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Abstract

Biophotonic imaging has revolutionized the operation room by providing surgeons intraoperative 

image-guidance to diagnose tumors more efficiently and to resect tumors with real-time image 

navigation. Among many medical imaging modalities, near-infrared (NIR) light is ideal for image-

guided surgery because it penetrates relatively deeply into living tissue, while nuclear imaging 

provides quantitative and unlimited depth information. It is therefore ideal to develop an integrated 

imaging system by combining NIR fluorescence and gamma-positron imaging to provide surgeons 

with highly sensitive and quantitative detection of diseases, such as cancer, in real-time without 

changing the look of the surgical field. The focus of this review is to provide recent progress in 

intraoperative biophotonic imaging systems, NIR fluorescence imaging and intraoperative nuclear 

imaging devices, and their future perspectives for image-guided interventions.
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1 Introduction

Biophotonic imaging utilizes various optical imaging technologies to detect biological 

objects and diseases with light that plays an integral role in the biomedical research field [1]. 

From the first use of optical imaging in the operation room (OR), many instruments have 

been developed to guide surgeons in real-time diagnosis and image-guided tumor resection 

[2]. Surgeons predominantly rely on their visual and tactile ability to distinguish healthy and 

unhealthy tissues during surgery, and it is therefore highly desirable to add real-time surgical 

guidance to the target tissue with visual characteristic and contrast. Different physical 

properties of targeted tissues can be exploited to provide contrast for the surgeon that the 

naked eye cannot easily distinguish. Since the use of extra devices comes with ergonomic 

limitations, the produced sensitivity and specificity of contrast should be good enough to 

convince the surgeon to use it [3].
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To offer surgeons real-time quantitative information in the OR, many efforts have been made 

by translating spectral imaging modalities from existing preoperative nuclear imaging 

techniques, such as computed tomography (CT), single photon emission CT (SPECT), or 

positron emission tomography (PET) [4–7]. However, it has been a challenge to provide 

real-time feedback to surgeons during operation procedures due to 3D image-rendering 

processing [8]. On the other hand, near-infrared (NIR) fluorescence light penetrates 

relatively deeply into living tissue, thus providing the NIR window (a.k.a. Optical Window 

or Therapeutic Window; 650–1350 nm) in biological tissue [9]. Tissue absorption, 

scattering, and autofluorescence are minimum in the NIR window, thus enabling real-time 

image-guided surgery [10, 11]. While nuclear imaging provides quantitative depth 

information due to high gamma penetration, optical fluorescence imaging provides relatively 

high temporal and spatial resolution [12–15]. It is therefore ideal to develop an integrated 

imaging system by combining NIR fluorescence and gamma-positron imaging to provide 

surgeons with highly sensitive and quantitative detection of diseases, such as cancer, in real-

time without changing the look of the surgical field. There are indeed many clinical reports 

supporting the benefits of using dual-modal gamma-NIR imaging in the OR [16–20]. Such a 

hybrid modality requires the use of radiofluorescence imaging tracers to target specific 

tissues and/or organs. Therefore, it is also equally important to design a hybrid contrast 

agent using the same fluorophore scaffold without adding additional chelators for radiotracer 

binding. Currently, however, a simple mixture of 99mTc nanocolloid-indocyanine green 

(ICG) is the most frequently used dual-modal tracer in the clinic [21, 22].

Other than gamma and fluorescence imaging, many other single or combined (also called 

“dual-modal” or “hybrid”) imaging modalities have been investigated or used in OR, such as 

Cerenkov luminescence imaging [23, 24], optical coherence tomography [25, 26], 

optoacoustic imaging [27], fluorescence and photoacoustic imaging [28], Raman 

spectroscopy [29], thermography imaging [30], chemiluminescence imaging [31], confocal 

endomicroscopy [32], and fluorescence lifetime imaging [33]. More efforts have recently 

been made to provide clinical and preclinical use of these hybrid intraoperative imaging 

systems in the OR. The most recent examples of intraoperative nuclear-NIR imaging 

systems are covered comprehensively by Bugby et al. [34]. Therefore, the focus of this 

review is to provide an overview of intraoperative nuclear-NIR imaging systems and future 

perspectives on real-time image-guided surgery.

2 NIR fluorescence imaging

Optical fluorescence imaging can guide human eyes beyond the natural limitation in terms 

of spatial resolution with the assistance of endogenous and/or exogeneous contrast agents 

[11]. Fluorescence imaging can obtain detailed molecular structures with high spatial 

resolution in real time. However, the ability to visualize over the surface of tissue (i.e. deep 

tissue imaging) and the ability to quantify molecular structures in living organisms are two 

of the most challenging features that fluorescence imaging aims to achieve. Ultraviolet (UV; 

200–400 nm) and visible wavelengths (400–650 nm) have been used for disinfection and in 
vitro molecular diagnosis (e.g. fluorescence microscopy) but are limited for real-time in vivo 
imaging due to superficial tissue penetration of light and autofluorescence from endogenous 

fluorophores in the body. Therefore, the NIR window (650–1350 nm) is more attractive for 
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biophotonic imaging due to low tissue absorption, low tissue scattering, and low 

autofluorescence, which together allow imaging devices to see behind the tissue surface 

[11]. In addition, as the fluorescence imaging depends on both the excitation light source 

and collection of emission lights, the tissue penetration in the NIR window is desirable 

(Figure 1).

