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Abstract
Aims/hypothesis Genome-wide association studies (GWAS) for type 2 diabetes have uncovered >400 risk loci, primarily in
populations of European and Asian ancestry. Here, we aimed to discover additional type 2 diabetes risk loci (including African-
specific variants) and fine-map association signals by performing genetic analysis in African populations.
Methods We conducted two type 2 diabetes genome-wide association studies in 4347 Africans from South Africa, Nigeria,
Ghana and Kenya and meta-analysed both studies together. Likely causal variants were identified using fine-mapping
approaches.
Results The most significantly associated variants mapped to the widely replicated type 2 diabetes risk locus near TCF7L2 (p =
5.3 × 10−13). Fine-mapping of the TCF7L2 locus suggested one type 2 diabetes association signal shared between Europeans and
Africans (indexed by rs7903146) and a distinct African-specific signal (indexed by rs17746147). We also detected one novel
signal, rs73284431, near AGMO (p = 5.2 × 10−9, minor allele frequency [MAF] = 0.095; monomorphic in most non-African
populations), distinct from previously reported signals in the region. In analyses focused on 100 published type 2 diabetes risk
loci, we identified 21 with shared causal variants in African and non-African populations.
Conclusions/interpretation These results demonstrate the value of performing GWAS in Africans, provide a resource to larger
consortia for further discovery and fine-mapping and indicate that additional large-scale efforts in Africa are warranted to gain
further insight in to the genetic architecture of type 2 diabetes.
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Abbreviations
AADM Africa America Diabetes Mellitus
DCC Durban Diabetes Case Control study
DDS Durban Diabetes Study
GRS Genetic risk score
GWAS Genome-wide association study
LD Linkage disequilibrium
MAF Minor allele frequency
NIHR National Institute for Health Research
PC Principal component
QC Quality control
VNTR Variable number tandem repeat

Introduction

Type 2 diabetes is a major and growing public health problem,
with Africa being the region with the fastest growing preva-
lence [1–3]. In addition to lifestyle, genetic factors play a major
role in susceptibility to type 2 diabetes. To date, type 2 diabetes
genome-wide association studies (GWAS) have uncovered
over 400 risk signals, primarily in populations of European
[4, 5] and Asian [6–8] ancestry, with more limited efforts in
Hispanics/Latinos [9–11] and African-Americans [12, 13].
Thus far, type 2 diabetes genetic studies in populations from
Africa, which are genetically and environmentally diverse, have
focused on the replication of established loci [14].

Here, we conducted a meta-analysis of type 2 diabetes in
up to 4347 African participants to identify genetic risk factors
associated with type 2 diabetes in Africans, evaluate previous-
ly reported loci and utilise the finer-grained linkage

disequilibrium (LD) pattern of African populations to fine-
map-associated loci.

Methods

Study participants South African Zulu individuals were type 2
diabetes cases and controls from two studies: the Durban
Diabetes Study (DDS) and the Durban Diabetes Case
Control study (DCC). DDS was a population-based cross-sec-
tional study of non-pregnant urban black African adults of
Zulu descent, aged >18 years, residing in Durban, South
Africa [15, 16]. Further details are provided in the electronic
supplementary material (ESM) Methods. Additional type 2
diabetes cases from the same ethnic group and locality were
obtained from the DCC, which included individuals with type
2 diabetes attending a diabetes clinic. Type 2 diabetes was
defined using WHO criteria [15, 16]. The combined type 2
diabetes cases and controls from DDS and DCC were aggre-
gated into a single Zulu study.

The Africa America Diabetes Mellitus (AADM) study
comprised individuals from sub-Saharan Africa, enrolled
from university medical centres in Nigeria, Ghana and
Kenya. A person with type 2 diabetes was identified using
ADA criteria or if he or she was receiving treatment for type
2 diabetes. Probable cases of type 1 diabetes were excluded
and controls had no evidence of diabetes based on fasting/2 h
glucose or symptoms of suggestive diabetes [14]. The charac-
teristics of the Zulu and AADM participants are shown in
ESM Table 1.
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Genotyping, quality control and imputation In total, 2707
African individuals of Zulu descent (2003 women and 704
men) were genotyped using the Illumina Multi-Ethnic
Genotyping Array (Illumina, Illumina Way, San Diego, CA,
USA). Following sample and variant quality control (QC)
(ESM Methods), there were 2578 samples with genotype
and phenotype information (1602 cases and 976 controls)
and 1,434,868 variants (1,395,345 autosomal and 39,523 on
the X chromosome).

The AADM samples were genotyped on the Affymetrix
Axiom PANAFR SNP array as described previously [14].
After QC (ESM Methods), there were 1031 cases and 738
controls and 2,141,465 variants (2,080,378 autosomal and
61,087 on the X chromosome) in AADM.

All samples were imputed to a merged panel of 1000
Genomes phase 3 [17] and African samples using IMPUTE2
[18] (Zulu) or positional Burrows–Wheeler transform
(PBWT) [19] using the Sanger imputation server (AADM)
(ESM Methods). We retained all imputed SNPs with
MAF > 0.01 and imputation information score > 0.4 that were
also in a newer version of the imputation panel.

