations of subsets are used for training
resulting in six Bayesian networks, six SVMs and six sets of PWMs. As
indicated previously, we further ensure that the SVM and PWMs are not
trained on the same data as that used for the Bayesian network. All reported
tests are generated with model components that have not been trained on the
same data. We report the average test accuracies and their SD. To evaluate
the impact of homology on the prediction performance, we constructed a
‘redundancy reduced’ version where proteins with sequences sharing more
than 30% identity were removed.

When possible we compare accuracies of our models to those of cNLS
Mapper and NLStradamus. We are unable to control testing procedures when
using these models but expect there to be minimal impact of overlap between
their training data and our test data. In the case of cNLS Mapper, we are
indebted to the authors for running their predictor on our data. The output that
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were provided does not include scores lower than 6, precluding us from
distinguishing between weak predictions when determining AUC and
maximum MCC. (According to cNLS Mapper documentation, a score of
8–10 means that the protein is exclusively localized to the nucleus, a
score of 7–8 means partial localization to the nucleus, a score of 3–5
means cytoplasmic and nuclear co-localization and a score of 1–2 represents
cytoplasmic localization.)

In the case of NLStradamus, we were able to run predictions locally and
produce a graded score for each NLS location. We use this score to indicate
the support of nuclear import.

3 RESULTS

3.1 Accuracy of predicting nuclear import
Table 1 lists the accuracies of the different models used in this study
and that of cNLS Mapper and NLStradamus on the full mouse and
yeast datasets. Many NLSs are shared between yeast and mammalian
species. It needs to be emphasized, however, that cNLS Mapper and
NLStradamus were developed on the basis of yeast data and their
use on mouse proteins incorrectly assumes that cNLS recognition
mechanisms are identical between the two species.

For the mouse dataset, the basic cNLS-only model achieves
slightly higher accuracy as that of cNLS Mapper and NLStradamus.
All other Bayesian network models except PPI-NLSdb model
exceed the accuracy of cNLS Mapper and NLStradamus. The SVM
sequence model gets an AUC of 0.78 illustrating how well an SVM-
based classifier is expected to do. As we envisaged, the models that
combine all features have significantly higher accuracy than any of
the other models on the mouse dataset with an AUC of 0.84 and 0.82
and a maximum MCC of 0.57 and 0.52, for version 1 and version
2, respectively.

For the yeast dataset, the cNLS-only model roughly achieves
the same classification accuracy as that of cNLS Mapper (MCC
is 0.24). However, the cNLS-only model is more accurate than
NLStradamus. All other Bayesian network models except the PPI-
NLSdb model exceed the classification accuracy of cNLS Mapper
and NLStradamus. For yeast, the AUC is 0.80 and 0.79, for the
combined models (version 1 and version 2, respectively), 0.61 for
cNLS Mapper and 0.60 for NLStradamus. The combined models
again achieve superior AUC and MCC (see Table 1).

Nucleo (Hawkins et al., 2007) uses the Spectrum kernel for
its SVM model, not unlike the SVM used in the SVM sequence
model. Nucleo was shown to outperform all other publicly
available protein import predictors on a carefully composed, mixed-
species, independent dataset (Hawkins et al., 2007). We attempt to
benchmark our model against Nucleo and by extension of all other
predictors in that study using the same independent test set. (The
datasets used for testing above overlap substantially with Nucleo’s
training data.) We split the test data from the Nucleo study into
yeast and mouse, to evaluate our species-specific models as well as
cNLS Mapper and NLStradamus. To determine the accuracy of our
combined model, we ensured there was no overlap with our training
dataset. (We had to remove these proteins from our original sets, and
re-train the models.) The results are shown in Table 2. For the mouse
subset, our combined model outperforms all other predictors (MCC
of 0.56) while for the yeast subset our model performed equally well
as Nucleo (MCC of 0.32).

