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Abstract

Epidemiologic analyses of the health effects of meteorological exposures typically rely on 

observations from the nearest weather station to assess exposure for geographically diverse 

populations. Gridded climate datasets (GCD) provide spatially resolved weather data that may 

offer improved exposure estimates, but have not been systematically validated for use in 

epidemiologic evaluations. As a validation, we linearly regressed daily weather estimates from two 

GCDs, PRISM and Daymet, to observations from a sample of weather stations across the 

conterminous United States and compared spatially resolved, population-weighted county average 

temperatures and heat indices from PRISM to single-pixel PRISM values at the weather stations to 

identify differences. We found that both Daymet and PRISM accurately estimate ambient 

temperature and mean heat index at sampled weather stations, but PRISM outperforms Daymet for 

assessments of humidity and maximum daily heat index. Moreover, spatially-resolved exposure 

estimates differ from point-based assessments, but with substantial intercounty heterogeneity. We 

conclude that GCDs offer a potentially useful approach to exposure assessment of meteorological 

variables that may, in some locations, reduce exposure measurement error, as well as permit 

assessment of populations distributed far from weather stations.
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1. INTRODUCTION

There is considerable interest in quantifying the health effects of meteorological conditions, 

such as temperature extremes, heat index, and humidity. For example, numerous studies 

have assessed relationships between ambient temperature and mortality [1–5] or morbidity 

[6–9]. Others have considered the health effects of heat index (a measure of apparent 

temperature that incorporates both temperature and relative humidity [10]) and mortality 

[11, 12], or the association between absolute humidity and influenza [13, 14].

Meteorological exposure assessments typically use point-based weather observatories 

located primarily at airports, such as “first-order” stations (i.e., those directly maintained by 

the National Weather Service), as the de facto “gold standard” measurement for 

meteorological exposures. Although these primary data sources undergo quality control [15], 

their usage for exposure estimates applied to populations across entire metropolitan areas 

introduces the possibility of exposure measurement error [16]. This concern is particularly 

germane to areas where airports are located far from the population-dense parts of a city. For 

example, the weather observation at an exurban airport may be unable to capture the “urban 

heat-island effect,” in which urban centers are substantially warmer than surrounding areas 

[17]. Moreover, there are large parts of the country with few first-order weather 

observatories, which may partly explain why epidemiologic assessments of weather-related 

exposures are typically focused on populations in larger metropolitan areas.

Lee et al. recognized these limitations of using station-based data for exposure assessment 

[16], and both they and others [18] have used spatially resolved temperature data derived 

from satellite imagery in their analyses as alternative exposure metrics that provide 

continuous data across space. Although these studies have demonstrated the potential utility 

of spatially resolved temperature estimates for exposure assessment, the remotely sensed 

datasets they used lack spatially resolved information on humidity, are limited to more 

recent years by the availability of satellite data, and do not appear to be readily available to 

others in their derived forms.

Publicly available gridded climate datasets (GCDs; sometimes referred to as “spatial climate 

data” or “gridded meteorological data”) address these shortcomings by estimating high-

resolution, spatially resolved weather data for a number of variables across entire regions, 

providing an opportunity for more spatially explicit analyses of temperature, humidity, and 

other meteorological conditions that can cover larger populations. Although such datasets 

have been used in many geoscientific applications [19–21], to date, they have not been used 

in epidemiologic analyses. This may be due partly to the lack of validation for specific 

health-relevant variables that can be derived from GCD data. In particular, although the 

dataset authors typically describe validation assessments for the variables directly reported 

[22–24], there appears to be no systematic validation of user-derived values of daily absolute 

humidity, relative humidity, and heat index, all of which are relevant to epidemiologic 

studies.

Accordingly, the primary aim of this paper is to determine whether, and to what extent, 

GCDs accurately estimate not only ambient temperature, but also relative humidity, absolute 
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humidity, and heat index compared to in situ weather observations. To do this, we compared 

daily data from two publicly available GCDs, the Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) and Daymet version 3.0, to coincident observations 

from two networks of weather observatories in the conterminous United States (CONUS): 

the commonly used, longstanding network of first-order weather stations in the Integrated 

Surface Database Lite (ISD-Lite), and the newer, more highly quality-controlled US Climate 

Reference Network (USCRN). The secondary aim is to evaluate whether using these 

spatially resolved estimates provides substantively different estimates of population 

exposures to ambient temperature or heat index versus traditional single-point observations, 

and whether such differences could affect epidemiologic assessments. We achieved this by 

comparing population-weighted county mean values from PRISM to singular PRISM grid 

cells at the locations of first-order weather stations. Finally, in two populous US counties, 

we applied a preliminary proof-of-concept analysis to see whether estimates of the impact of 

temperature on health could potentially differ when using spatially resolved temperature 

estimates as the exposure (versus the more commonly used weather station observations). 

Resolving the aforementioned questions is an important first step in encouraging more 

spatially explicit meteorological assessments, as well as potentially reducing exposure 

measurement error in future epidemiologic analyses.

2. MATERIALS AND METHODS

2.1 Datasets

We obtained observed data from two networks of weather stations (ISD-Lite and USCRN) 

for comparison to two GCDs (PRISM and Daymet) covering the conterminous US, as 

described below (Table 1). All of these datasets are publicly available as described in the 

accompanying references.

