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Abstract

The treatment of metastatic brain tumors with stereotactic radiosurgery requires that the clinician 

first locate the tumors and measure their volumes. Thoroughly searching a patient scan for brain 

tumors and delineating the lesions can be a long and difficult task when done manually and is also 

prone to human error. In this paper, we present an automated method for detecting changes in 

brain tumor lesions over longitudinal scans to aide the clinician’s task of determining tumor 

volumes. Our approach jointly registers the current image with a previous scan while estimating 

changes in intensity correspondences due to tumor growth or regression. We combine the label 

map with correspondence changes with tumor segmentations from a previous scan to estimate the 

metastases in the new image. Alignment and tumor tracking results show promise on 28 

registrations using real patient data.

1 Introduction

Brain metastases are the most common type of tumor in the brain, with an incidence of over 

10 times the rate of primary tumors and an estimated 200,000 cases per year in the United 

States [1]. Treatment may include resection of tumors, but this can only be performed in 

limited cases. Currently, the primary mode of treatment is whole brain radiation therapy, 

especially for those with poor prognosis, leading to 2 – 7 months increase in survival [1]. 

However, whole brain radiation includes side effects such as radiation necrosis and 

neurocognitive decline. Another method of treatment is stereotactic radiosurgery (SRS), 

which is often used for patients with favorable prognostic factors. SRS administers a high 

dose of focused radiation using multiple beams to the tumor site, which is an attractive 

treatment option since it spares most of the healthy brain tissue. There is evidence that the 

addition of SRS to whole brain radiation results in better control of tumors as well as 

increased survival of up to one year [2].

To perform SRS, the physician must first locate the tumors and determine tumor volumes in 

order to create the treatment plan. As part of planning, the patient will be scanned using T1-

gadolinium contrast-enhanced MRI, which makes active tumors appear brighter than normal 

tissue in the image, while necrotic tumors will generally appear darker. The current clinical 
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workflow for tumor estimation involves visually searching a brain image slice by slice for 

evidence of tumors, then comparing again slice by slice to a scan at the previous time point 

to determine tumor correspondence (new or old tumor) and changes in tumor volume and 

activity. This manual task is time consuming and tedious, especially since metastases in one 

patient can involve tens of very small tumors. Even for patient cases with a few known larger 

tumors, the clinician must search the whole brain to determine if any new metastases have 

appeared.

Prior work in automating tumor tracking and estimation generally involves two main 

approaches. One is to first register the images with tumors, and then examine the image 

differences directly or analyze the deformation field to see how the tumors change [3]. The 

other approach is to run an automated or a semiautomated segmentation method on the 

current image, with [4,5] or without [6,7] knowledge of the lesion identified at a previous 

time point. Other related methods include the use of biomechanical models to simulate 

tumor growth before registering a patient brain to a normal atlas [8], but we are interested in 

intrapatient registration.

The goal of this work is to create an automated method for detection of tumor changes in 

contrast-enhanced MRI to assist the clinician in analysis and planning of brain metastases 

treatment. Note that if the images from consecutive scans are perfectly aligned, then we 

could more easily determine where tumor changes have occurred. On the other hand, if we 

knew exactly which parts of the image do not have matching correspondences due to lesion 

growth/regression, we could more easily register the images by only trying to align voxels 

with known matching correspondences. Thus, since the registration estimate can benefit 

from the segmentation of the tumors and vice versa, we frame the problem as a simultaneous 

estimation of the registration parameters and the labeling of the changes between two 

images.

The algorithm that we formulate is general and can be applied to other missing or changed 

correspondence problems as we make no assumptions about tumor growth/regression. We 

describe a specific implementation for the alignment of our longitudinal scans with brain 

metastases. Using the label map of correspondence changes, we can estimate tumors in the 

newer image, given a segmentation of the tumors at a previous time point. We test our 

method for both registration and tumor estimation accuracy with real patient data.