For completeness, we re-trained our model collectively on our
yeast and mouse datasets (again excluding proteins that are present

Table 1. Accuracy of predicting nuclear imported proteins with different
models as measured using AUC and maximum MCC

Model Mouse Yeast

AUC MCC AUC MCC

Combined model v 1 0.84 ± 0.02 0.57 ± 0.02 0.80 ± 0.01 0.44 ± 0.01
Combined model v 2 0.82 ± 0.02 0.52 ± 0.02 0.79 ± 0.01 0.42 ± 0.02
cNLS Mapper 0.66 0.29 0.61 0.24
NLStradamus 0.68 0.29 0.60 0.19
cNLS-only model 0.71 ± 0.01 0.31 ± 0.01 0.70 ± 0.01 0.24 ± 0.01
PPI-NLSdb model 0.62 ± 0.01 0.16 ± 0.01 0.60 ± 0.01 0.16 ± 0.01
SVM-sequence model 0.78 ± 0.01 0.51 ± 0.01 0.76 ± 0.01 0.37 ± 0.01

When available, SDs are provided.

Table 2. Accuracy of predicting nuclear import for independent datasets
(Hawkins et al., 2007)

Model Accuracy (MCC)

Mouse Yeast All species

Combined model 0.56 0.32 0.39
Nucleo 0.24 0.32 0.38
cNLS Mapper 0.41 0.26 0.27
NLStradamus 0.37 0.13 0.25

Table 3. Accuracy of predicting nuclear import for proteins with less than
30% sequence similarity

Model Accuracy (MCC)

Mouse Yeast

Combined model 0.50 0.41
cNLS Mapper 0.28 0.26
NLStradamus 0.29 0.19

in the independent test set). On the complete mixed-species test, our
combined model (v 1) achieved an MCC of 0.39, which is slightly
higher than Nucleo (MCC of 0.38). We note that Nucleo has the
highest sensitivity (76%) and that cNLS Mapper has the highest
specificity (87%) at their optimal MCC (data not shown).

To investigate the role of homology in the model’s generalization,
as opposed to features relevant to translocation, we re-trained and
re-tested the model on a set with less than 30% sequence similarity.
We note that the accuracy of the combined model (v 1) drops slightly
but still outperforms that of cNLS Mapper and NLStradamus when
tested on the same homology-free data (see Table 3).

3.2 Accuracy of predicting location of a cNLS
The results also show that predicting nuclear import is moderately
accurate in the cNLS-only model. However, only a subset of all
nuclear proteins are expected to utilize cNLSs, so perfect accuracy is
not reasonable. To demonstrate the accuracy of the cNLS feature set
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Table 4. Performance coefficient comparing the accuracy of predicting
NLSs

Model Mouse Yeast

PC Correct (%) PC Correct (%)

Combined model 0.23 162 (51) 0.24 74 (68)
cNLS Mapper 0.13 103 (33) 0.09 58 (53)
NLStradamus 0.13 135 (42) 0.11 25 (23)

If more than one cNLS signal is predicted for a single query, only the most probable NLS
is considered. Where more than one equiprobable NLS, the one which gives maximum
overlap with known NLS(s) is selected. This increases the overall PC for cNLS Mapper
and NLStradamus but has no effect on the PC of our combined model. The number of
correct predictions is also shown.

and to evaluate the confidence we can put in this particular module
of the combined models, we probe how well the model predicts the
location of the cNLS.

We tested the combined model (version 1) on proteins with at least
one known nuclear localization signal to investigate if (i) predicted
locations are accurate; if (ii) correct import predictions are due to the
detection of NLS; and if (iii) generic sequence similarity contributes
positively specifically to the recognition of cNLSs, and not only to
determining nuclear import. We use a nuclear localization signal
dataset extracted from UniProt. These data assign only location but
not type, for NLSs in protein sequence data.

First for reference, for each query protein, we inferred the
probability of nuclear import (see Section 2.4.1). We then identified
the most probable location of an NLS (see Section 2.4.2).

