
1Scientific Reports |          (2019) 9:8445  | https://doi.org/10.1038/s41598-019-44902-z

www.nature.com/scientificreports

Evaluation of ultra-low input RNA 
sequencing for the study of human 
T cell transcriptome
Jingya Wang1, Sadiye Amcaoglu Rieder2, Jincheng Wu3,6, Susana Hayes4, Rebecca A. Halpin4, 
Melissa de los Reyes4, Yashaswi Shrestha   4, Roland Kolbeck5 & Rajiv Raja   4

Deeper understanding of T cell biology is crucial for the development of new therapeutics. Human naïve 
T cells have low RNA content and their numbers can be limiting; therefore we set out to determine 
the parameters for robust ultra-low input RNA sequencing. We performed transcriptome profiling at 
different cell inputs and compared three protocols: Switching Mechanism at 5′ End of RNA Template 
technology (SMART) with two different library preparation methods (Nextera and Clontech), and 
AmpliSeq technology. As the cell input decreased the number of detected coding genes decreased 
with SMART, while stayed constant with AmpliSeq. However, SMART enables detection of non-coding 
genes, which is not feasible for AmpliSeq. The detection is dependent on gene abundance, but not 
transcript length. The consistency between technical replicates and cell inputs was comparable across 
methods above 1 K but highly variable at 100 cell input. Sensitivity of detection for differentially 
expressed genes decreased dramatically with decreased cell inputs in all protocols, support that 
additional approaches, such as pathway enrichment, are important for data interpretation at ultra-low 
input. Finally, T cell activation signature was detected at 1 K cell input and above in all protocols, with 
AmpliSeq showing better detection at 100 cells.

T cells are key players within the adaptive immune system, and their roles in health and disease have been exten-
sively studied1. There are different types of T cells (such as helper, effector, cytotoxic, memory, regulatory, and 
gamma delta), and understanding their biology is crucial in developing new therapeutics2. Recently, T cells have 
been a target of several successful immuno-oncology drugs and enhancement of their biological activity in the 
context of cancer is essential in destroying tumor cells3. In autoimmune diseases, T cells are over-reactive and they 
attack the body’s own tissues and cells4. Therapeutic antibodies and small molecules have been developed with 
some success to block the deleterious actions of T cells in autoimmunity5. While there have been many advances 
in understanding T cell biology and modulating their responses in different disease settings, further studies are 
needed for better targeted therapeutics.

Understanding the transcriptome profiles of human T cells is important in deciphering their biology, and 
recent advances in RNA sequencing technology have been significant towards this goal. T cells are challenging for 
transcriptome profiling since their average RNA content is ~1–2 pg/cell, which can be approximately 10 fold less 
than rapidly proliferating cells, such as cancer cells (based on internal unpublished data). In some cases, such as 
studying tumor infiltrating primary lymphocytes, the number of primary T cells recovered is as low as 100, and 
standard RNA sequencing experiments that require at least ~200 ng of RNA (i.e. equivalent to 105–106 T cells) 
could be challenging. In this paper, we evaluated the input gradient of naïve CD4+ T cells from 100, 1000 (1 K), 
5000 (5 K) to 100,000 cells and provided a comprehensive evaluation of two main transcriptome sequencing 
technologies appropriate for ultra-low input RNA. In addition as proof-of-concept, we validated an in vitro T cell 
activation signature using differential gene expression based on these protocols.
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Multiple protocols have been developed for transcriptome profiling from very low amount of RNA inputs. 
Studies have been published evaluating the performance of these protocols such as Ovation (Nugen), SMARTer 
(Clonetech), DP-seq and CEL-seq which provided valuable insights on advantages and disadvantages of each 
protocol and practical considerations when performing ultra-low input RNA sequencing6–11. These protocols 
are based on unbiased sequencing of the whole cDNA pools that sequence and map all cDNA fragments to the 
reference transcriptome, and expression is measured by counting the total number of fragments mapping to each 
transcript. As technologies advanced, new protocols were developed such as AmpliSeq (Thermo Fisher) that uti-
lizes a targeted transcriptome approach. AmpliSeq utilizes PCR assays specific for each gene being targeted, and a 
short amplicon is amplified and quantified to measure gene expression. This platform has shown satisfactory per-
formance in standard RNA sequencing experiments12. However, no direct comparison have been made between 
whole transcriptome vs. targeted transcriptome profiling using ultra-low RNA inputs.

Towards this goal, we compared three different protocols based on two distinct technologies that were suit-
able to profile whole transcriptome from low input RNA. We used SMART-Seq v4 from Clontech which incor-
porates the SMART technology. SMART technology enriches for full length cDNA and subsequently improves 
5′ representation. Infact, even an older version of the SMART-Seq (version 2) protocol showed the highest 5′ 
and 3′ coverage, and lowest ribosomal RNA content when low quality and low quantity RNA input technologies 
were compared6. In addition, the SMART technology has also been implemented for single-cell RNA sequencing 
due to its lower input limit of 10 pg6. The SMART-Seq v4 provides two Illumina-compatible options for library 
preparation, which mainly differ with respect to time taken as well as cDNA fragmentation method. Clontech’s 
low input library prep protocol involves mechanical shearing of cDNA for 200–500 bp using Covaris, while 
NexteraXT is a shorter method compared to Clontech and requires enzymatic digestion resulting in a slightly 
longer fragment sizes (~600 bp). As a comparison to whole transcriptome approach of Clontech’s SMART-Seq 
technology, we used targeted transcriptome approach of Thermo Fisher’s Ion AmpliSeq technology. AmpliSeq is 
more commonly used for targeted panels of various complexities to amplify genomic DNA13. We reasoned that 
a targeted representation of the transcriptome may enable us to maintain diversity, which is key for low input 
profiling methods.