2.1.1 PRISM—The PRISM dataset [23–25] is a GCD that provides daily estimates of 

minimum, maximum, and mean temperature (Tmin, Tmax, and Tmean); mean dew-point 

temperature (TDmean); minimum and maximum vapor-pressure deficit (VPDmin and 

VPDmax); and precipitation for CONUS between 1 January 1981 and approximately six 

months prior to present. Continuous surfaces were developed by spatially interpolating 

meteorological observations from several US weather station networks using a regression 

model that applies spatial weighting to account for climatically important landscape 

features, as described elsewhere [23, 24]. Daily data are publicly available at no cost at a 

horizontal spatial resolution of four kilometers. As described in Section 2.3 and in the 

Supplementary Material, the variables provided by PRISM allow for user- derived 

calculations of minimum, maximum, and mean relative humidity (RHmin, RHmax, and 

RHmean); minimum, maximum, and mean heat index (HImin, HImax, and HImean); and mean 

absolute humidity (AHmean). PRISM defines a “day” as the 24 hours prior to noon UTC; for 

example, the PRISM “day” for 2 January refers to noon UTC on 1 January through noon 

UTC on 2 January.

2.1.2 Daymet—The Daymet version 3 dataset [22, 26] is another GCD that provides 

daily estimates for Tmin and Tmax, mean vapor pressure (VPmean), precipitation, snow-water 
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equivalent, incident shortwave radiation, and daylight duration for all of North America 

since 1 January 1980 (updated annually) at a horizontal spatial resolution of one kilometer. 

The dataset was developed by interpolating daily meteorological observations in the Global 

Historical Climatology Network Daily (GHCN-Daily) dataset [15] with a truncated 

Gaussian filter and digital elevation model, as described elsewhere [22]. Compared to 

PRISM, Daymet uses a different network of weather observations and accounts for fewer 

topographic features. In addition, Daymet assumes that the dew-point temperature (Tdew) 
does not vary throughout the day and is equal to the ambient minimum temperature [22]. 

Consequently, only VPmean is provided by Daymet and hence only RHmean, AHmean, and 

HImean can be derived directly (see Section 2.3). However, HImax and RHmin can be 

estimated by using the assumption that Tdew at Tmax is equal to Tmin, as described in more 

detail in Section S1 of the Supplementary Material. Daymet defines a “day” as the 24 hours 

preceding midnight UTC.

2.1.3 ISD-Lite (First-Order Stations)—The Integrated Surface Database Lite (ISD-

Lite) is a global database of hourly weather observations from numerous sources [27]. ISD-

Lite provides hourly observations of ambient temperature, dew-point temperature, 

precipitation, wind, cloud cover, and atmospheric pressure, measured within ten minutes 

prior to the hour reported. Of interest here are the first-order weather stations in CONUS, 

which were determined using station identifiers from the Historical Observing Metadata 

Repository [28]. Observations from this network are used as the primary comparison for the 

GCD validations in this study, since first-order weather stations are the de facto “official” 

observations of US weather.

2.1.4 USCRN—The US Climate Reference Network (USCRN) is a more recent weather 

observation network developed to establish long-term, standardized, and highly quality-

controlled meteorological observations for the purpose of assessing climatic trends [29]. 

Measurements of temperature and precipitation began in the first observatories as early as 

2000, but it was not until 2012 that all stations were collecting the full range of 

measurements, including soil moisture, wind, and relative humidity [30]. The stations are 

strategically located across 137 sites (114 in CONUS, 21 in Alaska, and two in Hawaii) that 

are unlikely to be affected by land-use change over the next several decades, in order to 

minimize influence from anthropogenic sources [29]. Every station has three separate 

sensors, which allows for real-time detection of instrumentation failure and highly robust 

measurements. We included this network of observations as an additional analysis in order 

to: (1) assess the performance of PRISM and Daymet in areas that are less populated and 

less developed in order to provide insights into the utility of GCDs for exposure assessment 

in rural areas; and (2) leverage the triple quality- controlled measurement methodology to 

serve as an additional validity check on observations.

2.2 Data Preparation

2.2.1 Selecting Observations—We subset data from the three principle sources 

(PRISM, Daymet, and first-order stations in ISD-Lite) to CONUS for the period from 1 

January 1981 to 31 December 2016, which constitutes the longest period of full-year records 

and geographic extents shared by all three datasets at the time of analysis. First-order 
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weather stations in CONUS that had at least 18 hours of observations per day for at least 

90% of days during the study period were eligible for inclusion in the analysis; newer 

stations that began taking measurements later than 1981 or older stations that were 

decommissioned before 2016 were excluded. From the total 170 stations meeting these 

criteria, we further subset to get a climatically representative sample based on the Köppen-

Geiger climate classification distribution of CONUS ([31]; data provided by [32, 33]), using 

a stratified random sampling procedure with the doBy package in R [34]. We did this to 

account for potential climate-specific performance differences in the PRISM and Daymet 

algorithms. We included only station-days with complete data (24 observations for T and 

Tdew) from this sample; we dropped approximately 3.5% of observations from the final 

sample due to incomplete data. The final, climatically representative sample size was 116 

first-order weather stations (Figure 1), yielding 1,471,135 station-days of observations for 

validation. The full list of first-order weather stations used in the analysis can be found in 

Table S1 in the Supplementary Material.