We considered prediction of NLS location ‘correct’ if there is
any overlap between predicted cNLS location and the known NLS
location. We similarly used cNLS Mapper and NLStradamus to
predict NLS locations. We observed that for mouse and yeast
proteins, our model is more sensitive than cNLS Mapper and
NLStradamus. For the mouse dataset, our combined model correctly
predicts 51% of all NLS sites compared with 33 and 42% for cNLS
Mapper and NLStradamus, respectively. For the yeast dataset, our
model correctly predicts 68% of known nuclear localization signals,
compared with 53% for cNLS Mapper and 23% for NLStradamus. It
needs to be emphasized that UniProt annotations do not distinguish
NLS type, are not limited to classical NLSs and many are not marked
as experimentally verified.

We note that our models identify a 20-residue window as the
site of a cNLS. Both cNLS Mapper and NLStradamus often predict
shorter segments and could thus exhibit better specificity. However,
in terms of the performance coefficient, which captures prediction
specificity and sensitivity, the combined model still performs better
than the other two predictors. The results are shown in Table 4.

To investigate if cNLS detection is essential for predicting nuclear
import, we observe the difference in import probability when either
removing a known NLS or an equally wide random subsequence.
If detection is non-essential, the two situations should render a
positive or negative difference with equal probability. Again we
refer to the UniProt NLS data, and count positive versus negative
prediction differences, for removal of actual NLSs versus random
subsequences. Fisher’s exact test clearly supports that if a functional
cNLS is removed from a protein sequence, the overall nuclear import
probability decreases (P<10−13).

We note that in some exceptional cases, there is an increase
in nuclear import probability upon removing the cNLS, which
suggests the existence of alternative pathway signals. For
instance, the proteins Zfp161 and Nufip1 possess PY-NLS motifs
(Lee et al., 2006), a karyopherin-β2-dependent targeting signal,
not recognized by our model. For Frg1, a spurious bipartite
signal is uncovered (KKFQSFQDHKLKISKEDSKILKKAK) after
removing the known NLS.

We can confirm that the sequence similarity detected by the SVM
contributes to recognizing NLSs as defined by UniProt. By repeating
the experiments above with a combined model where the SVM is
taken out, we note that the performance coefficient falls from 0.23
to 0.17 for mouse and from 0.24 to 0.19 for yeast. This suggests that
the SVM increases the ability of the model to discern true cNLSs,
by either finding (complementary) NLS features or other nucleus-
associated domains.

Having established that the combined model recognizes four
different cNLS classes, we turn to the prediction of novel targeting
signals. For the biologist, knowing the location of an NLS
enables manipulation and the diagnosis of aberrant localization.
Additionally, knowing the site in a multitude of proteins allows
statistical analyses of properties, e.g. local structure. Therefore,
we predict the cNLS class and cNLS location of both mouse
and yeast nuclear proteomes. We show predicted cNLS locations
for proteins with high probability (greater than optimal threshold
for maximum MCC) of nuclear import in the Supplementary
Material.

3.3 Predicting novel importin-α interactions
In the absence of specific information about interactions with
the import machinery, predicting the importins with which a
candidate nuclear protein interacts provides useful hints of its
localization behaviour. Our combined model (version 2) recognizes
the biologically meaningful dependency between importin-α and the
four cNLS classes and is thus ideally suited to this problem.

We follow the scenario outlined in Section 2.4.3 to infer the
value of the variable representing the feature ppiα given all the
other features, including import status. We predict the probability
of importin-α interaction for all proteins in the yeast and mouse
proteomes. To validate predictions, we leave the variable (ppiα)
unspecified in all cases even when it is known.

Using the yeast protein interaction dataset as a ‘gold standard’
for importin-α interactions, we determine the AUC of predicting
importin-α interaction to be 0.67. Using the much less reliable mouse
interaction set to validate all predictions for the mouse proteome,
the AUC (for importin-α interactions) dropped only slightly to 0.64.
However, we believe that the limited data (of importin-α interaction)
for validation renders the AUC inconclusive.