2 Methods

2.1 Registration Algorithm

The registration framework is based on the method introduced in [9] for registering 

preoperative and postresection brain images. We adapt the general frame work to our method 

as follows. Posing the problem in a maximum a posteriori estimation framework, the goal is 

to find

Chitphakdithai et al. Page 2

Spatiotemporal Image Anal Longitud Time Ser Image Data (2012). Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R = argmax
R

logp(R |S, T) . (1)

where R is the optimal registration parameters, S is the source image, and T is the target 

image, scanned at a previous time to the image S. The registration parameters R map a voxel 

x with intensity S (x) in the source image to a position T (R(x)) in the target image.

We aid the registration process by incorporating a label map L, where L (x) denotes the 

intensity correspondence relation between S and T. Here we will use four labels to describe 

the possible intensity relations: no intensity changes in the brain, i.e. there are matching 

features; an increase in intensity in the brain, which will likely denote active tumor; a 

decrease in intensity in the brain, which may correspond to tumor necrosis or edema; and 

near 0 intensity and thus no intensity change in the background. We include L in the 

estimation by marginalizing the probability in (1) over all possible label maps,

R = argmax
R

log∑
L

p(R, L |S, T) . (2)

Using the expectation-maximization (EM) algorithm, we can iteratively solve for R and L. 

At iteration k + 1, in the E-step, we update the label map using the current registration 

parameters Rk. Then, in the M-step, we update the registration parameters Rk+1 with our 

current estimate of the label map. In the following, to simplify computation, we assume 

voxels to be independent.

The E-step evaluates the probability that a voxel will be assigned a label, given all other 

variables,

p(L(x) = l |S, T , Rk) =
p T Rk(x) |S, Rk, L(x) = l p(S(x) |L(x) = l)p(L(x) = l)

∑l′ p T Rk(x) |S, Rk, L(x) = l′ p(S(x) |L(x) = l′)p L(x) = l′
. (3)

Here, we have made the common assumption that the voxels in the image are independent, 

and also assume that the source intensities are independent of the registration parameters 

given the labels. Also, we will model the term p (R (x) | L (x) = l) so that it changes very 

little or likely not at all with the change in labeling of just one voxel, so we consider it a 

constant; the nominator and denominator terms thus disappear.

The M-step then updates the registration parameters,
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Rk + 1 = argmax
R

  ∑
x ∈ S

∑
l ∈ L

p(L(x) = l |S, T , Rk)logp(T(R(x)

)|S, R, L(x) = l) + ∑
x ∈ S

logp(R(x)|Lk + 1) ,

(4)

where Lk + 1 = argmax
l

p(L(x) = l |S, T , Rk) is our current estimate for the label map using the 

weights from the previous E-step. Note that we have applied a conditional maximization 

approach [10], so that the prior p (R (x) | Lk+1) only depends on the current most likely label 

map, greatly simplifying computation. Once the EM algorithm converges, we estimate the 

final label map L = argmax
l

p(L(x) = l |S, T , R).

2.2 Model Instantiation

We now need to define each probability model to compute (3) and (4). The first probability 

in (4) is the weight of a label assignment as calculated from the previous E-step. Thus, we 

have four probability distributions to define.

Data Terms—The probability p (T(R (x)) | S, R, L(x) = l) describes the image similarity 

between the source and target images, given the registration parameters and the label map. 

For each label, we can define a different probability distribution describing how we expect 

the voxels to match. Background voxels should have no signal, and thus we assume that 

background intensity should be the same in the source and target images. Since we are 

dealing with monomodal image registration, we assume intensities are correlated if the same 

features in the brain appear in both images (corresponding to “valid corr” labels below). 

