
Abstract. Background/Aim: Silk is a natural biomaterial
with several superior features for applications in regenerative
medicine. In the present study an optimized process for
manufacturing porous scaffolds out of the silk protein fibroin
was developed. Materials and Methods: The silk protein
fibroin was dissolved in Ajisawa’s reagent and the resulting
fibroin solution was used to produce scaffolds by means of
freeze-thawing cycling. Porosity, pressure and stab resistance
as well as degradation behavior were assessed in order to
characterize the physical properties of the resulting scaffolds.
Results: The resulting sponge-like fibroin scaffolds were
highly porous while the porosity correlated inversely with the
concentration of the starting fibroin solution. Increased initial
fibroin concentrations of the scaffolds resulted in increased
compressive and cannulation resistance. The majority of the
fibroin scaffolds were digested by 1 mg/ml protease XIV in 3
weeks, indicating their biodegradability. Conclusion: The
production of scaffolds made of varying fibroin
concentrations by means of freeze-thawing, following
dissolution using Ajisawa’s reagent, provides a simple and
straightforward strategy for adjusting the physical and
chemical properties of fibroin scaffolds for various medical
applications.

Silk is a promising biomaterial in tissue engineering and
regenerative medicine. Its advantageous features include high
biocompatibility, simple biochemical composition, smooth
surface, mechanical strength and controllable degradation (1,
2). Silk can be manufactured into various forms and
structures according to the application demands and therefore
provides a favorable basic material in reconstructive medicine
(3, 4). Mainly composed of fibroin (70-80%) and sericin (20-
30%), silk is produced by the silkworm bombyx mori to form
cocoons (5). The silk fibers are made of fibroins which are
bundled by sericin. Solid silk can be brought into solution by
means of removing sericin using acidic or alkaline solutions
at a high temperature and subsequently dissolving the fibroin
fiber in acidic or highly concentrated ion solutions (6-8). An
alternative to the conventional concentrated and highly toxic
lithium bromide solution is Ajisawa’s reagent composed of
CaCl2–EtOH–H2O, which is inexpensive, simple and much
safer (9). The dissolved fibroin can be further processed into
various types of materials for medical applications including
membranes, thin films, hydrogel, fiber, matrix and sponges
(10-12). For example, tube-shaped fibroin sponges held by
fibroin membranes can serve as scaffolds for stem cells to
differentiate into adipocytes (13). Sponges made of fibroin
may provide an attractive alternative to conventional
materials, like xenogenous collagen for hemostasis after tooth
extraction (14).

So far, fibroin scaffolds have only been produced from
fibroin solutions obtained using highly concentrated lithium
bromide solutions or formic acid. The present study aimed
to establish and optimize a process for producing porous
sponge-like scaffolds using the less expensive and safer
Ajisawa’s reagent. The resulting scaffolds were characterized
for their structural, mechanical and degradation properties.
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In addition, the effect of concentration of the initial fibroin
solution on the properties of the scaffolds was evaluated. 

Materials and Methods

Dissolution of fibroin and production of scaffolds. Silk cocoons
(Source: Cantiere della provvidenza, Belluno, Italy) were used for
fibroin extraction. Forty-five g of cocoons were immersed in 9 l of
0.02 M Na2CO3 solution and boiled at 95±5˚C for 120 min. After
washing out the sericin residues using completely desalted water,
the released fibroin fibers were placed on a supporting-mesh and
air-dried for 24 h. Subsequently, the dried fibroin was mixed with
Ajisawa’s reagent which was composed of CaCl2, ethanol and water
(1:2:8) at a ratio of 3 g to 27 ml, and kept in a water bath at 78˚C
for 1 h. After cooling down, the dissolved fibroin solution was
centrifuged at 4,000 rpm (Rotofix 32, Hettich, Tuttlingen, Germany)
for 30 min to remove debris and undissolved silk. Desalination of
the solution was carried out by dialysis against water for two days
to reach the final electrical conductivity of less than 15 μScm/cm.
The resulting fibroin solution in a concentration of approximately
6% can either be diluted in distilled H2O or concentrated by
evaporating ethanol and water at 60-70˚C. 

Fibroin solutions of various concentrations of 1.5-15% were used
to produce porous fibroin sponge-like scaffolds using freeze-
thawing. Four ml of a fibroin solution and 2 ml of 2% EtOH were
mixed in each well of a 12-well cell culture plate. The plate was
then sealed and placed into a –20˚C freezer for 24 h. On the next
day, the plate was taken out of the freezer and thawed for one h at
room temperature. Fibroin attached to the wall of the well was
detached using a scalpel. The freezing-thawing process was repeated
three times. The resulting fibroin sponges were carefully removed
from the wells and stored in water. 