In this study, we observed that as the cell input decreased the number of detected genes (DGs) decreased in 
SMART technology with both library preparation protocols. On the other hand, the number of DGs was compa-
rable for all cell inputs with AmpliSeq technology. Overall, the number of DGs was not dependent on the tran-
script length, and the highest impact was seen on the loss of low expressing genes. Comparing technical replicates 
and cell inputs, there was consistent reproducibility at 1000 cell input and above with greater variability at 100 
cell input. However, at 100 cell input, AmpliSeq still had higher reproducibility between technical replicates and 
different cell inputs than SMART technology. Deeper look at differentially expressed genes (DEGs) showed that 
there was decent overlap between different protocols in detecting consistent fold change. The majority of platform 
specific genes had high variance but was confirmed with qRT-PCR. At the lowest input of 100 cells, all protocols 
retained high precision; however, there was a significant drop in sensitivity in detecting DEGs. Overall, the sen-
sitivity for DEG detection was better with AmpliSeq technology, especially at 5 K input and below. For instances 
in which low cell numbers are used as input, we recommend that further interrogation such as pathway analysis 
is performed in order to interpret the data accurately. Finally, well established T cell activation signature was 
detected at 1 K cell input and above with both protocols; with AmpliSeq detecting significantly higher number of 
these genes at 100 cell input.

Results
Number of detected genes decreased with reduced input in SMART technology, while it 
remained constant for AmpliSeq technology.  First we tested three different RNA extraction kits for 
different cell inputs of primary human naïve CD4 T cells purified from fresh peripheral blood of healthy human 
volunteers. We compared PicoPure, Zymogen and Qiagen RNeasy micro kit with cell inputs of 5 K, 1 K and 100 
cells from three donors (Fig. S1a). We performed qRT-PCR for two house-keeping genes: GAPDH and ACTB 
(β-actin) and demonstrated that Qiagen RNeasy micro kit and PicoPure kits provided the lowest CT values with 
highest consistency across three donors, especially at lowest input of 100 cells. At 100 cell input and 1 K cell input, 
PicoPure kit had more variability for one of the three donors tested, and CT values for Zymo kit were higher in 
some instances (Fig. S1b). Therefore, we used the Qiagen RNeasy micro kit for our study.

Primary human naïve CD4 T cells were treated with α-CD3 only or α-CD3 and B7-1 Fc, which stimulate T cell 
activation, for 2 hours. Next, the cells were collected and serially diluted to achieve 100 K, 5 K, 1 K and 100 cells. 
Finally, RNA was extracted and transcriptome library was generated with two different protocols: SMART-Seq 
and AmpliSeq. For SMART-Seq technology, two different library preparation kits were utilized: Nextera Library 
Preparation kit and Clontech Library Preparation kit (Fig. 1a). From this point forward, we will refer to the 
samples prepared with Nextera Library Preparation kit and sequenced with SMART-Seq as SMART_Nxt, the 
samples prepared with Clontech Library Preparation kit and sequenced with SMART-Seq as SMART_CC, and 
the samples prepared with AmpliSeq kit as AmpliSeq samples.

To evaluate the technical performance of the three protocols, we compared percentages of reads that aligned to 
reference genome (Human Genome hg19). For samples treated with α-CD3 and B7-1 Fc, the average alignment 
rates ranged between 59% to 74% for SMART_Nxt and SMART_CC. AmpliSeq mapping percentages across all 
cell gradients were between 81 to 92%. (Fig. 1b). Similar patterns were observed in samples treated with α-CD3 
alone (Fig. S2a). PCR duplication is a common concern of ultra-low input methods, as it could introduce noise 
and bias the analysis. For SMART-Seq based protocols (SMART_Nxt and SMART_CC), the duplication rate can 
be computationally estimated as reads with the same start postion. Both protocols showed dramatic increase 
of PCR duplication rate with reduced input cell number, from <20% at 100 K cells to >60% (SMART_Nxt) or 
>90% (SMART_CC) at 100 cells. At lower cell input (1 K and 100), SMART_Nxt showed lower PCR duplication 
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rate compared to SMART_CC (Fig. S2b). Since Ampliseq is by nature a PCR based technology, the duplication 
rate cannot be assessed with current version of the protocol. For gene annotation, we used the UCSC database. It 
contains total of 25369 genes, most of which are protein-coding. Among these genes, 20755 (81.8%) are included 
in the AmpliSeq detection panel. The AmpliSeq assay detects additional 47 genes (Fig. S2c). In order to com-
pare the number of genes detected across protocols, an equal number of total aligned reads (~17million, which 
equals to the minimum number of reads across the samples, as depicted by the hashed line in Fig. 1d) was used 
per sample. SMART_Nxt and SMART_CC detected over 16,000 genes (count > 0) in the 100 K cell samples. 
This number reduced with decreased cell input, with only about 50% (8000) of the genes detected in the 100 
cell samples. AmpliSeq detected ~15,000 genes in the 100 K cell samples, and notably comparable number of 
genes were detected even when the cell input decreased to 100 (Fig. 1c). To better understand the efficiency of 
gene detection with sequencing depth, for each sample we randomly extracted different number of counts and 