We selected observations from the USCRN stations following a similar process to ISD-Lite, 

deviating only in temporal extent: we used observations between 1 January 2012 to 31 

December 2016, in order to reflect the complete record of relative humidity measurements in 

the USCRN data [30] and to coincide with the latest date of full-year data availability for the 

GCDs. Since USCRN provides sub-hourly measures, we used the mean hourly values for 

this analysis. We excluded station-days missing any hourly observations. The final, 

climatically representative sample was of 89 stations in the USCRN, constituting 155,654 

station-days of observations for validation (Figure 1). The full list of USCRN stations used 

in the analysis can be found in Table S2 in the Supplementary Material.

2.2.2 Aligning Observations by “Day”—We collapsed the hourly observations into 

two separate “days” of daily values for comparisons with PRISM and Daymet, which define 

“days” based on different hours. We ascribed the noon and midnight UTC observations to 

the 24 hours preceding them, rather than having them mark the beginning of the next day for 

PRISM and Daymet, respectively, since hourly observations at first-order stations are taken 

during the ten minutes leading up to the hour reported. Therefore, the PRISM value for day i 
was compared to hourly observations from 13:00 UTC on day i-1 to 12:00 UTC on day i. 
The Daymet “day” was calculated using observations reported at hours from 01:00 UTC on 

day i to 00:00 UTC on day i+1.

2.2.3 Calculating Population-Weighted County Average Values—As a 

preliminary assessment of the capacity for GCDs to reduce exposure measurement error, 

single-pixel PRISM values at each of the first-order weather stations in the sample were 

compared to spatially resolved, population-weighted mean values for the concomitant 

county. The purpose of aggregating the spatial data in this way is to reflect the need for a 

single exposure metric to represent the population unit of analysis (here, a singular county-

level mean estimate). We calculated the spatially resolved county mean by first extracting 

the PRISM pixels at the population centroids for each census tract (based on the 2000 

Census [35]) within a county for Tmax and HImax. We then calculated a weighted average of 

these variables based on the proportion of the county population residing in that tract. For 
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missing data on Tmax or HImax, the weighting was based on the proportion of the county 

population with non-missing data; additionally, county-days with less than 80% of census 

tracts reporting non-missing weather estimates were excluded (56 out of 1,525,284 county-

days [0.004%] were dropped due to missing HImax values; we assumed a negligible effect of 

missing data on the weighting procedure).

2.3 Calculating Health-Relevant Variables

Health-relevant meteorological variables of interest to this validation study are ambient 

temperature (T), absolute humidity (AH), relative humidity (RH), and heat index (HI). See 

Davis et al. for an overview of humidity-dependent metrics in epidemiologic contexts [36]. 

While all the datasets in our analysis report T, the remaining variables had to be derived 

(with the exception of RH, which is reported directly by USCRN). We calculated daily 

minimum, maximum, and mean values for each of these variables using hourly values for 

respective PRISM and Daymet “days,” as described previously. For heat index, we used the 

weathermetrics R package [10], which follows the calculations used by the National Weather 

Service. A summary table with equations used to calculate derived variables for each dataset 

is found in Table S3 of the Supplementary Material, and additional background information 

on the derivations of these meteorological variables can be found in Sections S1 and S2.

2.4 Statistical Analyses

In a first analysis, we linearly regressed daily minimum, maximum, and mean 

meteorological observations from the ISD-Lite and USCRN observations against the 

coincident, single-pixel PRISM and Daymet grid cell estimates. The goal of this analysis is 

to assess the direct, linear concordance between PRISM or Daymet estimates and 

meteorological observations at the same point in space. For each comparison, we calculated 

goodness of fit (r2), slope and intercept of the lines of best fit, and mean absolute errors 

(MAE). GCDs with higher r2 values, lower MAEs, and lines of best fit with slopes (m) 

closer to one and y-intercepts closer to zero were considered better estimates of the observed 

data. Given the interest in exposure assessment in the context of heat-related health effects, 

we fit additional models to a subset of days in which the maximum observed temperature 

was greater than or equal to 70°F (21.1°C; hereafter “warm days”). We performed regression 

analyses separately for the USCRN and ISD-Lite observation networks.

In a second set of analyses, we compared PRISM estimates of county-level population-

weighted meteorological variables to PRISM estimates from the singular pixel value at the 

location of the relevant first-order weather station. The goal of this analysis is to assess the 

difference between population-weighted and point estimates of county-level exposures to 

meteorological variables. If there is a material, statistically significant difference between 

meteorological variables reported at the location of the weather station versus meteorology 

experienced by the population across the county, then this may be indicative of potential 

exposure measurement error when using data from the weather station as the exposure 

metric. We hypothesized that counties with more spatially heterogeneous weather would 

benefit more greatly from the use of spatially resolved meteorological data. Specifically, we 

conducted two-tailed Welch’s t-tests for differences of means between the population-

weighted county mean PRISM value and the singular PRISM pixel value at the location of 
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the coincident first-order weather station. Comparison groups in t-tests had nearly identical 

sample sizes and generally had differences in variance of less than 5%, with the exception of 

a few individual stations. Although the distributions were often skewed, the very large 

sample sizes in our analyses allowed for robustness in t-test estimates [37]. We used a p-

value of 0.05 as the threshold for statistical significance.