To further explore the model’s ability to model importin-α
interaction, we manually inspected the top 20 predicted importin-
α partners in yeast. Out of these 20 interactors, 19 are not in our
gold standard set. Instead, we searched for evidence of interaction
in the literature. We also looked broadly in existing interaction
sets for protein complexes involving both proteins (the cargo and
importin-α), and in paired interaction data linking both proteins
via an intermediate protein. (An indirect interaction with importin-
α may indicate that a group of proteins combine to interact with
importin-α.)
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Indeed, two of our predicted proteins (HMO1, PXR1) have
evidence of direct physical importin-α interaction (Ito et al., 2001).
Four high scoring proteins (YTM1, RTG3, BUR2, RPN2) are found
to be part of the protein complexes involving importin-α (Gavin
et al., 2002, 2006; Ho et al., 2002). Additionally, YTM1 and
BUR2 may indirectly interact with importin-α (Jensen et al., 2009).
Finally, nine high scoring proteins (SGD1, RGT1, UGA3, BUD23,
IFH1, YRM1, POL3, SLD3, PRP21) are found to have evidence
of indirect interaction with importin-α (Jensen et al., 2009). In
summary, we managed to anecdotally establish association between
importin-α and 16 of the top 20 proteins predicted by our model.
The predicted and validated interaction network, annotated with
evidence, is provided in the Supplementary Material.

4 CONCLUSION
We present a model that incorporates three different types of features
to predict nuclear localization and responsible localization signals
and interactions. The model predicts whether a protein is imported
into the nucleus with an accuracy surpassing that of comparable
predictors on the mouse and yeast proteomes. The MCC is 0.57 and
0.44 for mouse and yeast, respectively, and the AUC is 0.84 and
0.80.

To understand the importance of explicitly recognizing NLSs
for nuclear import prediction, we compare our approach with
localization predictors that do not incorporate such features directly.
Nucleo has previously been shown to outperform six different
predictors in terms of classifying import status of proteins (Hawkins
et al., 2007) and falls predominately into this category. By re-using
the independent dataset developed for evaluating Nucleo, we are
able to show that our Bayesian network model outperforms the
other predictors (MCC is 0.39 on the species-combined data), with
Nucleo as a clear second. The explicit recognition of NLS is thus
not critical for predicting import accurately—at least when limited
to the dominant but far-from-exclusive classical NLSs. By testing
our model on a dataset with low sequence redundancy, we show that
the generalization performance of our model is not the simple result
of matching homology.

A key benefit of our model (in relation to most models including
Nucleo) is that it transparently indicates the influence of relevant
variables. Thereby, it allows biologists to dissect predictions to find
which features are responsible for importing each individual protein.
We illustrate this principle by also using the model to predict the
most probable cNLS for the mouse and yeast nuclear proteomes.

We establish on a smaller dataset that the model accurately
recognizes NLSs and interactions with the import machinery. We
verify that the predicted NLSs match 68 and 51% of known
independent yeast and mouse NLSs, respectively. Additionally, by
hiding functional NLSs from the model and observing a significant
decrease in support, we confirm that the model is sensitive to this
biologically essential feature. Our Bayesian network-based model
can thus enable biologists to identify the nuclear localization signals
responsible for binding with karyopherins.

By integrating protein–protein interaction data, biologists are able
to tap into an emerging data source. It is clear from our tests that
interaction data contributes to prediction accuracy. In the absence of
reliable interaction data, the model is flexible enough to operate with
these variables unspecified, and to predict several novel importin-
α interactors. We validate our top predictions using the literature

and argue that the model assists in identifying novel importin-α
interactions. Anecdotal evidence offers additional support for 16
of our top 20 importin-α interaction predictions. Considering the
sparsity of training and test interaction data, we find the accuracy
of predicting importin-α interactions encouraging (AUC is 0.64 and
0.67 for mouse and yeast, respectively).

The current model is easy to extend with recently discovered
localization signals, for example the PY-NLS. Cross-referenced with
the appropriate data, we believe that predicted NLSs can be used to
further characterize proteome-specific NLSs, both structurally and
functionally.
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