Characterization of the scaffolds
Electron microscopy. Surface structure of the fibroin scaffolds was
evaluated using a scanning electron microscope (Philips XL30 CP,
Philips GmbH, Hamburg, Germany). Scaffolds were centrifuged at
500 rpm (Rotofix 32, Hettich, Tuttlingen, Germany) for 60 min to
remove the water. After air-drying for 24 h, samples were sputtered
with gold-particles for 90 sec in vacuum (3×10–1 bar) using argon
as carrier gas (Sputter Coater S150B, Edwards, London, UK). 

Porosity. A measuring cylinder was filled with 50 ml pure hexane.
Hexane penetrates the sponge-like scaffolds without changing the
pore structure and without causing swelling or shrinking. For
measuring porosity, a sponge was left in the measuring cylinder for
5 min for the gas to penetrate into the pores. The volume of the
hexane was measured before and after taking out the sponge from
the measuring cylinder. Porosity in percent was defined as [volume
of hexane in the measuring cylinder after filling – residual volume
of hexane after taking out the sponge]/[volume of hexane which was
displaced by the sponge – residual volume of hexane after taking
out the scaffold] * 100. 

Pressure and stab resistance. The pressure resistance of moist scaffolds
was measured for compressive strength and stab-resistance using a
Zwick/Roell Z010 XForceK (Zwick GmbH & Co KG, Ulm, Germany)
with an initial force of 0.2 N and pressing speed of 5 mm/min.
Compressive strength was determined by the pressure module (gradient
of the compression). Penetration resistance was measured by the depth

of a needle stabbing into the sponge under a given force. Stabbing
speed was set at 0.5 mm/min with an initial force of 0.2 N. The gradient
was determined by force and penetration depth.

Degradation. Degradation of fibroin scaffolds was examined by
placing a test group of 4 scaffolds in a solution of 1 mg/ml protease
XIV in PBS at 37˚C in a humified atmosphere of 95% air and 5%
CO2 for 3 weeks using a HERAcell incubator (HERAcell 150i,
Thermo Scientific, Waltham, MA, USA). Four scaffolds placed in
PBS without protease XIV were used as a control group. A specially
designed probe mount was placed inside the incubator in order to
keep the sample flasks in motion during incubation. 

Results

Production of fibroin scaffolds. Cylindrical sponge-like
scaffolds were successfully produced from fibroin solutions
of various concentrations between 1.5 and 15% by means of
repeated freezing and thawing (Figure 1). Higher
concentration of fibroin led to faster sponge formation, likely
due to a more pronounced beta-sheet structure and faster
crystallization of the protein. Scaffolds from a higher
concentration of fibroin solution developed an intensified
yellowish color. 

Electron microscopy. The surface of the scaffolds was porous
(Figure 2). The porosity was subjectively more prominent in
the scaffolds of 6% fibroin solution than in those of 10%
fibroin solution. In scaffolds with reduced fibroin
concentration, deep holes were visible, while pores of
various forms and sizes interleaved each other, resulting in
a complex structure. By contrast, the surface of the 10%
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Figure 1. Porous fibroin sponge made after dissolving silk using
Ajisawa’s reagent and freeze-thawing.



fibroin scaffolds appeared rather flat and the beta-sheet
formations of the fibroin were more compact. Porous
structures were also observed in cross-sections of the
scaffolds complying with the expectation that the pores pass
through the whole sponge. 

Porosity. Porosity measurement, using hexane gas, revealed
that pores occupied 50%±1.6% of the volume of a 6%
fibroin sponge. For a 7% fibroin sponge, the ratio of pore
volume to total volume was 10% less (40%±2.1%).
Prolonged treatment with ethanol led to further
crystallization of the fibroin resulting in hardening through
enhanced beta-structures of the protein and reduced pore
sizes. Subsequently, these ethanol hardened scaffolds were
mechanically characterized. 

Pressure and penetration resistance. Compressive strength
of the scaffolds correlated nearly linearly with the
concentration of the initial fibroin solution (Figure 3A).
Maximum average compressive strengths of 6.4±3.7 and
13.5±2.2 kPa were measured in the 5% and 8% fibroin
scaffolds, respectively. The penetration resistance of the
scaffolds correlated positively with the initial fibroin
concentrations. The mean force-penetration depth ratio was
0.3 and 0.5 mm/N for scaffolds from 0.5 and 0.8% fibroin
solutions, respectively (Figure 3B). 