2.1 Food and Drug Administration-approved NIR fluorescent imaging systems

NIR fluorescence imaging is useful for real-time navigation of target tissues and their image-

guided surgery when combined with corresponding tissue-specific fluorophores [10]. Thus, 

the clinical utility of NIR fluorescence imaging is closely related to the development of 

nontoxic imaging probes. Since the first approval for human use by the US Food and Drug 

Administration (FDA) in 1959, ICG (807/822 excitation/emission wavelengths) remains the 

only available NIR fluorescent small molecule despite intrinsic limitations such as high 

background uptake, intestinal contaminations, and a short blood half-life [14, 35]. Although 

methylene blue (MB; 665/686 excitation/emission wavelengths) has been used in the clinic 

historically [36], it suffers from poor optical properties for imaging purpose (Figure 2), 

including extremely quick excretion and rapid inactivation due to the enzymatic reduction by 

thiazine reductase [37], which together limits its FDA approval [38, 39]. Another 

combinatorial fluorophore that has been used in the clinic is 5-aminolevulinic acid (5-ALA) 

and protoporphyrin IX (PpIX) for imaging malignant glioma cells. 5-ALA is nonfluorescent 

but is a natural biochemical precursor of hemoglobin that evokes accumulation fluorescent 

PpIX (405 & 635/635 & 705 nm excitation/emission wavelengths) in cancerous tissues [40, 

41]. Since the FDA approval in 2017, 5-ALA/PpIX has been used for tumor delineation and 

photodynamic therapy in the brain. Although its clinical outcomes have been promising, 

there are some limitations of using 5-ALA/PpIX in the clinic: (1) it is most likely to have 

positive porphyrin accumulation in only grade III and IV gliomas, (2) the tumor delineation 

is poor due to the surrounding vague fluorescence in the visible range, and (3) patients suffer 

from long-lasting (2–4 weeks) skin sensitivity after treatment [40–42].

Nonetheless, there is clearly an unmet clinical need to develop novel or improved 

fluorophores presenting high optical properties, optimal biodistribution and clearance, and 

minimum to no nonspecific uptake (i.e. off-target binding) for clinical use [43, 44]. While 

ICG and MB have frequently been used in the clinic, many polymethine and oxazine 

derivatives in the NIR window have been developed and used in structural visualization of 

anatomical features, including nerve [45], vasculature [36, 44], lymph nodes [46, 47], ureter 

[36, 44], bile duct [48], bone [49] and cartilage [50], and various cancers [43, 51, 52]. Due to 

the optical stability and tissue targetability, many efforts have also been made to translate 

these NIR fluorophores into the clinic. Currently, negatively charged IRDye800CW 

(774/789 nm excitation/emission wavelengths) and zwitterionic ZW800–1 (772/788 nm 

excitation/emission wavelengths) are pioneering fluorophores in clinical trials with potential 

in targeting tumors and diseased tissues [53].

The broad view and tactile information in open air surgery helps surgeons to detect the 

diseased tissue easier than in minimally invasive surgery. This fact indicates the importance 

of NIR fluorescence navigation in laparoscopy endoscopy, thoracoscopy, and robotic surgery 
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when the surgeon has only limited visual ability. This clinical need made the many research 

groups to integrate NIR imaging systems to the available minimally invasive surgical 

equipment [12–15]. Now, with the growth and popularity of minimally invasive surgeries, 

there are many FDA approved commercial devices available for laparoscopy, endoscopy, and 

robotic surgery. Figure 3 and Table 1 show a summary of commercially available open-air, 

laparoscopy/endoscopy, and robotic surgery fluorescence imaging systems with their 

significant features. The details for biophotonics will be discussed in the following sections.

2.1.1 Excitation light sources—Fluorescence is only one of the pathways that may 

occur after an incident photon promotes a chemical species from ground state S0 to excited 

S1, S2, and beyond (Figure 4). Energetic relaxation occurs through several pathways [10]. 

Internal conversion is shown in red in Figure 4, and corresponds to molecular movements 

(vibration, stretching, twisting, etc.). Another competing pathway is the process of 

fluorescence or the release of light of lower energy (higher wavelength) than that absorbed 

(energy difference is the origin of the Stokes shift). Lastly, the spin inversion from an excited 

singlet state to an excited triplet state can relax back to the spin paired ground state through 

a time-lapsed phosphorescence pathway. Building on these principles, the excitation source 

may be optimized such that fluorescence dominates the alternate pathways, which affords a 

high quantum yield of photon emission [10].

The excitation source for open-air imaging systems can be chosen according the spectral 

bandwidth, solid angle of output beam, light output efficiency, application-dependent 

regulation, cost, and lifespan [12, 15]. The fluorescence light in the open-air or microscopy 

surgery can be illuminated via optical fiber or directly from excitation source, but in 

laparoscopic/endoscopic surgery, the designated optical path should carry NIR excitation as 

well as white light to the field of view (FOV). For optimal fluorescence imaging, light 

sources should be able to illuminate the fluorophore at the center of its peak absorption 

wavelength through dichroic mirrors and bandpass filters [12, 15]. The most commonly used 

visible-NIR excitation sources are (1) filtered broadband lamps, (2) laser diodes (LDs), and 