Finally, to illustrate how the use of temperature observations from first-order weather 

stations versus spatially explicit temperature metrics could potentially result in different 

estimates of the impact of temperature on health, we modeled the association between daily 

Tmean and mortality in two counties: Los Angeles County, California (including the city of 

Los Angeles) and Marion County, Indiana (including the city of Indianapolis). We 

hypothesized that using spatially resolved estimates would result in differences in exposure-

response functions (ERFs) compared to the weather station data in some places more than 

others, driven primarily by the spatial heterogeneity of county-level temperatures. We 

selected Los Angeles and Marion Counties to demonstrate this dichotomy, since the former 

shows strikingly large differences in temperatures across the county compared to the 

weather station, while the latter is more spatially homogeneous. To calculate the ERFs, we 

used distributed lag non-linear models [38] with an overdispersed Poisson distribution to 

estimate the 21-day cumulative association between daily Tmean and daily counts of all-ages 

mortality (excluding external causes) obtained from the National Center for Health Statistics 

using: (1) daily values of Tmean taken at first-order weather stations within each county; and 

(2) daily county-level population-weighted estimates of Tmean constructed from PRISM, 

with one spatially explicit mean value per county per day. We controlled each model for 

seasonal and long-term trends (natural cubic spline with eight degrees of freedom per year), 

day of week, and federal holidays, and used the same modeling choices with respect to the 

exposure-response form and lag-response form as in [39].

We used R software [40] for all of the statistical analyses and ArcGIS® software by Esri for 

geophysical visualization and mapping.

3. RESULTS

3.1 GCD Validation

Univariate regression between GCD and first-order ISD-Lite data showed very strong 

agreement (all r2 > 0.97 and 0.97 < m ≤ 1.00) between the modeled and observed values of 

Tmax, Tmin, and Tmean for all days for both PRISM and Daymet (Table 2). When restricted to 

warm days (observed Tmax ≥ 70˚F), both PRISM and Daymet provide estimates that 

strongly agree with observed conditions for all metrics of ambient temperature (all r2 > 0.94 

and 0.96 ≤ m < 1.00), with the exception of Tmax for Daymet, which had an r2 of 0.90. Mean 

absolute errors were smaller for PRISM than Daymet: MAEs for ambient temperatures in 

PRISM were all < 1.6˚F, while for Daymet, they went as high as 2.71˚F (Tmin on all days).

For relative humidity, PRISM estimates were substantially closer to observed values than 

those estimated by Daymet. For all days, RHmin, RHmax, and RHmean estimates from PRISM 

all had values of r2 > 0.91, slopes of 0.95 < m ≤ 1.02, and MAE < 5 percentage points; for 

warm days, modeled values showed even stronger agreement with observations (r2 > 0.95, 
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0.92 < m ≤ 1.02). PRISM estimates had stronger agreement with minimum and maximum 

RH values than for RHmean, both for all days and for warm days (MAEs for RHmean are 

approximately two percentage points greater than for RHmin or RHmax). In contrast, Daymet 

did not provide reliable estimates of observed relative humidity, as calculated using 

Daymet’s assumption of Tdew equaling Tmin throughout the day: all r2 values were less than 

0.64 and slopes were between 0.49 and 0.79 for RHmin and RHmean.

For absolute humidity, PRISM estimates were extremely highly correlated with observations 

for AHmean, both for all days (r2 > 0.99, m = 0.97, and MAE = 0.32 g/m3) and warm days 

(r2 > 0.99, m = 0.97, and MAE = 0.44 g/m3). Daymet estimates showed less agreement for 

both subsets of days (both r2 < 0.87 and MAE > 1.35 g/m3).

Finally, heat index measures showed strong agreement in the PRISM data for HImax (r2 = 

0.93, m = 0.96, and MAE = 1.56˚F), HImin (r2 = 0.96, m = 0.96, MAE=1.65°F), and HImean 

(r2 = 0.96, m = 1.01, and MAE = 1.50°F). Daymet similarly offered robust estimates of 

mean heat index, albeit with greater MAE (r2 = 0.95, m = 1.02, and MAE = 2.74°F), but it 

showed bias in its estimates of maximum heat index (r2 = 0.85, m = 1.13, and MAE = 

3.20°F).

Comparison of PRISM and Daymet to the USCRN data showed similar performances as 

compared to the ISD-Lite data (Table 3): PRISM provided robust estimates of ambient 

temperature (Tmax, Tmin, and Tmean for all days and for warm days), AHmean, and heat index 

(HImax, HImin, and HImean for warm days). PRISM estimates of RH showed somewhat less 

agreement with observed values in the USCRN data versus the ISD-Lite data. For example, 

for warm days, the slope of the best-fit line for RHmean was 0.89 (compared to 0.93 for ISD-

Lite) and, for all days, the r2 for RHmean was 0.89 (compared to 0.92 for ISD-Lite). Daymet 

showed similar performances when assessed using the USCRN data as it did with the first-

order stations.