Degradation. When incubated in a solution of 1 mg/ml
protease XIV, 4% fibroin scaffolds were completely digested
in 3 weeks. Scaffolds containing 7% of fibroin lost

approximately 83% of the initial weight after 3 weeks of
incubation in protease XIV (Figure 4). In the absence of
protease, fibroin scaffolds lost approximately 16% of their
initial weight, regardless of the fibroin concentration. 

Discussion

Many advances in biomaterials science have been made
through the past decades (15-17). However, the treatment of
extensive defects in soft and hard tissue is still challenging.
Silk as biomaterial has been investigated extensively in
several studies (18, 19). Silk based fibroin scaffolds may be
favorable as biomaterial due to their low price, sufficient
availability and improved tissue recovery (2). However,
conventional manufacturing methods include dissolving in
high molarity chaotropic salt solutions such as lithium
bromide (LiBr) or ionic liquids (20). 

In the present work, an optimized protocol for producing
fibroin scaffolds was established. Ajisawa’s reagent, which
is inexpensive and harmless unlike the conventional
reagents, was used to dissolve fibroin from silk fibers. The
freeze-thaw method that is a saltless alternative to
conventional methods was used to create sponge-like
structures in order to use them as scaffolds for medical
applications, e.g. in reconstructive medicine (3, 10). The
resulting scaffolds are, therefore, free of solvent and metal
which is a key issue for application in human body. 

Three-dimensional structures of fibroin may be favorable
in tissue engineering because they can mimic a physiological
environment more precisely than two-dimensional structures
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Figure 2. Electron microscopy of the surface structure of the porous fibroin sponges. Upper row, sponge made of 6% fibroin concentration in
solution; lower row, sponge made of 10% fibroin solution. Magnification 20× (A; D), 100× (B; E) and 500× (C; F).



(21, 22). Three-dimensional fibroin scaffolds can be obtained
by salt leaching, gas foaming or freeze-thawing (23). Among
them, freeze-thawing, which was first described by Tamada,
is the simplest and cheapest way to create 3D-fibroin scaffolds
(24). Fibroin scaffolds formed by this process are
cytocompatible and demonstrate good mechanical
characteristics (25). In this study, cylindrical scaffolds were
successfully produced from fibroin solutions of various
concentrations using the freeze-thaw method after dissolving
procedures with Ajisawa’s reagent. They displayed high

porosity that might be a favorable characteristic for cells.
Several studies suggested that interconnected pores within
fibroin scaffolds may support cell attachment, proliferation
and differentiation (26, 27). However, this study only covers
the physical characterization of the scaffolds and their
behavior in vitro still has to be investigated. Mechanical
properties of the created scaffolds correlated positively with
the initial fibroin concentration of the solutions. Fibroin
scaffolds showed sufficient pressure and penetration resistance
that allows their usage as material for tissue engineering.
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Figure 3. Mechanical characterization of the sponges. A: Compressive strength in correlation with fibroin concentration. B: Penetration resistance.



However, the freeze-thaw method has the disadvantage of
creating pores of varying sizes, uneven surfaces of the
scaffolds, and sticking of the fibroin to the well. The latter
problems may be overcome to some extent by using other
types of well-plates and non-stick coatings. However, caution
has to be taken to ensure that no traces of substances will
remain in the final products intended for medical application.
Rotating the well-plate during the freeze-thaw process may
enable more homogeneous porosity in the scaffolds. 

Fibroin concentrations influence many features of the
resulting scaffolds, including the structure, porosity,
mechanical strength, and degradation behavior (28).
Therefore, varying fibroin concentration provides a simple
and straightforward strategy for tailoring physical and
chemical properties of the fibroin scaffolds for various
medical needs. Depending on the tissue of application, for
example bone, muscle or fatty tissues, scaffolds with the
most suitable pore-size can be produced by selecting the
appropriate fibroin concentration. However, the accordance
between biodegradation of the scaffolds and growth rate of
new tissues has to be considered (29). Three-dimensional
bioprinting for layer-by-layer fabrication of objects and
scaffolds is one topic of current research (30). A recent study
described tissue integration of 3D-printed fibroin-based
implants in a mouse model (31). Due to the complexity of
3D-printing procedures, currently only simple structures can
be printed. However, as printing techniques advance steadily,
the construction of complex and multifunctional structures
will be possible in the near future (32). 

To conclude, this project has established and optimized a
simple procedure for dissolving fibroin and producing porous
fibroin scaffolds, which also enables tailoring of their physical
and mechanical features for various medical applications.
Further studies are in progress to assess cytocompatibility and
biocompatibility of the developed fibroin scaffolds. 
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