(3) light-emitting diodes (LEDs). Filtered broadband lamps provide an economical option to 

build fluorescence imaging devices (e.g. absorption/transmission/reflectance spectroscopy 

and surgical microscopy) [12, 15]. High-pressure arc lamps generate an intense and broad 

spectrum of light from UV-vis to NIR: 200–600 nm for mercury-arc lamp and 220–750 nm 

for xenon lamp, while incandescent lamps (e.g. tungsten-halogen) provide wide spectral and 

spatial illumination from 350 to 2500 nm. This is the simplest light source and is useful for 

spectrometers to measure transmission and absorption. However, the low light efficiency 

worsens by additionally rejected photons in the emission filter to confine the output 

bandwidth. Thus, the produced excess heat and difficulty to focus the emission light in the 

open-air surgery devices toward the desired FOV make it not a suitable choice for an 

advanced surgical imaging system [12, 15]. Recently, supercontinuum light source has been 

used for femtosecond lasers and photonic crystal fibers to illuminate tunable ultrabroadband 

light from visible to NIR based on the propagation of high-power pulse [55]. Optical fibers 

deliver such high-spatial-coherence light through bandpass filters, of which cost is higher 

than other lamps. Supercontinuum generates a smooth spectrum and is mostly used for 

optical coherence tomography and not a reasonable choice for real-time imaging device.
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LD has the highest spatial and spectral confinement and thus is commonly used for 

fluorescence and Raman spectroscopy [12, 15]. Since the spectral bandwidth of LD is 

narrow, for intraoperative imaging, a beam expander is specially required to broaden the 

illumination area for the desired FOV coupled with a wide range of dichroic mirrors and 

emission filters [12, 15]. Due to coherence, a blurring mechanism may also be required to 

overcome the speckle effect of laser sources, which can be compensated either by rotating a 

diffuser or vibrating a fiber [14]. Owing to the concerns on heat generation, over current and 

safety, the out power and temperature of high-power LDs should be carefully controlled and 

maintained. High temperature also reduces the lifetime of LDs drastically. Additionally, the 

maximal permitted exposure according to the laser class, can trigger safety concerns, and in 

this case, personal protective equipment such as laser goggles should be equipped in the OR 

to protect eyes [12, 14]. Fluoptics Fluobeam, Iridium VisionSense, and Novadaq imaging 

systems are currently equipped with LDs to excite exogenous fluorophores.

LED light sources are vastly used in industry and research, which lower the cost of 

intraoperative imaging systems in comparison to LD-based illumination [56, 57]. LEDs have 

broader bandwidth and illumination and usually provide lower power excitation light 

compared to LDs [12, 15, 58]. An array of LED illuminators is typically used to produce 

homogenous light over the desired FOV and excitation and emission filters confine output 

photon wavelength to the optical window of fluorophore(s). LED light sources with confined 

spectrum in the visible band are mostly used; however, a failure of such filtering increases 

the leakage from excitation to emission as well as the background noise level [57]. 

Additionally, due to the recent advancement in developing high-power LEDs, many optical 

imaging devices utilize LED light sources, including Hamamatsu PDE and Quest Medical 

Spectrum (former Artemis). However, some challenges still remain, such as light leaking 

due to the small Stokes shift of fluorophores, temperature control, and difficulty in 

assembling large and dense arrays [57].

2.1.2 Collection optical components and emission filters—The optical path from 

emitting fluorophores to image sensors determines the working distance (WD), FOV, image 

contrast, and general image quality [13]. While the details are beyond the scope of this 

review, here, we briefly describe each component for real-time fluorescence imaging. First, 

WD is of great importance given that the camera should not interfere with operation 

procedures, while providing an optimum FOV for intraoperative navigation [59]. With large 

FOV options available on many systems (e.g. Fluobeam), it is important to consider image 

uniformity and quality across the field at the maximum WD. While the appropriate WD 

depends heavily on the application, typically 20–60 cm WD with a FOV size as large as 20 × 

14 cm2 is reported for open-air surgery in the clinic (Table 1). Fluorescence images should 

stay in focus using an autofocus function at the maximum WD, allowing surgeons more 

workspace during surgical procedures. Next, the aperture of the collecting lens controls the 

amount of light photon collection, where a larger light collection translates to a brighter 

image, which in turn affects the camera exposure time and speed that might be important for 

near real-time imaging. Additionally, lens f# is directly related with the focal length and 

inversely with the pupil diameter; therefore, a large focal length leads to a small but 

magnified FOV with limited light collection. Finally, filter design directly depends on the 
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targeted fluorophores and have a critical effect on image contrast. The parameters to choose 

right filters are the Stokes shift of fluorophores with the spectral overlap among the 

excitation and emission lights as well as ambient lighting spectrum. In different applications, 

bandpass and notch filters can be used to remove spectral tails and overlaps.

2.1.3 Imaging sensor—Charge-coupled device (CCD)-based cameras are commonly 

used in fluorescence imaging devices. CCD cameras have high resolution, and the image 

noise can be reduced in the presence of cooling system [14]. Although they suffer from low 

quantum efficiency in the NIR wavelength range and slow read-out time (<30 Hz), most 

real-time imagers are equipped with CCD cameras because of cost efficiency (Table 1). 

Electron multiplied-CCDs (EMCCDs) and intensified-CCDs (ICCDs) can provide improved 

sensitivities with higher gains, while suffering from high background noise [12]. On the 

other hand, scientific complementary metal-oxide-semiconductor cameras deliver fast 

readout speeds, high bit depth, high sensitivity, high quantum efficiency, wide dynamic 

range, and low read-out noise without the addition of multiplicative noise associated with 

EMCCDs [59]. However, the cost is still expensive compared to standard CCD cameras, 

which could be improved in the near future. Currently, Perkin Elmer Solaris is the only one 

adapting this most advanced technology in the imager [59].