Figure 1.  Number of detected genes decreased with reduced input in SMART technology, while it remained 
constant for AmpliSeq technology. (a) Experiment design for low-input RNA-Sequencing platform evaluation 
using stimulated primary human naïve CD4 T cells. Three protocols based on two technologies and four cell 
gradients were tested. (b) Alignment rates for samples at the four input cell gradients (100, 1 K, 5 K, 100 K) for 
the three protocols. Bar plot shows mean +/− standard deviation of the replicates. (c) Number of USCS genes 
detected (count > 0) for samples at the four input cell gradients (100, 1 K, 5 K, 100 K) for the three protocols. 
Bar plot shows mean +/− standard deviation of the replicates. (d) Collection curves showing the number of 
detected genes at different sequencing depths in SMART_Nxt (left), SMART_CC (middle), AmpliSeq (right). 
Solid lines indicate the mean and shading regions indicate standard deviation. Black crosses in each sample 
indicates the sequencing depth where 90% of the genes were detected. Vertical dashed black lines indicate 
sampled library size for downstream analysis. (e) Number of detected genes grouped into high, medium and 
low expressing genes. (f) Density plot showing the distribution of the log2 transformed RPKM values in each 
cell input in SMART_Nxt (left), SMART_CC (middle), AmpliSeq (right). Minimum and maximum RPKM 
values at each cell input were also listed on the upper right of the plot. (g) Number of detected genes grouped 
into short, medium and long transcripts. Samples from α-CD3+ B7-1 Fc treatment were used for all figures.
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determined the number of detected genes. For majority of the samples, the gene detection was saturated (defined 
by 95% of the genes being detected) at ~10 million reads. Notably, for SMART_Nxt and SMART_CC the lower 
number of detected genes at low cell gradient could not be compensated by higher sequencing depth, while for 
AmpliSeq, the number of detected genes at different sequencing depth are comparable at different cell gradients 
(Fig. 1d). Furthermore, we grouped the genes by expression levels and for each platform, we used the 100 K sam-
ple as the reference. High expressing genes were defined as gene length adjusted count values (Reads per million 
per kb (RPKM)) >20 percentile, medium expressing genes as gene length adjusted count values between 20–80 
percentile, and low expressing genes as gene length adjusted count values < 20 percentile of all detected genes. 
We observed that the detection of medium and low expressing genes were impacted as cell input decreased, but 
high expressing genes were not impacted for SMART_Nxt and SMART_CC. Detection rates were not affected by 
input level for AmpliSeq (Fig. 1e). This is consistent with the density distribution of gene expression levels. For 
SMART_Nxt and SMART_CC, with decreased cell input, we observed higher density of genes with RPKM of 0, 
and lower density of genes with low to medium RPKM values. For AmpliSeq, the density of genes with RPKM 
of 0 are comparable at diffenent cell inputs, although we still observed slightly lower density of genes with low to 
medium RPKM especially at 100 cells. However, for AmpliSeq, the maximum RPKM values were lower at low 
cell inputs (Fig. 1f). The effect of transcript length on gene detection was also explored. Here, we defined long 
transcripts as the ones with length >80 percentile, medium transcript as ones with length between 20–80 percen-
tile, and short transcript as ones with length <20 percentile of the 20755 common gene targets in SMART_Nxt, 
SMART_CC and AmpliSeq. The transcript length had minimal impact on gene detection, as the ratio between 
the three group remains consistent in different cell inputs (Fig. 1g). Similar patterns were observed in samples 
treated with anti-CD3 alone (Fig. S2d–h). One advantage of the SMART-seq technology based protocols is the 
ability to detect non-coding genes and novel transcripts. Indeed, for both SMART_Nxt and SMART_CC, about 
10% of the reads were mapped to non-UCSC annotated genes across diffenent cell inputs (Fig. S2i). We increased 
the sampled reads of these libraries by ~11% (1/0.9) and used a more comprehensive annotation file of hg19 (the 
Ensembl annotation) with total of 59573 genes. By doing this we detected ~10,000 additional genes at 100 K cells 
for both protocols, most of which were non-coding genes. Similar to the UCSC genes, the detection was dramat-
ically decreased at lower cell inputs (Fig. S2j).

High reproducibility between technical replicates above 1 K-cell input, but increased variabil-
ity at 100-cell input.  We examined the reproducibility of gene expression levels across protocols, technical 
replicates and cell inputs. Overall, high reproducibility was observed across protocols and input levels (R2 ≥ 0.8), 
except the 100 cell samples from SMART_Nxt and SMART_CC showing lower level of concordance (R2 < 0.8) 
with other samples (Fig. 2a). Consistent with this observation, the PCA plot showed tight clustering of technical 
replicates, and a clear separation of the samples by treatment condition (α-CD3 only or α-CD3 and B7-1 Fc). 
However, the samples with 100 cell input clustered separately than the other cell input groups and treatments, and 
also showed significant variability within replicates (Fig. 2b). A closer look at the correlation between replicates 
showed high correlation for the 100 K cell samples (R2 = 0.99 for all three protocols). As cell input decreased, the 
correlation also decreased, but were maintained at R2 > 0.9 up to the 1 K cell input samples. Replicate correlation 
dropped significantly with the 100 cell samples. The R2 values were 0.6 for SMART_Nxt and SMART_CC, and 
0.8 for AmpliSeq (Fig. 2c). Similar correlation patterns were observed for the samples treated with α-CD3 alone 
(Fig. S3a,b).

Cell input of 1 K or higher show high reproducibility across input levels; 100-cell input exhibits 
loss of reproducibility especially for low expressing genes.  We further evaluated whether expression 
profiles at low cell input still represent the cell population (100 K cells) by calculating the correlation coefficient 
between samples with lower inputs to the 100 K-cell samples. For all three protocols, samples with 5 K-cell and 1 
K-cell samples showed high correlation with 100 K-cell samples (R2 > 0.9), while the correlation dropped to 0.7–
0.8 with 100-cell samples. Notably, AmpliSeq samples showed better correlation across all cell inputs compared to 
those from SMART_Nxt and SMART_CC. Specifically, for the 100 cell inputs, AmpliSeq had the highest correla-
tion compared to SMART_Nxt and SMART_CC (R2 = 0.83, 0.69 and 0.73 respectively) (Fig. 3a,b). To determine 
the impact of gene expression levels on the correlations, we again grouped the genes into high, medium and low 
expressing genes. High expressing genes showed highest correlations across all cell inputs (Fig. 3c). For medium 
expressing genes, the correlation of the 100 cell samples dropped to 0.6 for SMART_Nxt and SMART_CC while 
it remained above 0.8 for AmpliSeq (Fig. 3d). However, for low expressing genes, the correlation dropped signif-
icantly but to comparable levels for all three protocols (R2 < 0.2) (Fig. 3e). Again, similar results were observed in 
samples treated with α-CD3 (Fig. S4a–e).