Association analysis In Zulu samples, association with type 2
diabetes was performed for each variant based on the imputa-
tion dosage using a linear mixed model that accounts for the
presence of related individuals and any population structure
implemented in genome-wide efficient mixed-model associa-
tion (GEMMA) [20], adjusting for age, sex and BMI. The
kinship matrix was estimated from directly genotyped autoso-
mal variants with MAF > 0.01. In AADM, association with
type 2 diabetes was performed for each variant based on the
imputation dosage using an additive logistic regression model
implemented in SNPTEST v2.5.2 [21] (Oxford University,
Oxford, UK www.well.ox.ac.uk/~gav/resources/snptest_v2.
5.2_linux_x86_64_dynamic.tgz) adjusting for age, sex, BMI
and the first three principal components (PCs) to account for
population structure. The number of PCs adjusted for in
AADM was determined by testing for the number of PCs
using the minimum average partial test [22]. The first three
PCs were determined to be significant and thus were adjusted
for in the association analyses.

Meta-analysis, signal selection and fine-mapping Meta-anal-
ysis of the Zulu and AADM summary statistics for shared
variants was performed using a fixed-effects meta-analysis
(weighted for effective sample size) in METAL [23] and we
applied double genomic-control correction (ESM Methods).
To identify distinct signals of association, we performed ap-
proximate conditional analyses using the joint model imple-
mented in genome-wide complex trait analysis (GCTA) [24,
25] and variants with p < 2.5 × 10−8 in the joint model were
selected as signals with genome-wide significance [26]. To
estimate meta-analysis ORs, we also performed an inverse-

variance-weighted meta-analysis using an approximation of
the allelic logeOR and variance from the linear model in the
Zulu samples [27], and the logeOR estimates obtained directly
from SNPTEST for the AADM samples.

We used FINEMAP [28] (C. Benner, University of Helsinki,
Finland www.christianbenner.com/finemap_v1.1_x86_64.tgz)
to identify likely causal variants within 500 kb either side of
the most significant variant at the loci TCF7L2 and AGMO in
the African meta-analysis and in Europeans [5] (ESMMethods).

Comparison with established lociWe used ‘direct’ (same lead
variant with p < 0.05 and directionally consistent) and ‘local’
(locus-level) detection to explore the extent to which existing
GWAS signals (almost all from non-African samples) were
detected in the African GWAS (ESM Methods, ESM
Table 2). We used two complementary approaches to test for
enrichment of signals detected using the ‘direct’ approach: (1)
a binomial test taking significance (p < 0.05) and direction of
effect into account; and (2) enrichment of directly detected
variants, accounting for the properties of the variants in
GARFIELD [29] (ESM Methods). For loci demonstrating
‘direct’ and/or ‘local’ detection between our African data
and existing GWAS signals (ESM Table 2), we performed
co-localisation analyses implemented in the R package ‘coloc’
[30] using summary statistics from the largest available
European type 2 diabetes GWAS at the time of analysis [5]
(default prior for causal variant sharing set to 0.5) (ESM
Methods). Using the weighted allele frequencies and sample
sizes from the African meta-analysis and previously reported
effect sizes, we estimated the power to detect established var-
iants at the significance thresholds p < 0.05 and p < 2.5 × 10−8

using R version 3.3.0 [31] (ESM Table 2).
We also performed genetic risk score (GRS) analyses to

harvest association information from multiple variants.
GRSs were calculated as the total number of risk alleles in
subsets of the 102 variants at established loci from existing
GWAS studies of type 2 diabetes (published before
May 2018), primarily in populations of European and Asian
ancestry (ESM Table 2).

Testing association of INS-variable number tandem repeat
with type 2 diabetes We used the haplotypic information for
INS-variable number tandem repeat (VNTR) generated in
African-descent individuals by Stead et al (2003) [32] to im-
pute INS-VNTR lineages in the Zulu and AADM samples and
perform a meta-analysis (ESM Methods). Conditional analy-
sis was performed to detect distinct association signals by
inclusion of dosages of the lead type 2 diabetes variants as
covariates in the regression model.

Ethics statements Ethical approval was obtained for each par-
ticipating cohort: the Institutional Review Board for each
AADM participating institution and the Biomedical
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Research Ethics Committee of the University of KwaZulu-
Natal for DCC (BF078/08) and DDS (BF030/12). DDS also
hadUKNational Research Ethics Service approval (reference:
14/WM/1061). Written informed consent was obtained from
all participants and the study was conducted in accordance
with the principles of the Declaration of Helsinki.

Results

A total of 12,148,595 variants (genotyped or imputed) over-
lapping the Zulu and AADM samples were included in the
meta-analysis of type 2 diabetes. We identified two genome-
wide-significant (p < 2.5 × 10−8) [26] association signals
(Table 1, Fig. 1). A further 37 distinct signals were detected
at 2.5 × 10−8 ≤ p < 1 × 10−5 (ESM Table 3).