3.2 Spatially Resolved County Estimates

To assess the potential for spatially resolved weather data to improve estimates of county-

level meteorological exposures over singular point-based observations, we compared the 

population-weighted mean PRISM estimate over the entire county to the single-pixel 

PRISM value at the location of the weather station. Differences between these values would 

indicate that the weather experienced by the population, on average, across the entire county 

is distinct from the weather experienced at the weather station and, thus, that station-based 

estimates may introduce exposure measurement error. In the aggregate, across the full 

sample of locations from 1981–2016, there was no statistically significant difference 

between the mean values of Tmax taken at the location of the weather station and the 

spatially resolved county average, for either all temperatures (mean difference of −0.0085°F; 

95% confidence interval [CI]: −0.055°F, 0.038°F) or for warm days (mean difference of 

−0.0058°F; 95% CI: −0.032°F, 0.020°F). There was a statistically significant, albeit 

substantively negligible, difference in HImax for warm days (mean difference of −0.058°F; 

95% CI: −0.089°F, −0.028°F).
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However, this nationwide sampling masks large heterogeneity between individual counties; 

the difference between county-average and weather station temperatures is much larger in 

some locations than others. Considering each of the 116 counties in the analysis 

individually, 32 (27.6%) showed statistically significant differences in Tmax for all days, 63 

(54.3%) were statistically significantly different for Tmax on warm days, and 55 (47.4%) 

were statistically significantly different for HImax on warm days. Moreover, 10 (8.6%) had 

an absolute difference of means of Tmax ≥ 1°F for all days, 15 (12.9%) had an absolute 

difference of means of Tmax ≥ 1°F for warm days, and 15 (12.9%) had an absolute 

difference of means of HImax > 1°F for warm days. Four stations in particular showed 

especially large differences for Tmax on warm days: Los Angeles County, California (an 

average of 6.0°F cooler [95% CI: 5.8°F, 6.2°F] at the station versus the county-wide 

average); Clatsop County, Oregon (2.1°F cooler [95% CI: 1.8°F, 2.5°F]); Navajo County, 

Arizona (4.5˚F warmer [95% CI: 4.2°F, 4.7°F]); and White Pine County, Nevada (3.1°F 

warmer [95% CI: 2.9°F, 3.4°F]).

The average results above mask variability of temperature differentials on particular days. A 

strong majority of counties (71.6%) had at least 5% of warm days over the study period in 

which the Tmax at the location of the weather station differed by at least 1°F from the county 

average; even more stations met this criterion for HImax (81.9%). Similarly, 28 stations 

(24.1%) had at least 5% of warm days with differences between station and county Tmax > 

2°F, and eight stations (6.9%) had at least 5% of warm days with differences of Tmax > 3°F. 

These proportions are even greater when considering HImax on warm days (81.9%, 31.9%, 

and 10.3%, for HImax differences greater than at least 1°F, 2°F, and 3°F, respectively).

3.3 Exposure-Response Functions

We selected two case-study counties as preliminary, illustrative examples of whether 

differences between observations at a given weather station and population-weighted county 

average values could potentially affect the estimated association between mean daily 

temperature and rates of mortality (Figure 2). In Marion County, Indiana, the distribution of 

daily population-weighted county average Tmean estimated from PRISM was similar to the 

distribution of daily observations from the local weather station. Moreover, the shape and 

magnitude of the association between mean daily temperature and relative rate of death were 

similar for both weather station observations and the spatially explicit estimates constructed 

from PRISM. By contrast, in Los Angeles County, California, the distribution of daily Tmean 

estimated from PRISM spanned a larger range of values than for weather station observed 

Tmean. The heterogeneity of temperatures on a single day across Los Angeles County is 

shown in Figure 3. Moreover, in Los Angeles County, the estimated association between 

daily mean temperature and rates of mortality differed substantially when using county 

average daily Tmean versus observed station data. The observed differences in the exposure-

response functions were reduced, but not eliminated, when considering temperature 

percentiles rather than absolute values.
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4. DISCUSSION

This validation of PRISM and Daymet, two GCDs publicly available at no cost, suggests 

that PRISM provides reliable estimates of health-relevant meteorological exposures when 

compared to station observations. Specifically, we found that PRISM provides robust 

estimates of ambient temperature (Tmin, Tmax, and Tmean), mean absolute humidity 

(AHmean), relative humidity (RHmin, RHmax, and RHmean), and heat index (HImin, HImax, 

and HImean) when compared to co-located first-order weather stations. Results were similar 

when PRISM estimates were compared to observations in the USCRN stations, suggesting 

that PRISM estimates are reliable, even in areas that are less populated and away from urban 

and suburban development.

Although Daymet offers similarly robust estimates of ambient temperature for all days, its 

values for Tmax on warm days are less satisfactory. Moreover, nearly all of the moisture- 

dependent values for Daymet are unsatisfactory (low r2 values and/or slopes substantially 

different from one), with the exception of AHmean for all days and HImean for warm days. 