2.1.4 Image overlay—The graphical user interface of most handheld imagers, such as 

Fluoptics Fluobeam, Hamamatsu PDE Neo, and Novadaq SPY, provides a single channel 

fluorescence video/image display. Although such simple intraoperative image display would 

be sufficient in the OR, real-time overlay of color images with the fluorescence signals can 

provide significantly improved procedures for surgeons to find the target tissue without 

looking back at the color video [60, 61]. This is also important for spectral multiplexing of 

optical photons when two or more different imaging fluorophores are used at the same time 

to delineate the target tissue and vital tissues, such as vasculature, nerve, and endocrine 

glands [61]. For simultaneous overlaying of color video and fluorescence images, most 

imagers are equipped with beam splitters and a combination of multiple cameras. Currently, 

many efforts have been made to separate visible and NIR fluorescence wavelengths within 

the camera itself using prism coatings and multiple CCD or complementary metal-oxide-

semiconductor (CMOS) sensors, which will be available clinically in the near future. It 

should be noted that in the case of two or more channels are being displayed, a poor color 

map selection for the image overlay may lead to misrepresentation of reality and 

misinterpretation; however, good color map selection can highlight clinically salient regions. 

Image overlay for fluorescence imaging is reviewed in Ref. [60].

2.1.5 Ambient light—IEC standard #60601 for the OR illumination dictates that 

minimum central luminance of the surgical field must be at least 40,000 lux at the typical 

WD [58]. Further, it declares that the color temperature must be between 3000 and 6700 K 

with a color rendering index ≥85. This color pattern is required to avoid the surgical field 

being preferentially “tinged” with one or more visible colors [14]. Most filtered broadband 

and LED white light sources can be used for providing white light to the surgical field. Since 

the illumination sources in the OR may have significant fraction in the NIR range, special 

care is required to avoid noise and background signals polluted by the ambient light. In this 
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regard, LED light sources with confined spectrum in the visible band are mostly used. 

Additionally, due to the recent advancement in developing high-power LEDs, many optical 

imaging devices utilize LED light sources, including Hamamatsu PDE and Quest Medical 

Spectrum (former Artemis). However, some challenges still remain, such as light leaking 

due to the small Stokes shift of fluorophores, temperature control, and difficulty in 

assembling large and dense arrays [57].

2.2 Optical fluorescence imaging: pros and cons

Optical fluorescence imaging provides simple, cost-efficient, and contact-free open-air 

image-guidance during surgical operation, where fluorophores are excited by an appropriate 

light source and the emitted photons are detected by CCD or CMOS cameras. Fluorescence 

imaging is highly compatible with the intraoperative setting, as it enables real-time imaging 

and offers superior sensitivity compared to preoperative scanning or visual inspection and 

palpation during surgical procedures [11].

The NIR window is usually preferred for in vivo imaging because of lower autofluorescence, 

deeper tissue penetration, and reduced light absorption and scattering [11]. Wearable display 

goggles and novel projection strategies have been proposed to obviate standard monitor 

displays that require the surgeon to divert his/her gaze from the operative field [62]. 

However, scattering of excitation light by subcellular organelles and other microscopic tissue 

constituents greatly limits its penetration into deep-seated targets up to 5 mm in depth, 

which degrades spatial resolution [14]. Thus, due to scattering and absorption in both 

excitation and emission path, in addition to finite quantum yield of fluorophores, only one-

millionth to one-billionth of photons can be detected using the current reflectance-based 

imaging systems [63]. This low detection rate also limits the quantification of fluorophore 

concentrations in the tissue. This uncertainty in the scattering, absorption, and quantum yield 

leads to only qualitative information from NIR fluorescence image [63]. Consequently, 

many efforts have been made to compensate the attenuation effect in the NIR imaging and 

improve image contrast and target detection [64–66]. It is indeed feasible to obtain the 

quantitative assessment of fluorophore uptake in tissues with complete modeling of 

attenuation and quantum yield using intraoperative fluorescence microscopy [64]. 

Additionally, in perfusion studies, relative measurements of tissues over time could provide 

quantitative kinetic information without requiring the attenuation models [65, 66]. However, 

the quantitative feature of fluorescence imaging is still far from the final clinical application.

3 Nuclear imaging and navigation

Radiation medical imaging using ionizing particles has revolutionized the surgical 

interventions because gammaray and x-ray penetration into tissue enables physicians to 

observe tumors deep within tissue without surgical intervention, before, during, and after 

operation [67]. Anatomical X-ray and CT, along with functional and behavioral imaging 

using SPECT and PET, are powerful tools in patient screening, tumor staging and restaging 

and therapeutic procedures. While nuclear medicine (e.g. PET and SPECT/gamma-camera) 

and X-ray/CT imaging modalities account for two out of four key modalities (the other two 

are ultrasound and magnetic resonance imaging) in all radiology departments across 
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hospitals and medical centers, they typically fail to detect small-size tumors or tumorous 

lymph nodes [68]. This is mainly due to the limited sensitivity and resolution characteristics 

of PET and SPECT as well as error factors such as the partial volume effect of the current 

nuclear imaging modalities. The primary reason is simply the geometry of these systems – 

the location of their detectors is many centimeters away from the lesion of interest and poor 

sensitivity of these systems that can pick only about 1% of all gamma-rays originating 

within human body. Reviewing literature indicates that whole-body PET with ~4–5 mm 

spatial resolution can reliably detect lymph nodes larger than 0.5 cm, and they have very low 

sensitivity to detect nodes smaller than 5 mm [68]. The inability of these conventional 

noninvasive modalities to detect small objects, has led to the development of intraoperative 

devices that are used in closer distance to the tissue of interest, resulting in larger detector 

solid angle and, thus, higher detection sensitivity and spatial resolution [67–69]. In other 

words, the geometry of detection is in favor of these intraoperative probes compared with the 

standard nuclear medicine modalities.