Recall that high correlation implies that the image intensities in S and T have a linear 

relationship. However, for lesion areas, the intensities will likely not be correlated. For 

example, an active tumor may become necrotic, causing a large change from bright to dark 

in contrast-enhanced MRI. Thus, we use the following model to measure image similarity:

p(T(R(x)) |S, R, L(x) = l) =

𝒩 S(x), σb
2 , l =  background 

𝒩 a0 + a1S(x), σv
2 , l =  valid corr 

1
C , otherwise 

, (5)

where 𝒩 μ, σ2  is the normal distribution with mean μ and variance σ2 and C is the uniform 

distribution parameter.

Considering the coefficients a0 and a1 as part of the parameters that we’d like to estimate 

along with the registration parameters R in the MAP framework, we can iteratively solve for 

them by maximizing the objective function in (4) not only over R, but also over a0 and a1. 
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Using a conditional maximization approach [11], we update the parameters for the image 

similarity model while keeping all other parameters, i.e. the registration parameters, 

constant.

The coefficients a0 and a1 are iteratively estimated from the source and transformed target 

image intensities S (x) and T (R (x)), with the weights calculated from the current iteration 

according to (3). First, define vS as the weighted mean of the intensities in S,

vS =
∑x ∈ S p(L(x) =  valid corr  |S, T , Rk)S(x)

∑x ∈ S p(L(x) =  valid corr  |S, T , Rk)
, (6)

where the intensities of S are weighted by p (L (x) = valid corr | S, T, Rk). Similarly, vT is 

the weighted mean of the intensities in the transformed target image. Then, the weighted 

covariance φS,T of the source and transformed target images is given by

φS, T =
∑x ∈ S p(L(x) =  valid corr |S, T , Rk) S(x) − vS T(R(x)) − vT

∑x ∈ S p(L(x) =  valid corr  |S, T , Rk)
, (7)

and the weighted correlation coefficient ρ is calculated as

ρ =
φS, T

φS, SφT , T
. (8)

Note that the weighted correlation coefficient rather than the traditional correlation 

coefficient essentially becomes the metric for similarity, as it measures the alignment of the 

images based on the current estimate of the voxels in S that have matching correspondences. 

Finally, with these definitions we can update the coefficients 

a1 = ρ φT , T /φS, S
 and a0 = νT − a1νS.

In addition, we update the standard deviations of the normal distributions and the parameter 

for the uniform distribution at each iteration, conditioned on the current registration and 

label map estimate. We update σv
2 by again weighting the variance calculation by the 

probabilities of the voxels being labeled as having valid correspondences. We then set 

σb
2 = 4σv

2 so that the algorithm will not try to match the background at the expense of aligning 

brain features. We set the uniform distribution parameter C such that intensities further than 

2σv from S (x) are considered more likely to belong to the missing correspondence classes.

The second data term p (S (x) | L (x) =l) is the source image intensity prior and describes the 

likelihood of a voxel’s intensity given the voxel is labeled l. We use the same approach as 

described in [9], where we use Gaussian models for enhanced (relating to active tumor) and 
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darkened (relating to edema or necrosis) voxel intensities and find the maximum likelihood 

estimate of the parameters using manually segmented training data,. We assume a uniform 

distribution for voxels with valid correspondences. Unlike in [9], here we take into 

consideration that different images have different scales of intensity values. Thus, we 

normalize the image intensities in each image by its mean of intensities before performing 

the parameter estimation and use this same normalization when evaluating the intensity prior 

in the registration algorithm.

Prior Terms—The registration prior p (R (x) | L) depends on a label map L. We use a free-

form deformation B-spline model for the transformation model [12]. We then model the 

motion of a voxel x as following a normal distribution with mean equal to the starting 

position of the voxel under the uniform control point mesh with spacing δ. We set the 

variance of the normal distribution to be inversely proportional to the distance away from the 

closest abnormal intensities in L, leveling off at some distance d for the minimum allowed 

variance. Thus, points closer to lesions will be allowed to deform more since the variance 

will be greater, while points farther away will be more restricted since we expect more rigid 

motion.

We use the prior on the label map p (L (x) = l) to enforce smoothness in the segmentation. 