The lower performance for humidity variables is likely due to the assumption in Daymet that 

Tdew is equal to Tmin throughout the day [22], an assumption that may be untenable in the 

arid and semiarid southwestern US [41]. Our analysis suggests that this assumption is 

problematic for the calculation of RH more broadly across CONUS and that, consequently, 

RH derivations from Daymet are not consistently reliable. Despite this limitation, Daymet’s 

daily HImean, which relies on RH, performed well against observations, despite the relatively 

weak representation of RHmean. This may reflect a canceling of errors between Tmean and 

RHmean that has the net effect of a more accurate HImean estimate than would be expected. 

Fischer and Knutti [42] observed a potentially similar phenomenon in their analysis of 

general circulation models, in which the derived simplified wet-bulb globe temperature (a 

composite variable of temperature and humidity) showed less uncertainty than would be 

expected from each variable individually.

Future epidemiologic assessments of meteorological exposures could potentially benefit 

from using spatially explicit weather data, particularly in places with few weather 

observations or in cities where the weather reported at the observatory is not representative 

of the weather experienced by the population. Our analysis comparing point-based weather 

estimates to population-weighted county mean values throughout CONUS suggests that the 

substantive difference between station observations and spatially resolved estimates varies 

considerably. For example, in Los Angeles County, California, temperatures reported at Los 

Angeles International Airport (LAX) are generally much cooler than downtown Los 

Angeles. As an example, according to PRISM, during a period of extreme heat on 28 

September 2010, maximum temperatures across Los Angeles County ranged from 

approximately 84°F to 116°F (Figure 3). Observations at a single weather station cannot 

represent this spatial differentiation and hence could lead to substantial exposure 

measurement error. Data from GCDs, such as PRISM, offer more nuanced exposure 

information that could improve future epidemiologic analyses. In particular, we posit that 

applying population-weighted, spatially resolved meteorological data may more accurately 

represent the outdoor weather conditions to which populations are actually exposed versus 

point-based station data. We further suggest that the use of spatially resolved exposure 
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information may lead to different conclusions about the magnitude of the association 

between temperature and health outcomes in some locations within the US. For example, we 

found that the association between very high temperatures and mortality in Los Angeles 

County was larger when using Tmean observed at a weather station than when using a 

population-weighted average constructed for the county from the PRISM data. Similarly, 

Lee et al. found different relative risks of mortality for extreme temperatures in the 

southeastern US when using weather-station observations compared to a derived temperature 

surface using satellite data [16]. However, in Marion County, IN, the association between 

mean temperature and daily mortality rate was similar regardless of the choice of exposure 

dataset. This concurs with the findings of Guo et al., which showed that a spatiotemporal 

model of temperature-mortality relationships performed similarly to a model using non-

spatially resolved temperature metrics in Brisbane, Queensland, Australia [43]. Additional 

work is needed to expand on these illustrative findings.

An important caveat to the potential benefits of spatially resolved weather data, however, is 

that the performance of the model cannot be directly assessed in places without station-

based observations [44]. The developers of PRISM addressed this limitation by using 

“leave-one-out” cross-validation, which provides an assessment of model performance at 

locations without observations [23, 24]. This validation method demonstrated strong 

performance, with monthly MAE values ranging from 0.36°C to 0.77°C for Tmax and from 

0.57°C to 1.35°C for Tmin, depending on the month and region [23]. Although these and 

other errors in PRISM estimates are not necessarily spatially homogeneous or randomly 

distributed [23], we posit that the exposure measurement error from PRISM estimates is 

likely to be less than the error presented by using observations from a singular weather 

station observatory to represent the average exposure of an entire geographically 

heterogeneous county. Therefore, the use of spatial weather data seems to offer an 

opportunity for improved assessments of population-average exposures versus observations 

from a sparse network of meteorological monitors.

The determination of which GCD to use for epidemiologic analyses, however, is dependent 

not only on the meteorological variables of interest, but also on the spatial scale required. 

Daymet may be preferable to the free daily PRISM product for studies needing higher 

spatial resolution and only the daily T or HImean. However, PRISM may be preferable in 

studies requiring optimal estimates of RH or AH, even if at a lower spatial resolution of 4 

km. Finally, for HImax, PRISM provides reliable estimates, but Daymet does not. It should 

be noted that an 800-meter product is also available from PRISM, but it is not freely 

available to the public and hence was not evaluated here. Nonetheless, given that many 

population-scale health data are available only at aggregated spatial extents (e.g., counties or 

zip codes), the four-kilometer PRISM data may be appropriate for many epidemiologic 

assessments interested in meteorological exposures.

Additional considerations should be noted for epidemiologists seeking to use GCD 

information for spatially explicit exposure assessments. Perhaps most important is 

recognizing how the GCDs define a “day.” As described in the Methods, a PRISM “day” 

ends at noon UTC, meaning that the high temperature reported for anywhere in CONUS 

probably occurred on the previous local day. For analyses that average several days of 
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weather data, this distinction is largely inconsequential; however, when data for a specific 

day are important, analysts should be careful to correctly ascribe the PRISM daily values to 

the local time periods of interest.

More research is needed to determine the extent to which spatially explicit meteorological 

data can reduce exposure measurement error in epidemiologic studies, and to what extent 

usage of GCD data substantively changes previously described exposure-response functions 

relating meteorological variables to health outcomes overall and throughout various 

locations in the US. While our preliminary analysis here suggests that using spatial data 

instead of discrete weather station observations can make more of a difference in some 

places than others, additional research is needed to determine the impact of using GCD 

versus point estimates of temperature or other meteorological variables on health effects 

analyses across the US.