For intraoperative localization of gamma emitting tracers in real-time, a handheld gamma 

radio-detection probe, first conceived in 1949, is generally used in conjunction with 

radiotracers that are injected directly into or next to suspected lesions prior to surgery [69]. 

Gamma and beta (positron) probes are powerful tools in sentinel lymph node (SLN) 

localization and biopsy and have become the standard of care in which surgeons use audio, 

numeric, and/or visual guidance (using flashing arrows), instead of using image navigation 

[70]. Recently, the use of intraoperative imaging (gamma and/or beta) cameras that can 

provide an image of radiotracer distribution in the region of interest (ROI) has been on the 

rise. Conventional gamma cameras can provide size and shape information about the tumor, 

SLN, or other targeted tissues [69]. Throughout the years of development, however, a clear 

line to differentiate intraoperative probes from conventional cameras has somewhat 

diminished especially for multimodal and multifunctional devices (see Section 3.3). In the 

following sections, we provide an overview of gamma- and beta-based intraoperative 

devices, with a special focus on gamma-ray imaging cameras.

3.1 Intraoperative gamma imaging

Intraoperative gamma probes consist of both imaging and nonimaging probes that are based 

on the detection of gamma-rays emitted from radiotracers distributed inside the body. Most 

gamma probes provide either audio or visual guidance (e.g. arrow) to navigate surgeons to 

the tumor site; however, it can be more beneficial if gamma probes can provide images of 

the radiotracer distribution within its FOV, while using the same detection concept. Figure 5 

shows gamma imaging commonly used in hand-held or portable devices. In the 1990s, the 

intraoperative gamma camera became a complementary detection method for SLN detection 

in breast cancer surgery [72]. In this context, these devices consist of a small handheld 

camera for use during surgery, while larger FOV devices are attached to an articulating arm 

for easy and stable positioning (Figures 5 and 6). These systems are nonetheless fully 

portable with small footprint for easy accommodation in a typical OR.

Intraoperative gamma cameras have been introduced to SLN detection for various cancer 

types, including breast cancer [77–79], head and neck [80], laryngeal [81], oral [82], 
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gastrointestinal [83], paraaortic SLN [7], and testicular cancer [84]. Gamma cameras also 

allow SLN detection using iodine seed localization with laparoscopy surgery [85]. Other 

than SLN detection, portable gamma cameras have been reportedly used in occult lesion 

localization [86], tumor-specific targeting [87], and parathyroidectomy [88, 89]. Although 

the use of nonimaging gamma probes in the SLN surgery is a standard tool, providing 

images by using handheld gamma cameras has additional advantages for better visualizing 

the primary tumor, SLN, and auxiliary nodes. Vidal-Sicart et al. demonstrated the added 

value of intraoperative gamma imaging in SLN localization among 20 patients selected with 

respect to preoperative imaging data, whose SLN were found to be difficult to detect [90]. In 

patients with breast cancer, malignant melanoma, and gynecologic malignancy, the surgeon 

could find all SLNs in 15 out of 20 patients with utilization of a conventional gamma probe. 

Further, the portable gamma camera enabled detection of SLNs in 19 of 20 patients, leading 

to successful resection. In one patient, a harvested SLN was metastatic, which could be 

missed without using the camera [90].

In breast cancer, the combination of gamma probe and blue dye is the standard procedure for 

SLN biopsy. A meta-analysis of 70 published research reports on breast cancer SLN biopsy 

shows an overall sensitivity of 90% and false-negative rate of 8.4% [91]. Where the 

preoperative lymphoscintigraphy revealed 70–85% detection rate, the use of intraoperative 

gamma imaging probe (camera) found 98% of SLNs with 7% of false-negative detection 

(Figure 7) [94]. When using the gamma probe to find SLN near the injection site, high 

activity may block visibility of nodes with small activity compared with the primary tumor, 

the so-called the “shine-through” effect [92]. However, due to the superior resolution and 

overall performance, the use of gamma probe or camera facilitated the detection of low-

activity nodes near the high-activity region. The spatial intrinsic resolution of some of the 

most used imaging gamma probes in the OR is presented in Table 2, while the system spatial 

resolution is variable with the object distance from the collimator.

The length of imaging time is a function of injected activity, time between injection and 

image acquisition, tissue thickness between nodes and surface of detectors, and sensitivity of 

the imaging gamma camera/probe. Reported acquisition times in various studies ranged 

from 10 to 180 s [82]. Although the portable gamma camera provides additional values for 

SLN detection, procedures take more time than using a gamma probe and optionally blue 

dyes because the count statistics increase with image pixel size (needed for high resolution 

image) [103]. Here, we provide brief descriptions on the most important components of 

gamma probes, namely detector and collimator, and potential add-ons such as optical image 

overlay.