Three different protocols detected common differentially expressed genes; however 
platform-specific genes were also detected.  Differential gene expression is one of the most informative 
outcomes for a RNA-seq experiment, since it provides insights into distinct biological processes between treat-
ments or state of cells and tissues (e.g. healthy vs. disease). Using 100 K cell samples as the reference, we examined 
the consistency between the three protocols in detecting differentially expressed genes (DEGs). Overall, 7762, 
7923 and 6662 genes had significant differential expression between the two treatment groups (α-CD3 + B7-1 Fc 
vs α-CD3) in SMART_Nxt, SMART_CC and AmpliSeq, respectively (false discovery rate (FDR) < 0.05) (Figs 4a 
and S5a, Dateset 1). Among these, 4261 DEGs were detected by all three protocols. SMART_Nxt and SMART_
CC showed higher similarity with 2398 common DEGs but not AmpliSeq. On the other hand, 1651 DEGs were 
detected by AmpliSeq but not the other two protocols (Fig. 4b). For the 4261 common DEGs that were detected 
by all three protocols, fold changes were consistent across protocols (R2 = 0.94 for SMART_Nxt and SMART_CC, 
R2 = 0.84 for AmpliSeq and SMART_CC; R2 = 0.85 for SMART_Nxt and AmpliSeq) (Fig. 4c). DEG fold changes 
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were also consistent between SMART_Nxt and SMART_CC for the 2398 common DEGs of the two protocols 
(R2 = 0.91) (Fig. S5b). However, platform-specific DEGs showed low correlation between different protocols 
(data not shown). In order to understand the significance of platform-specific genes, we picked representative 
genes for qRT-PCR validation. Results are shown in Tables S1–6. By using qRT-PCR, we determined whether 
the genes were significantly upregulated or downregulated, and whether this matched the RNAseq data. In some 
cases, the differential expression pattern matched, and we considered those genes validated. In other cases, either 
there was no significant change or the direction of differential expression was opposite to what was observed in 
RNAseq data. In the latter cases, we considered those genes to be not validated. We were able to validate the fol-
lowing percentages: SMART_Nxt only ~72%, SMART_CC only ~50%, AmpliSeq only ~59%, SMART_Nxt and 
SMART_CC ~76%, SMART_Nxt and AmpliSeq ~57% and SMART_CC and Ampliseq ~66%. We also looked at 
the transcript length, which showed no difference on common or platform specific DEGs (Fig. 4d).

To better understand the detection of platform-specific DEGs, we first looked into the expression level of these 
genes. We plotted the distribution in expression of 2398 genes that were common for SMART_Nxt and SMART_
CC (expression in α-CD3 + B7-1 Fc for genes up-regulated in α-CD3 + B7-1 Fc vs. α-CD3, and expression in 
α-CD3 for genes down-regulated in α-CD3 + B7-1 Fc vs. α-CD3). Indeed, the expression of these DEGs were 
higher in SMART_CC and SMART_Nxt than in AmpliSeq (Fig. 4e). On the other hand, the expression of 1651 
AmpliSeq specific DEGs, were higher in AmpliSeq than SMART_Nxt and SMART_CC (Fig. 4f). Next, we studied 
the variation between technical replicates in platform specific DEGs, and plotted the coefficient of variation (CV) 
between replicates. SMART_Nxt and SMART_CC common DEGs indeed had lower CV in SMART_Nxt and 
SMART_CC, while the AmpliSeq specific DEGs had lower CV in AmpliSeq. (Fig. 4g,h).

Number of differentially expressed genes decreased with reduced input, precision of detection 
stayed robust and AmpliSeq demonstrated greater sensitivity.  We also looked at the consistency 
of DEG detection at different cell inputs. At each cell input below 100 K, AmpliSeq detected higher number 
of DEGs compared to the other protocols. Input amount was correlated with number of DEGs. For example, 
AmpliSeq detected 6662 DEGs at the 100 K-cell input, 3382 (50.7%) of which were detected at the 5 K-cell input, 
844 (12.6%) at the 1K-cell input, and only 90 (1.3%) at the 100-cell input. At each cell input, a small number of 
DEGs were also detected that were absent in the 100 K-cell samples (For AmpliSeq samples: 907 for the 5 K, 60 
for the 1 K and 18 for the 100-cell inputs). A similar patterns were observed for SMART_Nxt and SMART_CC 
(Fig. 5a). Using the 100 K-cell samples as reference, we checked the precision (True positive/(True positive + False 
positive)) and sensitivity (True positive/(True positive + False negative)) at different cell inputs in each platform. 

Figure 2.  Consistency between technical replicates was high at cell input equal to or above 1 K, and there was 
increased variability at 100 cell input. (a) Heatmap showing Pearson correlation of log2 transformed count 
values (Blue indicates low correlation and red indicates high correlation). Samples from α-CD3 + B7-1 Fc 
treatment are shown. (b) PCA plot show global expression pattern for sample in each cell gradient in each 
platform. Samples from both α-CD3 and α-CD3 + B7-1 Fc treatment are shown. (c) Scatter plots show 
correlation between the two replicates for each cell gradient in each platform. R2 indicates coefficient of 
determination. Samples from α-CD3 + B7-1 Fc treatment are shown.
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This revealed that as input decreased, precision remained robust among all three protocols (Fig. 5b). On the other 
hand, AmpliSeq had better sensitivity compared to SMART_Nxt and SMART_CC at the 5 K-cell input (~50% 
versus ~25%). Sensitivity further dropped at 1 K and 100-cell inputs, with AmpliSeq showing higher sensitivity. 
(Fig. 5c). When using the 4261 common DEGs detected by all three platforms at 100 K cells (Fig. 4b) as reference, 
we again observed dramatic decrease of number of DEG detection with reduced cell input in all three protocols, 
with AmpliSeq showing higher sensitivity than the other two procols (Fig. S6a,b).

Out of the 6662 DEGs detected with 100 K input in AmpliSeq samples, 2293 genes showed >2 fold differ-
ence, and these genes were not detected to be significant at the 100-cell input. We then looked into the group 
comparison result of these genes in the 100-cell samples. Among these genes, 145 genes were not detected, 1578 
genes were detected but did not achieve significance (FDR < 0.05 or P value < 0.05) in the group comparisons, 
while 570 genes achieved significance but showed expression change of <2 fold (note 91 genes showed opposite 
direction of expression change) (Fig. 5d). For the 1578 genes that did not achieve significance, a proportion of 
them showed lower expression values in the 100-cell samples compared to the 100 K cell samples. More impor-
tantly, majority of these genes showed high variation between the replicates compared to the 100 K-cell samples, 
reflected by a heavy right tail in the CV plot (Fig. 5e).

Since the 100-cell samples showed lower sensitivity in detecting DEGs, we performed gene set enrichment 
analysis (GSEA), which takes into consideration of overall expression change of gene sets, and therefore is more 
sensitive in capturing changes of certain biological processes or pathways. GSEA analysis against the canonical 
pathways of the Molecular Signatures Database detects 47 pathways enriched in α-CD3 + B7-1 Fc treatment 
(FDR < 0.25 as recommend cutoff by GSEA), with good representation of pathways associated with activation of 
T cells, such as cytokine signaling in immune system, Th1/Th2 pathway, NFAT pathway and Interferon signaling 
(Fig. 5f).