In addition, GCDs offer the possibility to expand the spatial extent of populations included 

in epidemiologic analyses to include individuals in places farther from first-order weather 

stations. We found consistency between the GCDs and observations made at USCRN 

stations, which have been intentionally located in places less affected by anthropogenic 

influences. This suggests that both PRISM and Daymet may perform approximately as well 

in less populated and rural areas as they do at the first-order stations, which creates the 

potential for expanding epidemiologic assessments of weather-related exposures to under-

studied populations.

5. CONCLUSIONS

Gridded climate datasets offer the possibility of more spatially explicit meteorological 

assessments by providing continuous weather data across space that is not possible with a 

finite number of point-based, first-order weather stations. Two freely and publicly available 

GCDs, PRISM and Daymet, provide reliable daily estimates of ambient temperature and 

mean heat index, but PRISM outperforms Daymet for relative humidity and absolute 

humidity and, additionally, is capable of providing robust estimates of minimum and 

maximum heat index. Although more research is needed, there is evidence that using these 

spatially resolved meteorological data as exposures could potentially reduce exposure 

measurement error in epidemiologic studies of temperature-related morbidity and mortality, 

depending on the location of interest. Epidemiologists seeking to use GCDs as their 

exposure measurements must balance tradeoffs between accuracy of various meteorological 

variables versus available spatial resolution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Map of climates and locations of weather observatories in climatically representative 

sample. First-order weather stations in the ISD-Lite database (represented as stars) are 

located primarily at airports, while stations in the US Climate Reference Network 

(represented as circles), are located primarily in land-conservation areas. The stations in both 

networks are representative of the climate zones in CONUS, based on the Köppen-Geiger 

classification system [31], indicated by various colors (shapefile of data provided by ORNL 

DAAC [32, 33]). The nomenclature for the climate zones begins with the first letter for the 

broad climate type (“equatorial,” “arid,” “warm temperate,” “snow,” and “polar” for A, B, 

C, D, and E, respectively), then denotes the intra-annual precipitation and temperature 

characteristics (if applicable) within those zones in the second and third letters, respectively 

[31]. Background mapping provided by ArcWorld and ArcWorld Supplement from Esri®.
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Figure 2: 
Comparison of epidemiologic analyses of the association between mean daily temperature 

and mortality rates using either observations from the nearest first-order weather station or 

population-weighted county means from PRISM. The distribution of daily mean temperature 

(A. and D.), 21-day cumulative exposure-response function between daily mean temperature 

and mortality on an absolute scale (B. and E.), and 21-day cumulative exposure-response 

function between daily mean temperature and mortality on a percentile-based scale (C. and 

F.) for Marion County, Indiana (left panels) and Los Angeles County, California (right 

panels), 1988–2003. Results based on observed station data are shown in red, results based 

on PRISM estimates are shown in blue, and the overlap between the two is shown in purple.

Spangler et al. Page 17

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Spatial heterogeneity of ambient temperatures across Los Angeles County, California on an 

extreme-heat day. This geographic schematic shows the range and distribution of ambient 

maximum temperatures on the PRISM date of 28 September 2010 across Los Angeles 

County, California. The star symbol indicates the location of Los Angeles International 

Airport (LAX), which was included in the climatically representative sample in this paper; 

the diamond symbols indicate other first-order NWS stations. None of these stations are 

located in the hottest part of LA County on this day, and they cannot capture the large 

temperature differential experienced across the area (ranging from approximately 83.6˚F to 

115.8˚F on this day). Note that adjacent islands, including those that are part of LA County, 

are not displayed. Background mapping provided by ArcWorld and ArcWorld Supplement 

from Esri®.
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Table 1:

Overview of the Meteorological Datasets Used in the Analysis

First-Order Stations 
(ISD-Lite)

USCRN Stations PRISM Daymet

Spatial Coverage 274 stations in the US, 
located primarily at 

airports

137 stations in the US, 
located at sites minimally 
affected by anthropogenic 

land uses

Conterminous United States 
(CONUS) at horizontal spatial 
resolution of 4 km or 800 m

North America at 
horizontal spatial 
resolution of 1 km

Temporal 
Coverage

Hourly or sub-hourly 
observations over the past 

several decades

Sub-hourly observations 
since as early as 2000

Daily from 1981 to six months 
prior to present

Daily since 1980; 
updated annually

Day Definition 00:00 – 23:59 UTC 00:00 – 23:59 UTC 12:01 UTC on day i-1 - 12:00 
UTC on day i

00:00 – 23:59 UTC

Meteorological 
Variables Reported

Temperature
Dew-point T
Precipitation

Atm. Pressure
Wind

Cloud cover

Temperature
Relative humidity

Precipitation
Solar radiation
IR surface T

Tmin, Tmax, Tmean
TDmean

VPDmin, VPDmax
Precipitation

Tmin, Tmax
VPmean

Precipitation
Solar radiation
Snow-water eq.