3.1.1 Gamma detectors—There are two main schemes for gamma-ray detection: (1) 

Direct conversion, where the semiconductor detector directly converts the incident radiation 

to electric signal, and (b) indirect conversion, which involves with using scintillation 

crystal(s) to convert the incident gamma-ray to optical photons and then a photodetector or 

array of photodetectors to convert the optical photons to electric signal [76]. Each detector 

scheme has its own pros and cons, and both types have been widely used in imaging and 

nonimaging intraoperative gamma probes. Typically, the end application requirements drive 

the choice of direct or indirect conversion detector. For example, if high energy resolution or 
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small overall detector size is demanded, direct conversion detectors such as CdTe or 

cadmium zinc telluride semiconductors are more suitable [104]. On the other hand, if the 

application requires low cost and large imaging area, scintillator-based detectors have the 

upper hand. Prior to emergence of novel photodetectors such as solid-state or silicon 

photomultipliers (SiPMs), conventional photomultipliers (PMTs) were the obvious choice 

compared with bulky CCD cameras that required cooling. PMTs have better noise 

performance compared to SiPMs, resulting in better overall energy resolution, especially at 

low gamma-ray energies, but they are bulky and require high bias voltage, typically ~1000 

V. SiPMs require bias voltages below 70 V and are very compact and lightweight, which has 

enabled wireless intraoperative probes [105]. SiPMs are, however, more sensitive to 

temperature and have larger dark current or dark count leading to larger noise level [106]. 

With the growth of the SiPM market and presence of competitive vendors in the gamma 

imaging devices, the quality of SiPM technology is improving very fast, which indicates that 

these devices will likely replace PMTs in future gamma cameras.

3.1.2 Collimators—In imaging applications with single gamma-ray photons, there is a 

strong need for a collimator in front of the detector to limit the camera’s FOV since gamma-

rays can travel far from the emitting location (Figure 5). It is apparent that the collimators 

should be made up of high-Z and -density materials with a large cross-section to stop 

gamma-rays. Lead (Pb) and tungsten (W) are the two main materials used in collimators. 

Furthermore, the two most commonly used collimator types in commercial and prototype 

hand-held cameras are parallel-hole and pinhole collimators. The major difference between 

these two is their FOV and magnification factor, which affect all other camera properties as 

well. Similar to the infamous optical pinhole camera, the magnification changes by object 

distance and that itself changes system resolution and sensitivity in the pinhole collimator. 

This variability, in practice, gives surgeons the ability to adjust the FOV by increasing 

distance from the object. The downfall of adjustable magnification is that if the depth of the 

ROI is unknown, the actual size of the object can be misleading. However, gamma camera 

resolution worsens with increased distance between object and detector with both collimator 

types. For example, the resolution can be lower than 2 mm for the intraoperative applications 

when there is no distance between the camera and the object, but this value can rapidly 

degrade to greater than 20 mm with a 10 cm object distance [73, 92].

3.1.3 Optical image overlay—Providing optical images of the surveyed area is 

obviously an advantageous addition to the radiation image, resulting in improved 

localization of the tissue of interest. Here, we only provide a brief overview of few 

approaches. One approach is to use laser pointers to shine and mark the surveyed area for 

the surgeon, which has been exercised and reported by investigators such as Vermeeren et al. 

[80]. A prototype gamma-optic system was developed by Haneishi et al. [107] using dual 

optical cameras and image processing technique to fuse radio and optical images in the OR. 

A similar concept is used in [93] for a smaller FOV. Errors in the optical image 

coregistration were evaluated with a 5-mm accuracy for each patient. In another effort, Lees 

et al. [71] proposed an integrated radio-optical system where a mirror is placed right before 

the gamma camera’s pinhole routing optical photons to a CCD camera. This geometry has 
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the advantage of intrinsic co-registration of nuclear-optic FOV geometry and therefore does 

not require additional image processing.

3.1.4 Challenges in gamma imaging—There are two main shortcomings with 

gamma-ray imaging probes: First, the mandatory use of a collimator placed in front of the 

detector substantially limits the sensitivity. This can be compensated, to some extent, by 

increasing the administered patient dose, which may not be the best solution as it causes 

excessive radiation exposure for both patients and medical staff. Secondly, the use of a 

collimator and shielding on the side and back makes the imaging gamma probe heavy and 

harder to adapt for handheld use. Therefore, the current commercial gamma imaging 

cameras are mounted on articulating arms for improved maneuverability to hover over 

patient body during surgery.

3.2 Intraoperative beta imaging

Even with the use of heavy collimators, the performance of gamma-ray probes may be 

severely hampered when surveying tissues with high gamma-ray background contamination. 

This contamination can be especially problematic when surveying areas near organs with 

large radiotracer uptake such as brain, heart, and bladder. Therefore, the use of gamma 

probes is mainly to identify SLNs in which radiotracer is injected to the tumor site that 

limits the tracer spread and the blind locations to the near the injection area. Due to positron-

emitting nature of PET radiotracers, many groups sought methods to use the inherent low-

penetrating feature of positrons to limit the probe’s FOV depth to only a few mm of tissue 

thickness. This short range of positrons can be used for tumor localization of within 1–2 mm 

of the probe head, which can be useful for detecting tumor margins [108]. Positron detectors 

are thin and mainly made up of low-Z materials such as plastic scintillators to reduce the 

chance of background interaction [109]. These probes have the advantage of high particle 

detection efficiency and can detect very small concentrations of radiotracer [110, 111]. This, 

along with lower sensitivity to high gamma energies that can be handy in high background 

gamma activity region, makes them ideal in detecting low-activity nodes in the presence of 

high background activity. Monge et al. also proved that freehand positron surface imaging 

equipped with a navigation tool and a simple beta probe could generate 3D iso-surface 

images (mesh) and additional information of residual tumors during surgery [112]. Although 

beta imaging has superior sensitivity and resolution compared to gamma imaging, the 

fundamental limit of this modality remains to the limited penetration of beta radiation up to 

a few mm, of which attenuation also limits the ability of quantitative assessments [110]. 