We model the label map as a Markov random field and use a mean-field like approximation 

to make the calculation tractable [13]. Applying a Potts smoothing model, the prior 

probability of a label at a voxel is

p(L(x) = l) = p(L(x) = l | β) = 1
Zx′ (β)exp β ∑

n ∈ N(x)
δ l, Lk(n) (9)

where Zx′ (β) is the partition function which normalizes the values such that p (L (x) = l | β) is 

a proper probability distribution, δ is the Kronecker delta function, and n is a voxel in the 

neighborhood N (x) of x. Similar to the way we update the coefficients for the similarity 

term, we iteratively update the weighting parameter β conditioned on the current registration 

parameters,

βk + 1 = argmax
β

∑
x ∈ S

∑
l ∈ L

p(L(x) = l S, T , Rk)[logp(L(x) = l β) + logp(β)], (10)

where p (β) is the prior on the weighting parameter β. For this prior, we assign a normal 

distribution on β with small mean and variance such that the label map estimation does not 

depend too strongly on the prior.

2.3 Estimation of Tumor Changes

Once the registration is complete, the final label map gives an estimate of where the 

intensities have changed. Given a segmentation tT of the tumors from the earlier image T, we 

can calculate positions of the tumors in the later image S. First we deform the target 
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segmentation into the space of the S using the optimal registration parameters R. We then 

fuse the estimated label map for the intensity changes L with the target segmentation to 

create our tumor segmentation tS of the source image. For all voxels labeled as having valid 

correspondences, we carry over the labels from tT to tS. Voxels labeled as having no 

correspondence due to an increase in intensity are likely part of new tumor or growth from 

an old tumor, and thus are labeled as tumor. On the other hand, a voxel labeled as having no 

correspondence due to a decrease in intensity could signify an active tumor necrosed or 

appearance of edema. In this work we focus on the locating and measuring of only active 

tumors.

2.4 Algorithm Implementation Details

The M-step maximization in (4) and the weighting parameter estimation in (10) are 

performed using simple gradient ascent. For the training set for estimating the parameters 

for the source image intensity prior, we used a different set of brain tumor treatment images 

than those used in the experiments here. For the transformation prior, we set the maximum 

distance to d = 2δ, after which we keep the variance constant. So that the weighting 

parameter is not too large, we set the prior on the weighting parameter to have a mean of 0.3 

and variance of 0.36 (these values were based on previous experiments, which also found 

that the method is not sensitive to the prior in values around this range). Note that all other 

parameters (such as the similarity metric model parameters and coefficients) are iteratively 

estimated as our algorithm runs. The model parameters that are estimated by the EM 

algorithm are initialized as the values calculated from the source and target images after 

affine alignment. Finally, we perform initial segmentation of tumors manually.

3 Experiments

3.1 Data and Setup

We had available a total of 14 images from 3 metastatic brain tumor patients: 5 scans from 

patient 1, 6 from patient 2, and 3 from patient 3. Patients were scanned at approximately 6 

week intervals. For each patient, we registered all possible pairs, setting the source S to be 

the later image, resulting in a total of 28 registrations. The scans were T1-weighted MRI 

taken post-gadolinium contrast so that voxels containing active tumors should show 

enhancement.

Prior to registration, each image was first skull-stripped and resampled to have 1 mm 

isotropic voxel resolution. Each non-rigid registration was initialized by first running an 

affine registration method using Bioimage Suite software [14]. We mostly compare the 

registration and tumor estimation results of our method with the affine registration and 

manual delineations since this is the current clinical workflow. In addition, we compare our 

registrations to results from an out-of-the-box, “standard” intensity-based non-rigid 

registration method (SNRR) in Bioimage Suite [14,15,12]. We chose this intensity-based 

registration method since it also uses B-spline FFDs for the transformation, and we set the 

control point spacing to be the same as those used in our algorithm.
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3.2 Results

We first qualitatively compare sample results. Then, we computed various measures to 

quantify the accuracy and differences in the registration and labeling results between 

methods.