Figure 3.  Consistency between different gradients was high at cell input equal to or above 1 K, and the greatest 
impact was observed on the loss of low expressing genes at 100 cell input. (a) Bar plots show correlation 
between 5 K, 1 K or 100 cell inputs and 100 K cells input for each platform. Replicate 1 of each set was used for 
the calculation. R2 indicates coefficient of determination. (b) Scatter plot show the correlation between samples 
from the 5 K (top), 1 K (middle), 100 (bottom) cells to samples from the 100 K cells for each platform. Replicate 
1 was used for the calculation. (c–e) Bar plot show correlation between samples from the 5 K, 1 K or 100 cell 
input and 100 K cells for each platform. Panels are separated to represent (c) high, (d) medium and (e) low 
expressing genes. Replicate 1 was used for the calculation. R2 indicates coefficient of determination. In each 
figure, samples from α-CD3 + B7-1 Fc treatment were used.
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Detection of established T cell activation markers was achieved at 1 K cell input and above, and  
AmpliSeq detected higher percentage of these genes at 100 cell input.  Previous studies have 
reported genes that are differentially expressed upon T cell activation (Chun Jimmie Ye et al., 2014). Here we 
looked into 15 of these genes (IL2, IL21, IFNG, FASLG, CD200, TNFRSF9, TNF, EGR1, CD69, MYC, IL2RA, 
ICOS, IL13, TNFSF14, NFKBIA, and CCR7) upon T cell activation, to examine how the detection of differential 
gene expression compared between different technologies. At higher inputs (100 K, 5 K and 1 K), the technologies 
performed similarly in detecting the fold change in these different genes. For the 100-cell samples, in Ampliseq, 7 
(CD200, CD69, EGR1, FASLG, IL2, MYC and TNF) out of the 16 genes were significantly upregulated in α-CD3 
and B7-1 Fc group versus α-CD3 only, while only 1 gene (IL2) was detected by SMART_Nxt and SMART_CC. 
However, for TNFSF14, which was detected to be differentially expressed by SMART_Nxt and SMART_CC, 
AmpliSeq was not able to detect any significant change even in the highest cell input (Fig. 6a). qRT-PCR analysis 

Figure 4.  Three different platforms detected common differentially expressed genes; however platform specific 
detection was also observed. (a) Differential gene expression analysis for each platform. Red dots indicate 
genes with FDR < 0.05 and Fold change > = 2, blue dots indicate genes with FDR < 0.05 and Fold change < 2, 
grey dots indicate genes with FDR > 0.05. (b) Overlapping differentially expressed genes (FDR < 0.05) among 
platforms. (c) Scatterplots showing the log2 transformed fold change between each pair of the three platforms 
for the 4261 common DEGs. R2 indicates coefficient of determination. (d) Distribution of transcript lengths 
of the common and platform specific DEGs as in (b). (e) The distribution in expression of 2398 genes that 
were common for SMART_Nxt and SMART_CC (expression in α-CD3 + B7-1 Fc for genes up-regulated 
in α-CD3 + B7-1 Fc vs. α-CD3, and expression in α-CD3 for genes down-regulated in α-CD3 + B7-1 Fc vs. 
α-CD3). (f) Distribution of transcript lengths for AmpliSeq specific 1651genes. (g,h) The coefficient of variation 
(CV) between replicates for (g) SMART_Nxt and SMART_CC common DEGs and (h) AmpliSeq specific genes.
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Figure 5.  Number of differentially expressed genes decreased with reduced input, precision of detection 
stayed robust and AmpliSeq demonstrated greater sensitivity. (a) Number of DEGs between α-CD3 and 
α-CD3 + B7-1-Fc at 100 K, 5 K, 1 K and 100 cells input using Amplieq, SMART_Nxt and SMART_CC 
platforms (FDR < 0.05). Gray boxes indicate the DEGs not detected in 100 K cell samples (benchmark sample) 
but detected at low cell-number gradients (false positive hits). The absolute number of true positive and false 
positive detected genes were shown above each bar in the plot. (b) Precision for detecting DEGs at low input 
samples. (c) Sensitivity for detecting DEGs at low input samples. (d) Pie plot showing the differential expression 
analysis results for the DEGs detected in the 100 K samples (FDR < 0.05 and Fold change > 2) but not the 100 
cell samples. (e) For the 1578 non-significant genes as in (d), density plots showing the mean log2 count and 
coefficient of variation between replicates for the 100 K cell samples and 100 cell samples. (f) Top 20 pathways 
enriched in α-CD3 + B7-1 Fc from the gene set enrichment analysis (GSEA) for the 100 cell sample. Bar plot 
shows the normalized enrichment score. All pathways passed the FDR < 0.25 as recommended by the GSEA 
team.

https://doi.org/10.1038/s41598-019-44902-z


9Scientific Reports |          (2019) 9:8445  | https://doi.org/10.1038/s41598-019-44902-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

of the samples demonstrated that 12 out of 16 genes were differentially changed in α-CD3 and B7-1 Fc group 
versus α-CD3 only (Fold change > 2) (Fig. 6b). Interestingly, we did not detect significant upregulation of IL-21 
with qRT-PCR, and this was unexpected. This may be due to the primer set that was used.

Discussion
T cells are main players in adaptive immunity and have also been important targets in modulating different 
disease pathologies such as cancer and autoimmunity. Primary T cells can be limiting in numbers and are prime 
examples of cells with low RNA content. Given their importance, studying T cells at a whole-transcriptome level 
requires a platform that combines low amounts of RNA with reproducible and quantitative detection of subtle 
gene expression changes. Ability to detect gene expression levels quantitatively and reproducbly is the hallmark of 
a reliable gene expression analysis platform. Over the recent years, RNAseq has emerged as such a platform; how-
ever, standard protocols for RNAseq analysis requires several hundred nanograms of high-quality RNA. Hence, 
we evaluated the feasibility of studying gene expression changes underlying T cell activation using the low-input 
RNAseq methodology. We selected SMART-Seq, Ampliseq and two different library preparations for SMART-Seq 
for performing this evaluation based on published methods as well as product specifications provided by kit man-
ufacturers. We compared these three methods to study differential gene expression in human T cells with α-CD3 
and α-CD3 + B7-1 Fc activation.