Thus, the combination of beta imaging with NIR fluorescence is not ideal. This also should 

be noted that 18F-FDG based radio-guided surgeries show 2- to 3-fold higher dose 

absorption to intra- and pre-operative personnel compared to the use of 99mTc [113]. As 

dictated in Table 3, the cumulative dose of surgeon for an operation is calculated 1–40 µSv 

for 99mTc radioisotope [114, 115] and 16–160 µSv for 18F radioisotope [113, 116]. The 

elevated dose received by surgeons is correlated to the diverse distribution of 18F-FDG in 

patient’s body compared to locally injected 99mTc-labeled tracers as well as the higher 

gamma energy produced from positron annihilation (511 keV) for 99mTc (140 keV). The 

annual occupational exposure limit for adults is, on average, 20 mSv per year in a 5-year 

period (100 mSv in 5 years) [117].
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3.3 Radio-guided navigation systems

The depth of object is unknown with a single gamma image projection. With acquiring 

multiple projections, however, the object depth can be estimated with a high accuracy. One 

specific example is the freehand SPECT system, a commercially available device that can 

generate 3D images with depth information in the OR, which has been used for 

intraoperative SLN biopsy [118]. The freehand SPECT uses a conventional gamma probe or 

camera with an additional accurate positioning system (Figure 8). The navigation system 

generates accurate position and orientation information for the gamma probe in respect to 

the patient body, using infrared markers on the gamma probe and on the patient and infrared 

tracker (cameras) on the stationary system [119]. Operators (surgeons) should determine a 

volume of interest (VOI) at the beginning of each scan and then sweep the probe in the ROI. 

Scanning the VOI should continue to ensure that enough data for reconstructing image are 

gathered from gamma probe and the final image will have acceptable quality [118]. The 

customized image reconstruction software based on maximum likelihood expectation 

maximization method provides near real-time 3D images of SLNs by accumulating data 

entries from the gamma probe while scanning the VOI. Although it is not the standard of 

care in SLN biopsy, the freehand SPECT has resulted in better surgical outcomes in many 

types of cancer operations instead of using only acoustic gamma probes [8, 120]. However, 

it requires the operator’s skill to generate a high-quality image [8]. The freehand SPECT is 

currently the only way to provide intraoperative 3D nuclear imaging and allows integration 

of both gamma probe and camera to the navigation system.

4 Perspectives of nuclear-NIR intraoperative imaging

In this review, we provide a brief overview of intraoperative NIR fluorescence imaging 

devices and intraoperative radiation probes/cameras. Gamma rays can penetrate much 

deeper in tissues with low chance of scattering compared with optical photons, whose 

penetration is limited and have a high change of scattering. On the other hand, with NIR 

fluorescence imaging, one can achieve very high spatial and temporal resolution that cannot 

be achieved with gamma-ray imaging. The combination of these two modalities should lead 

to improved tumor removal and metastatic SLN identification. In many clinical trials, the 

combination of blue dye and radiotracers has been used for dual mapping of SLN, resulting 

in lower false-negative rates compared with those trials that used only single mapping 

technique (i.e. gamma-ray or blue dye) [17, 70]. Lower false-negative rates bode well with 

the American Society of Clinical Oncology guidelines that proposed surgical practices 

should aim for high identification rate of 85% and low false-negative rates of 5% [70]. Many 

clinical reports prove that the hybrid use of both modalities has added clinical values to SLN 

biopsy [17] in different cancers of breast [18], prostate [16, 121], vulvar [19, 20], penile 

[122], and melanomas [17].

To develop gamma-NIR dual-modal imaging devices, KleinJan et al. combined a 

fluorescence camera with either a gamma probe (Figure 9A) or a gamma camera (Figure 

9B). This hybrid surgical guidance concept was demonstrated using a dual tracer of ICG and 

99mTc-nanocolloid in cT1-cT3N0 penile cancer patients [123]. The combination of NIR-

gamma probe provided real-time acoustic feedback during SLN mapping, and additional 
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image guidance from the NIR-gamma camera was highly valuable for visualization of SLNs 

in patients (10–30 cm WD). Additionally, van den Berg et al. integrated a nonimaging ICG 

probe to a conventional nonimaging gamma probe using optical fibers (Figure 9C,D) and 

evaluated the proposed concept in 41 cancer patients in the head and neck or urogenital area 

[124]. Recently, Kang et al. explored dual-modal imaging of gamma and NIR with white 

light in a laparoscopy setting [125]. The miniaturized pinhole collimator was equipped with 

NIR illumination and imaging fibers to transfer light to the proximal part, where a cooled 

CCD camera captures NIR and gamma images simultaneously. Augmented reality utilizing 

preoperative SPECT/CT images and intraoperative freehand SPECT as discussed in Section 

3.3 can also provide quantitative detection of SLNs in combination with NIR fluorescence 

imaging [126].