Sample Qualitative Results—An example of a registration and labeling result for one 

patient is shown in Fig. 1. The crosshairs in each image mark the same location in the 

aligned space. Note that the edges of the right ventricle, highlighted by the crosshairs, are 

better aligned using our method shown in Fig. 1(d) compared to affine registration in Fig. 

1(b) and the SNRR method in Fig. 1(c). The corresponding label map estimating the 

intensity correspondence changes is shown in Fig. 1(e). and the final estimate for tumors in 

the source image in Fig 1(a) is displayed in Fig 1(f).

Another example of a registration and labeling result from a different patient is shown in 

Fig. 2. The subfigures represent the same ordering of data and results as in Fig. 1. In the first 

example, SNRR does move the target toward better alignment, though not as accurately as in 

our method. However, in this patient case note that SNRR, displayed in Fig. 2(c), cannot 

move the image at all due to the disparity in tumor signal: in the source image in Fig. 2(a), 

the tumor becomes necrotic in the center with a ring of enhancement, while in the target 

image in Fig. 2(b), the whole tumor appears brighter. Our method in Fig. 2(d) does a much 

better job of aligning the sulci marked by the crosshairs. The label map result showing the 

changes in intensity in Fig. 2(e) correctly identifies the enhancing outer ring of the 

metastases and darkening of the inner portion due to necrosis.

Quantitative Results—We first evaluated the registration results by comparing center of 

tumor mass locations in the source images and registered target images. For corresponding 

tumors that appear in both images, we expect that their centers of mass should be aligned 

after registration. Note that we assume this specifically for our tumor type, since brain 

metastases usually have a spherical shape, suggesting they grow outward from the initial site 

of tumor foci arrest [16]. Since we have the manual segmentations of all the tumors, this 

method allows a quick and automatic way of locating many corresponding landmarks.

We calculated the center of mass for each tumor in the target segmentation tT deformed to 

the space of S using R and computed the distance between the center of mass of the same 

tumors that appeared in both S and T. Errors categorized by the time between scans are 

shown in Fig. 3, with 2 registrations having greater than a 10 month interval between scans 

omitted to highlight the general trend. Note that according to paired one-tailed t-tests, the 

overall distance between the centers of mass of corresponding tumors was significantly 

reduced by our algorithm compared to affine registration (p < 4e − 8), which is generally the 

most complex level of registration performed in the clinic when evaluating tumor changes. 

In addition, we saw that our method was significantly more accurate compared to SNRR (p 
< 6e − 6). While SNRR did overall show significant improvement over affine registration (p 
< 0.01), the level of significance is not as high compared to the reduced error achieved by 

our registration algorithm.
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The general upward trend for all registration methods as time between scans increased is 

expected since larger changes are likely to have occurred, and thus, the alignment problem 

becomes harder. Also, note that at lower time intervals between scans, SNRR tends to do 

better than affine, but at higher time intervals, the reverse is true. This supports the idea that 

with larger changes between images (due to longer time between scans), SNRR has 

difficulty with proper alignment as it attempts to match the large regions with missing 

correspondences. On the other hand, our method always stays below both affine and SNRR 

trends. Thus, the overall smaller and slower increase in errors over time using our approach 

suggest it is more robust to large differences compared to the other methods.

For the labeling results, we calculated the rate of active tumor detection, the true positive 

rate (TPR) for estimated and true tumor overlap, and the dice coefficient for the overlap of 

true detected tumors. A tumor was detected if there was any overlap between the estimated 

and true tumor volumes. Since larger tumors should be easier to detect, to see the effects of 

tumor size on detection and segmentation, we categorized results based on size, dividing the 

data at approximately the quarter percentile marks. Table 1 summarizes our results for tumor 

identification and quantification. The median tumor detection rate per image registration pair 

was 97%. Thus, our method shows high sensitivity for detecting tumors, which is very 

important since treatment by targeted radiation will only be administered to prescribed 

locations.