As a first step, we compared three different RNA extraction and isolation methods, and demonstrated that 
Qiagen RNeasy micro kit performed best in extracting RNA from low cell numbers. In respect to gene detec-
tion rates, AmpliSeq had the best performance out of all three protocols. It is also notable that across protocols, 
increasing the sequencing depth beyond 10 million did not help in improving gene detection rates. This indicates 
that at very low input levels, the mRNA representation is lost at RNA extraction or library prep steps. While input 
levels did not affect the detection rate for high expressing genes across methods, we observed that Ampliseq was 
the only method that preserved the detection rates for medium and low expressing genes. This supports that the 
utilization of gene-specific oligonucleotides as primers during the library preparation to improve the detection 
of low expressors. SMART_Nxt and SMART_CC showed significant drop in detection rates at inputs below 
100 K cells, with the highest impact on low expressing genes. Furthermore, detection rates were not impacted by 
transcript length for any method. Therefore, we demonstrate that AmpliSeq method had the best reproducible 
alignment rate and number of detected genes, regardless of input cell number. This is an important point to 
consider while deciding which RNAseq method to use for studies with low RNA input. For example, in instances 
of study designs where there are sample sets with low cell numbers as input, AmpliSeq may provide consistent 
performance in the above mentioned parameters across all samples in the experiment.

Technical reproducibility across input levels and methods were generally high for all methods, except at 
100-cell input. At the 100-cell input, AmpliSeq outperformed other methods with a R2 = 0.80 compared to 
R2 = 0.6 for SMART_Nxt and SMART_CC. However, it is important to note that when we looked at reproduc-
ibility between different cell inputs, all methods performed sub-optimally at the 100 cell input, when compared 
to the 100 K-cell reference. This was especially evident when comparing medium and low expressing genes. This 
may suggest that the threshold for the detection of medium and low expressing genes reproducibly exists with 

Figure 6.  Detection of well-known T cell activation markers was achieved at 1 K cell input and above, and 
AmpliSeq detected higher percentage of these genes at 100 cell input. (a) Log2 fold change and FDR between 
α-CD3 and α-CD3 + B7-1-Fc for selected genes that were reported previously to be up-regulated at T cell 
activation. Log2 fold change is indicated by color and significance (FDR) is indicated by size of the points.  
(b) qRT-PCR analysis of selected genes, fold change in α-CD3 + B7-1 Fc group when compared to α-CD3 only 
is shown.
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1 K-cell input and above. When using 100 cells as input, we need to keep in mind that the data would be mostly 
representative of high expressing genes, regardless of the technology employed.

In detecting DEGs, SMART_Nxt and SMART_CC were more concordant with each other than with 
Ampliseq, ostensibly due to the SMART technology that underlies both protocols. The discordance we observed 
between Ampliseq and the SMART methodologies in detecting certain specific DEGs could be either due to low 
representation of those genes in the library pool or high variability among replicates. It is to be noted that while 
precision remained high at all input levels, sensitivity of detecting DEG dropped significantly for all methods as 
the cell input decreased. Ampliseq had almost twice as much sensitivity at 5 K input, and slightly better sensitivity 
at 1 K and 100-cell inputs. Additionally, Ampliseq was also able to detect more biologically relevant gene expres-
sion changes compared to SMART_Nxt and SMART_CC at the 100 cell input level. However, at 100 cell input 
level, AmpliSeq detected only 1% of the DEGs compared to 100 K-cell input. Hence, when interpreting the data, 
additional approaches such as pathway enrichment would be helpful besides differential expression analysis. For 
SMART_Nxt and SMART_CC, the drop of sensitivity may at least be partialy explained by the dramatic increase 
of PCR duplication rate, which introduces noise to the data. Acually at 1 K and 100 cell inputs, SMART_Nxt 
performed slightly better than SMART_CC in DEG detection, consistent with lower PCR duplication rates of 
SMART_Nxt at these two cell input levels compared to SMART_CC. The PCR duplication rate is not assessible 
for AmpliSeq since the technology is in nature based on PCR amplification. Additional modifications, such as 
unique molecular index (UMI), may be needed for accurate evaluation.

It is also important to note that, although AmpliSeq technology showed superior performance in gene detec-
tion, replicate consistency and differential expression detection, it also has some disadvantages. First, since it is 
a technology based on PCR amplication, the genes that can be detected are limited to the pre-designed primer 
library, mostly the protein-coding genes with current version of the protocol. With the SMART-seq based proto-
cols, it is possible to detect non-coding genes and novel transcripts. Second, the quality, including both specificity 
and sensitivity, of the primers is critical in the accurate detection of gene expression. One example of such a gene 
is TNFSF14, which is robustly detected using qPCR as well as SMARTseq-based protocols at high cell inputs. 
However, even at the 100 K-cell input, Ampliseq was not able to detect the expression of TNFSF14, probably due 
to sub-optimal primer designs. On the other hand, in SMARTseq-based protocols, the cDNA is sequenced and 
aligned across the gene in an unbiased way; providing an advantage for this technology.

Finally, droplet-based single cell RNA sequencing approaches are also popular in order to study heterogeneity 
and plasticity of cell populations. While single cell RNAseq has several advantages, bulk RNA sequencing still 
is preferable for reasons such as cost savings and ability to use frozen samples. The number of detected genes in 
single cell sequencing is usually lower compared to bulk sequencing due to high drop-out rate of low expressing 
genes. Additionally, recommended minimum number of cells to sequence is 500 (per 10X protocol) and the 
workflow of single-cell RNAseq requires approximately 20–30% more cells as input. Depending on the nature of 
scientific questions and in circumstances in which only 100–500 cells are available, bulk RNA sequencing may be 
the preferable method.

While it is important to investigate the three different protocols in regard to different technical criteria, we 
also evaluated the biological meaning of the data acquired in this study. An expected T cell response against a 
pathogen or tumor cells requires an intricate response involving many genes. Stimulation of T cells with signal 
1 (α-CD3) and signal 2 (B7-1 Fc) further results in upregulation of activation markers (i.e. CD69 and IL2RA) 
and other co-stimulatory and co-inhibitory receptors (i.e. ICOS, TNFRSF9, TNFSF14 and CD200), in order to 
optimize the effector response. ICOS (CD278) is a co-stimulatory molecule that plays an important role in tumor 
immunity. It has been demonstrated that the efficacy of Ipilimumab (anti CTLA4) was partly due the recruitment 
of ICOS+ T cells into the tumor; and that in mice lacking ICOS, anti-CTLA4 therapy was much less effective14. 
CD200, on the other hand is a co-inhibitory receptor, and along with others such as PD-1, is upregulated as a 
self-check mechanism of immunity. Interestingly, ICOS was detected at 100 K and 5 K inputs with SMART_Nxt 
and SMART_CC, and the detection was not as robust with AmpliSeq technology. This may be due to poor primer 
design that was discussed previously. On the other hand, AmpliSeq technology was able to detect CD200 differ-
ential gene expression even at 10-cell input.