Along with the instrumentation, many efforts have been made to develop dual-modal 

imaging agents for visualizing metastatic tumors and SLNs. 99mTc-nanocolloid is the basic 

radiotracer for radio-guided surgery, which is mostly accompanied by blue dyes or ICG for 

better visual feedback of finding drainage SLNs [17, 21, 22]. Brouwer et al. evaluated the 

use of a nanocolloid labeled with ICG and 99mTc to find SLN in head and neck surgery [17]. 

In the surgical procedure, an intraoperative gamma camera assisted the surgeons to find 

incision locations and NIR imaging visualized SLNs through the operation. Using both 

modalities, all preoperatively detected nodes were found during surgery. Additionally, the 

use of dual-labeled nanocolloid instead of traditional 99mTc-nanocolloid alone increased 

SLN detection rates to 85.7% and reduced the false-negative rates to 7% [21]. Since ICG is, 

however, nonspecific to tumoral uptake, tumor-specific dual gamma-NIR tracers have 

recently been designed and evaluated. One of the key design considerations is the avoidance 

of nonspecific uptake in the major organs and background tissue, thus increasing signal-to-

background ratio [10, 11]. Vera and colleagues conjugated NIR fluorescent Cy7 to 99mTc-

labeled tilmanocept and tested the hybrid tracer for SLN mapping [127] and tumor targeting 

in the xenograft mice of 4T1 mouse mammary and melanoma tumors [128]. Additional 

trials have also been performed to introduce gamma-NIR tracers on various antibodies [129], 

peptides [130], lipopolysaccharides [131], and short RNA sequences [132] for targeting 

tumors and SLNs. However, the main challenge in developing hybrid imaging tracers is on 

the specific tumor targeting with minimum nonspecific (i.e. off-target binding) uptake [22, 

133]. Unfortunately, only a small number of radio-optical tracers have been used in the 

clinic, and more efforts need to be made to translate preclinical multimodal tracers to the 

clinic (reviewed in [25]). This is the key for future clinical translation of this hybrid imaging 

for tumor targeting and image-guided resection.

The use of dual-modal radio-optical tracers in conjunction with real-time coregistered 

images from NIR and gamma camera will be the future step in intraoperative image-guided 

interventions. Therefore, we believe that intraoperative imaging devices need to be evolved 

to combine (1) NIR fluorescence imaging for high spatial and temporal resolution, (2) 

gamma-ray imaging for high sensitivity with depth information, and (3) PET-like geometry 

for quantitative imaging.
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Figure 1. Electromagnetic radiation spectrum from gamma rays to radio waves.
The fluorescence wavelength includes UV (200–400 nm), visible radiation (400–650 nm), 

and NIR (650–900 nm). The NIR window is considered as the therapeutic window due to 

the low tissue absorption, low tissue scattering, and low autofluorescence. Reproduced with 

permission from [2].
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Figure 2. Real-time image-guided surgery using a multichannel NIR imaging system combined 
with currently available NIR fluorophores in clinical use.
MB is used for the 700 nm emitting NIR channel, and ICG is for the 800 nm NIR channel. 

Blue dotted squares indicate optional components. Reproduced with permission from [11].
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Figure 3. Commercially available open-air NIR fluorescence imaging systems for image-guided 
surgery.
Shown are representative images of SPY Elite (Novadaq), PDE (Hamamatsu), SPY PHI 

(Novadaq), Fluobeam (Fluoptics), Spectrum (Quest Medical Imaging), VisionSense 

(Iridium), and Vitom II ICG (Karl Storz). Reproduced with permission from [13, 15].
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Figure 4. Jablonski diagram showing fluorescence and competing pathways for molecular 
relaxation from an excited state.
Reproduced with permission from [10].
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Figure 5. Intraoperative gamma imaging using a pinhole collimator.
A mirror at the entrance of pin-hole collimator is used to reflect optical photons to the CCD 

camera and produce coregistered images of optical and gamma photons. Reproduced with 

permission from [71].
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Figure 6. Portable and handheld commercial gamma cameras for intraoperative use.
Reproduced with permission from [73–76].
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Figure 7. Optical images help surgeons to better localize SLNs in patients.
The laser pointer can work as a reference to localize the center of FOV in the image and 

patient (top). Reproduced with permission from [92]. Optical cameras mounted beside 

commercial systems can be used to overlay both images on display using image processing 

methods (bottom). Reproduced with permission from [34, 93].
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Figure 8. Surgical setup of a freehand SPECT system by Declipse (Surgieye, Munich, Germany).
The freehand 3D SPECT is composed of two calibrated infrared cameras (1) to determine 

accurate position of gamma probe in respect to the patient body using two tracking objects 

on patient (6) and gamma probe (5); and an optical camera (2) to record procedure flow and 

fuse the gamma distribution image to optical view of operation area in the display screen (3). 

A conventional gamma probe (4) generates gamma distribution data for 3D image creation 

before and after resection, as well as produces acoustic and visual feedback of gamma 

distribution during surgical procedures. Reprinted with permission from [119].
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Figure 9. Dual modal imaging devices composed of a gamma probe/camera and a fluorescence 
camera to image fluorescence and gamma tracers.
(A) Aligned type combination of gamma probe and fluorescence camera and (B) flexible 

type combination of gamma and fluorescence cameras to compensate the misalignment at 

distances beyond the focal plane. Reproduced with permission from [123]. (C) A prototype 

gamma probe in conjunction with two fiber optics to excite and collect emission photons and 

(D) conceptual drawing of the opto-nuclear probe shown in (C). Reproduced with 

permission from [124].
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