Note that volume segmentation rates are similar to those seen in the literature, such as 

reviewed in [6], which showed accuracy scores ranging from ~ 27% – 90%. In addition, in 

brain metastases there are many very small tumors; over half of our tumor examples are less 

than 100 voxels in volume in images that contain about 3 – 4 million voxels. This makes 

higher overlap values much more difficult to achieve compared to results in other 

experiments which often have very large examples (such as aggressive glioblastoma 

multiformes) with high signal changes. Also, inter-rater variability will play a role in our 

accuracy measurements, as observers’ readings have previously been reported to vary by as 

much as ~ 30% [17].

4 Conclusions

We have presented a method for the joint registration and labeling of changed 

correspondences in the registered images with application to brain metastases detection and 

volume estimation. Our framework provides a general way for dealing with missing 

correspondences and physical changes in longitudinal data.

The many registrations over time showed that our method can robustly register the images 

even with many months between scans. Finally, the sensitivity of our method for tumor 

detection is high, helping to achieve our goal of providing guidance to the clinician in 

finding metastases.

In future work, we may incorporate labels for white and grey matter into the labeling 

scheme. In addition, the availability of multimodal data provides rich information that is 

important for better analysis of brain tumors. We aim to incorporate multiple channels of 

Chitphakdithai et al. Page 9

Spatiotemporal Image Anal Longitud Time Ser Image Data (2012). Author manuscript; available in PMC 2019 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MRI data into our joint registration and labeling algorithm to further improve tumor volume 

estimation.

Not surprisingly, we saw that it was much harder to detect very small metastases, which may 

be contained in as few as 12 voxels in our examples. As mentioned above, metastases tend to 

have a spherical shape. Thus, we may look to include this prior shape information into our 

method to aid in the detection of new very small metastases. Another problem we see is with 

false positive identification of tumors. Again, including some measure of sphericity should 

help to reduce the number of false positives that are due to bright CSF signal that is not 

properly suppressed in the contrast-enhanced image. In addition, we could first register the 

images to some template to perform better brain stripping. A template image would also be 

useful for better identifying metastases, as they tend to form at grey-white matter junctions; 

we could incorporate this prior knowledge into the label map prior.
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Fig. 1: 
Example of registration and label map estimation results. Crosshairs mark the same position 

in the aligned space. (a) Source image. (b) Target image aligned using affine registration. (c) 

SNRR result. (d) Result using proposed method. Note the right ventricle is better aligned 

compared to the results in (b) and (c). (e) Label map showing increased (brighter) and 

decreased (darker) intensity in source compared to target. (f) Active tumor estimate for 

source image with hand-segmented tumors outlined in pink. The tumor estimate identifies 

the large tumor and the small metastases by the right ventricle (just left of vertical green 

line).
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Fig. 2: 
A second example of registration and label map results, with crosshairs showing the same 

location in the aligned space. (a) Affine registration result. (c) SNRR result. Note SNRR is 

unable to move toward better alignment due to tumor signal. (d) Result using proposed 

method, showing proper alignment of the sulcus. (e) Label map showing increased and 

decreased intensity in source compared to target. (f) Active tumor estimate for source image 

with hand-segmented tumor delineated in pink.
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Fig. 3: 
Distance between centers of mass of tumors after registration as a function of time. 

According to a one-tailed paired t-test, registration via our proposed method statistically 

significantly reduced errors compared to affine registration (p < 4e − 8) and SNRR (p < 6e 
− 6).
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Table 1:

Tumor detection and volume estimation.

Tumor Volume Range Number of Tumors Detection Rate (%) Median TPR (%) Median Dice

< =0.05 cm3 119 80 62 0.49

>0.05 – 0.1 cm3 68 94 68 0.47

>0.1 – 0.25cm3 77 100 65 0.54

> 0.25 cm3 88 100 72 0.63

All 352 92 69 0.51
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