One of the hallmarks of T cell activation is Interleukin 2 (IL-2) secretion. When T cells are activated through 
their TCR and co-stimulated through CD28, IL2 mRNA is rapidly upregulated (data not shown). In general, there 
is more than 1000-fold increase of IL-2 mRNA at 2 hr after α-CD3 and B7-1 Fc stimulation, and this fold change 
gradually decreases to baseline in the following hours. In this study, while IL-2 was detected by all technolo-
gies, AmpliSeq detection level at 100 cells was equivalent to 100 K cell input, demonstrating superior sensitivity. 
Another marker that was detected equally at 100 K and 100 cell input was Tumor Necrosis Factor (TNF), which 
also is an important inflammatory marker in T cell activation.

Activated T cells secrete many different cytokines, and depending on the milieu, they will skew into T 
helper 1, T helper 2, T helper 17 or T regulatory subtypes. One important T helper 1 cell effector cytokine is 
Interferon-gamma (IFNG). This cytokine is especially important in mounting an effector response against cancer 
cells and viral antigens15. In certain cases, only a very small number of tumor-infiltrating cells or virus-specific 
T cells can be isolated from patients, and it would be important to know which method would be effective in 
detecting this cytokine. AmpliSeq showed increased detection sensitivity at 100-cell input when compared with 
SMART technology. Another cytokine that is CD4 T cell-specific and important in cancer setting is Interleukin 
21 (IL-21). IL-21 is upregulated in Th2 and Th17 subtypes and it has been demonstrated to increase CD8 T cell 
cytotoxic response. CD8 T cells primed with IL-21 also do not require CD4 T cell priming for cytotoxic killing 
responses16,17. Even at lower cell inputs, Amliseq was able to detect the mRNA of this cytokine.

CCR7 (CD194) is important in homing of T cells into the secondary lymphoid organs, and usually is down-
regulated upon T cell activation. It has been demonstrated that this reduction in CCR7 is paralleled by upregula-
tion of CXCR5 in the tonsil, and that the expression of these markers would dictate where the cells would locate 
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within the organ (CCR7: resting vs CXCR5: activated)18. CCR7 expression is also different in different tissues 
and it may be a predictor of the number of Ag-engaging T cells, so detection of this marker would be important. 
Interestingly, Nextera and CC detected downregulation of CCR7 at 100 K input, and not in any other cell gradi-
ents. In the case of AmpliSeq, downregulation was not detected at any input, and this may be addressed by better 
primer design.

Engagement of receptors on the surface of the T cells translate into intricate series of events at the intracellular 
level. Many transcriptional regulators are activated in order to orchestrate inflammatory gene expression. The 
earliest marker of CD28 engagement by B7-1 Fc is the family of early growth factor proteins. EGR1 regulates both 
Th1 and Th2 cytokine expression by modulating other transcription factor expression such as T-bet19. In a dif-
ferent study, it was demonstrated that EGR1 along with NFAT and NFKB binds to the IL-4 promoter in activated 
T cells and modulate the expression of this cytokine. In our study, we were able to detect EGR1, MYC and NFKB 
with all the technologies tested; however, as in other instances, Ampliseq method was more sensitive in detecting 
these genes at the 100-cell input.

In conclusion, at cell input of 100 K, 5 K and 1 K, all three methods are comparable in most of the criteria 
tested. AmpliSeq technology demonstrated some advantage over SMART technology: (a) the number of detected 
genes stayed constant regardless of input and even with low expressing genes, and (b) there was greater sensi-
tivity in differential gene expression detection, especially at 5 K input. Furthermore, at 100-cell input, it may be 
better to employ AmpliSeq targeted technology due to increased detection of differential gene expression and 
comparable amount of sequencing data available regardless of input. However, it has to be noted that, even with 
the best of these methods, there is significant loss of information at the medium and low exressing genes at the 
100-cell level. When targeting low expressing genes at 100-cell input or lower, targeted approaches like qRT-PCR 
may be best suited. For cell types that are similar to T cells in terms of RNA content, we expect that these three 
technologies will behave similarly at cell numbers 1000 and above; however this study clearly demonstrates the 
platform-specific outcomes of a RNA sequencing study.

Methods
T cell isolation and in-vitro activation.  All experiments using human blood were approved and car-
ried out in accordance with Advarra institutional review board (IRB). All experimental protocols were approved 
by MedImmune Blood Donor program. Written consent was obtained from adult healthy volunteers who are 
employees of MedImmune or Astrazeneca, and anonymized for research purposes. Donors positive for HIV 
infection, Hepatitis B or C virus, Human T-lymphotropic virus or syphilis are excluded from the donor pro-
gram. Naïve CD4 T cells were isolated from the PBMC of donors with Easy Sep negative selection kit (Miltenyi # 
19155). The cells were then plated in 24-well plates (Sigma # CLS3524) that were previously coated with α-CD3 
(BioLegend # 317326) alone or a-CD3 and B7.1-Fc (R&D Biosystems # 140-B1). The plates were coated at 37 °C 
for 2 hours, and washed with PBS extensively prior to the addition of cells. 2.5 × 105 cells were added per well and 
incubated for 2 hours at 37 °C and collected for RNA isolation. QIAshredder (Qiagen # 79654) was used according 
to manufacturer’s instructions to obtain T cell lysates.