Day length

User-Derived 
Variables

Heat index
Relative humidity
Absolute humidity

Heat index
Absolute humidity

HImin, Hmax, HImean
RHmin, RHmax, RHmean

AHmean

Tmean
HImax, HImean

RHmin, RHmean
AHmean

Table 1: Abbreviations: minimum, maximum, and mean temperature (Tmin, Tmax, and Tmean); mean vapor pressure (VPmean); minimum and 

maximum vapor-pressure deficits (VPDmin and VPDmax); minimum, maximum, and mean relative humidity (RHmin, RHmax, and RHmean); 

mean absolute humidity (AHmean); and minimum, maximum, and mean heat index (HImin, HImax, and HImean).
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Table 2:

Univariate Linear Regression of First-Order Weather Station Observations on GCD Estimates

Variable Days
PRISM Daymet

r2 Slope Y-Int MAE r2 Slope Y-Int MAE

Tmax

All 0.99 0.98 1.52 1.20 0.98 0.98 1.62 2.20

Warm 0.96 0.97 2.46 1.03 0.90 0.98 1.90 1.93

Tmim

All 0.99 0.98 0.29 1.58 0.98 0.98 −1.38 2.71

Warm 0.96 0.96 1.42 1.56 0.94 0.97 −0.26 2.68

Tmean

All 0.99 1.00 −0.05 1.49 0.99 0.98 0.65 1.66

Warm 0.95 0.98 0.81 1.41 0.95 0.98 1.22 1.57

RHmax

All 0.94 1.02 −2.64 2.59 - - - -

Warm 0.96 1.02 −2.62 2.47 - - - -

RHmin

All 0.96 0.99 2.11 2.88 0.52 0.50 23.97 10.68

Warm 0.97 0.98 1.83 2.36 0.64 0.54 22.99 9.92

RHmean

All 0.91 0.95 −0.49 4.96 0.47 0.73 7.02 14.12

Warm 0.95 0.93 0.30 4.68 0.58 0.79 1.88 13.34

AHmean

All >0.99 0.97 −0.04 0.32 0.87 0.95 −0.12 1.36

Warm >0.99 0.97 −0.02 0.44 0.79 0.98 −0.55 1.87

HImax

All - - - - - - - -

Warm 0.93 0.96 3.57 1.56 0.85 1.13 −9.81 3.20

HImin

All - - - - - - - -

Warm 0.96 0.96 1.48 1.65 - - - -

HImean

All - - - - - - - -

Warm 0.96 1.01 −1.24 1.50 0.94 1.02 0.78 2.74

Table 2: Results of univariate linear regression of observed meteorological conditions at first-order weather stations in the ISD-Lite sample on 
modeled data from PRISM and Daymet. “Warm” refers to days with observed maximum temperature ≥ 70°F. “MAE” is the mean absolute error 

and measures the average difference between modeled and observed data; units are the same as for the variable measured. Higher r2, lower MAE, 
slopes closer to one, and y-intercepts closer to zero indicate greater agreement between modeled and observed meteorological conditions.
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Table 3:

Univariate Linear Regression of USCRN Station Observations on GCD Estimates

Variable Days
PRISM Daymet

r2 Slope Y-Int MAE r2 Slope Y-Int MAE

Tmax

All 0.99 0.99 2.12 1.87 0.97 0.99 1.70 2.56

Warm 0.96 0.98 3.10 1.72 0.88 0.98 2.13 2.21

Tmim

All 0.98 0.98 0.87 2.05 0.97 0.98 −0.90 2.74

Warm 0.93 0.94 3.56 1.98 0.91 0.94 2.33 2.54

Tmean

All 0.99 1.00 0.50 1.75 0.98 0.99 0.93 1.94

Warm 0.94 0.98 1.76 1.68 0.94 0.98 2.13 1.76

RHmax

All 0.85 0.94 6.31 4.98 - - - -

Warm 0.89 0.96 5.39 5.03 - - - -

RHmin

All 0.91 0.94 3.23 4.43 0.51 0.42 26.72 12.25

Warm 0.94 0.93 3.06 3.52 0.63 0.44 26.33 11.65

RHmean

All 0.89 0.93 1.27 5.83 0.48 0.65 11.71 14.76

Warm 0.93 0.89 2.15 5.56 0.65 0.74 4.90 13.50

AHmean

All 0.99 0.97 0.08 0.35 0.87 0.93 0.21 1.24

Warm 0.98 0.96 0.26 0.49 0.82 0.93 0.31 1.64

HImax

All - - - - - - - -

Warm 0.93 1.02 −0.24 2.06 0.84 1.18 −12.76 3.60

HImin

All - - - - - - - -

Warm 0.94 0.95 2.91 2.03 - - - -

HImean

All - - - - - - - -

Warm 0.95 1.03 −1.62 1.69 0.94 1.03 1.64 3.61

Table 3: Results of univariate linear regression of observed meteorological conditions at USCRN weather stations on modeled data from PRISM 
and Daymet. “Warm” refers to days on which the observed maximum temperature was at least 70°F. “MAE” is the mean absolute error and 

measures the average difference between modeled and observed data; units are the same as for the variable measured. Higher r2, lower MAE, 
slopes closer to one, and y-intercepts closer to zero indicate greater agreement between modeled and observed meteorological conditions.
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