RNA Extraction for comparing different RNA extraction kits.  T cells were collected in 200 µl of RLT 
Buffer with Beta-mercaptoethanol and serially diluted to achieve 100000, 5000, 1000 and 100 cells per sample. 
Total RNA from the cells was extracted using Qiagen’s RNeasy Micro Kit (Catalog #74004) according to the 
manufacturer’s guidelines with DNAse treatment and eluted in 18 µl of RNase-free water. To assess the quality 
and quantity of the RNA, the samples were analyzed on the Agilent 4200 Tape Station using the Agilent High 
Sensitivity RNA Screen Tape.

cDNA Synthesis of Ultra-low Input RNA for Illumina Sequencing Protocols.  The SMART-Seq v4 
Ultra-low Input RNA Kit for Sequencing (Takara #634888) was used to generate high-quality full-length cDNA. 
In summary, the RNA was primed by the 3′ SMART-Seq CDS Primer II A for first-strand cDNA synthesis and 
used the SMART-Seq v4 Oligonucleotide for template switching at the 5′ end of the transcript. First-strand syn-
thesis was directly followed by cDNA amplification by LD-PCR, which was carried out based on input amount of 
total RNA recommendations listed in protocol: 8 PCR cycles for 100 K samples and 11 cycles for remaining sam-
ples. The PCR-amplified cDNA were then purified and validated on the Agilent High Sensitivity DNA chip using 
the Agilent 2100 Bioanalyzer. The final cDNA product was aliquoted into two 5ul reactions, one for Clontech 
Low Input library preparation for Illumina whole transcriptome sequencing on the NextSeq500, and the other for 
Nextera Low Input library preparation for whole transcriptome sequencing on the HiSeq2000.

Clontech Low Input Library Preparation for Illumina Whole Transcriptome Sequencing on 
NextSeq500.  The cDNA was sheared using the Covaris M220 focused-ultra sonicator (SonoLab version 7.1) 
with run settings for desired target size between 200–500 bp. Library preparation was then performed following 
manufacturer’s instructions for Low Input Library Prep Kit v2 (Clontech # 634899). In brief, the sheared cDNA 
first underwent Template Preparation and Library Synthesis followed by Library Amplification where Illumina 
compatible dual index barcoded sequences were added to each sample. The recommended number of amplifica-
tion cycles for different amounts according to the Low Input Library Prep Kit v2 user manual was used as a guide-
line for optimal amplification: 6 PCR cycles for 100 K/5 K samples and 10 cycles for 1 K/100 samples. The purified 
amplified libraries were then validated by Agilent High Sensitivity DNA chip on Agilent 2100 Bioanalyzer and 
quantitated via qPCR using KAPA Library Quantification Kit (KAPA Biosystems) according to manufactur-
er’s instructions. Libraries were then normalized to 4 nM each and pooled for a total of five Clontech libraries 
per pool and sequenced on Illumina’s NextSeq500 sequencer with the following run parameters: Paired-End/
Dual-Indexed 2 × 75 bp reads.
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Nextera Low Input Library Preparation for Illumina Whole Transcriptome Sequencing on 
HiSeq2000.  The cDNA was normalized to the modified recommended input amount of 100–150 pg based 
on Clontech’s SMART-Seq v4 Ultra-low RNA protocol. The samples were then tagmented according to Nextera 
XT DNA Library Prep Protocol (Illumina # FC-131-1024). During this step, the cDNA was simultaneously frag-
mented and tagged with sequencing adapters in a single enzymatic reaction. The fragmented cDNA was amplified 
for 12 PCR cycles and barcoded with Illumina Nextera XT DNA dual-index sequences. The amplified libraries 
did not undergo bead-based normalization as final step of protocol, and instead were purified using Ampure 
XP beads (Beckman Coulter). The purified amplified libraries were then validated by Agilent High Sensitivity 
DNA chip on Agilent 2100 Bioanalyzer and quantitated via qPCR using KAPA Library Quantification Kit (KAPA 
Biosystems) according to manufacturer’s instructions. Libraries were normalized to 4 nM each and pooled for a 
total of 4 Nextera libraries per pool, and sequenced on Illumina’s HiSeq2000 sequencer (1 pool per lane) with the 
following run parameters:Paired-End/Dual-Indexed 2 × 75 bp reads.

Ampliseq Library Preparation for Targeted Transcriptome Sequencing.  For each sample, 3.5 ul 
of RNA was used for input into the Ion Ampliseq Transcriptome Human Gene Expression Kit (Thermo Fisher 
# A26325). Due to variations in RNA concentrations, this resulted in an input of 0.69 ng to 10.61 ng for each 
Ampliseq reaction. For target amplification, samples with 8–10 ng RNA input underwent 12 PCR cycles while 
samples with less than 8 ng RNA input underwent 16 PCR cycles. Barcoded Ampliseq libraries were eluted in 50ul 
low TE and quantified using the Ion Library TaqMan Quantification Kit (Thermo Fisher #4468802). Libraries 
were normalized to 25pM for templating on the Ion Chef (Thermo Fisher). Different replicates of the same orig-
inal diluted cell pellets were templated and sequenced on the same Ion Proton PI chip (Thermo Fisher) for a 
total of 8 Proton runs. Three libraries with less than 20 million mapped reads per library were re-templated and 
re-sequenced in order to obtain adequate reads.

Bioinformatics analysis.  For all samples, sequencing depth were designed to be two times of the recom-
mended depth (i.e. 20 M for Ampliseq and 40 M for Clontech and Nextera). For Clontech and Nextera sam-
ples, Fastq files were quality checked using FastQC and further aligned to human genome (hg19) using Hisat2 
(2.0.2-beta)20. PCR duplication rates were determined using Picard (http://broadinstitute.github.io/picard/), 
after the bam files were normalized to the size of the smallest sample. Gene count tables were generated using 
HTSeq (version 0.5.3p9)21. For Ampliseq samples, alignment and gene expression count were performed using 
Ion Torrent ampliSeqRNA Plugin v0.5.4.0 (Thermo Fisher) using hg19 genome.The count tables were further 
normalized to count per million (CPM) using edgeR (R Bioconductor)22. Differential expression gene analy-
sis was performed using edgeR. False discovery rate (FDR) value was calculated based on the p-value using 
Benjamini–Hochberg procedure and genes with FDR < 0.05 were considered to be significant. Pathway analysis 
was performed using Gene set enrichment anlays (GSEA)23. Heatmap visualization was built using pheatmap (R). 
Statistical analysis was performed using R. Graphs were generated using R or Office Excel. All RNA sequencing 
data have been uploaded to Gene Expression Omnibus (GEO) with the accession number GSE130882 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130882).
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