The most significant signal for type 2 diabetes association,
rs7903146 at TCF7L2 (p = 5.3 × 10−13), has been widely re-
ported in other ethnic groups [9, 13, 33, 34]. The second signal,
rs73284431, (p = 5.2 × 10−9, risk allele frequency = 0.093, spe-
cific to individuals of African descent) maps to an intron of
AGMO, 491 kb upstream of the DGKB transcription start site.
The region is already known to harbour two independent
GWAS signals for type 2 diabetes [5] and fasting glucose [35,
36] (denoted by rs10238625 and rs10276674, 132 kb apart and
>379 kb from rs73284431), both of them distinct from our lead
variant based on exact conditional analyses (ESM Table 4).

Despite not reaching genome-wide significance, the asso-
ciation with rs12277475 (p = 2.0 × 10−7, ESM Table 3) near
the INS (insulin) gene was of interest given previous reports of
a significant African-American type 2 diabetes association
signal at rs3842770 [37], 28 kb away. The two lead variants
are not in LD (r2 ~ 0.03) in 2959 African samples from the
merged imputation reference panel [13], and reciprocal exact
conditional analyses confirmed our signal was not being driv-
en by the reported African-American association signal (ESM
Table 5). In our data, rs3842770 showed a more modest asso-
ciation with type 2 diabetes (p = 0.0020 in the joint meta-anal-
ysis) than rs12277475. The rs12277475 association was also
not driven by the previously reported East Asian type 2 dia-
betes signal (rs7107784) in this region [7] (ESM Table 5).

In type 1 diabetes, robust associations with variants at INS-
IGF2 have been localised to the INS-VNTR mini-satellite
within the INS gene promoter [38, 39]; in Europeans, an as-
sociation between VNTR class III alleles and type 2 diabetes
predisposition has been reported in historical candidate gene
studies [40, 41]. To explore the relationship between the
rs12277475 signal and VNTR variation, we imputed INS-
VNTR genotypes using flanking SNP haplotypes (see
Methods and ESM Methods). Of the nine distinct lineages
withMAF > 0.01 detected in both Zulu and AADM, the stron-
gest associations were observed for lineage W (p = 0.0001,
OR 1.24, ESM Table 6) and lineage K (p = 0.0057, OR

0.85, ESM Table 6). Type 2 diabetes association results for
lineages W and K and lead variant rs12277475 were largely
unchanged in reciprocal conditional analyses (ESM Tables 7
and 8 [Zulu and AADM, respectively]). We conclude that
rs12277475 is likely to represent a novel type 2 diabetes as-
sociation in this region, independent of previous genome-wide
significant associations detected in the close vicinity, and is
not acting through the VNTR.

Fine-mapping of TCF7L2 and AGMO Fine-mapping of
TCF7L2 and AGMO identified the most significant variants
from themeta-analysis, rs7903146 and rs73284431, as themost
likely causal variants with posterior probabilities of association
of 0.996 and 0.828, respectively (ESMTable 9). These were the
only SNPs in the top configuration of causal variants from
FINEMAP (ESM Figs. 1 and 2). At TCF7L2, a second plausi-
ble causal variant, rs17746147 (r2 = 0.009 with rs7903146 es-
timated from the African samples in the merged panel), with
posterior probability of association of 0.295, was contained in
the second most likely configuration of causal variants (ESM
Table 9, ESM Fig. 1). The 99% credible intervals and corre-
sponding results in Europeans are presented in ESM Table 9.
Fine-mapping results were comparable when using the step-
wise approximate Bayes factor approach [42] (data not shown).

Detection of established loci We explored the extent to which
previously reported type 2 diabetes association signals could be
detected in African-descent individuals. Based on the previous-
ly reported effect sizes and the effect allele frequency and sam-
ple size from our African meta-analysis, we had sufficient pow-
er (80%) to detect three signals (TCF7L2, DNER and SRR) at
genome-wide significance (p < 2.5 × 10−8) (ESM Table 2).
Only the TCF7L2 variant reached genome-wide significance
in our study, whereas both variants in DNER (rs1861612) and
SRR (rs391300), originally discovered in Pima Indians and East
Asians, respectively, had p > 0.1 (ESM Table 2).

So far, five African-American type 2 diabetes-associated
signals have been reported, three of which (two in KCNQ1
and one in HMGA2) were first reported in Europeans and two
(INS-IGF2 and HLA-B) were first reported in African-
Americans (ESM Table 2) [13]. In our meta-analysis, we de-
tected only a nominal association for the African-American
INS-IGF2 signal (rs3842770, p = 0.0020, ESM Table 2).
However, we identified another signal at this locus
(rs12277475, p = 2.0 × 10−7, ESM Table 3) that is indepen-
dent of the African-American signal (rs3842770), and this
signal co-localises with association in Europeans (posterior
probability H4 = 1, ESM Table 10).

In ‘direct’ analyses (same lead variant with p < 0.05 and
directionally consistent in the African meta-analysis), we de-
tected 12 of 100 lead variants (ESMTable 2) at established type
2 diabetes loci first reported in non-African ancestry individ-
uals, significantly more than expected by chance (binomial test
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of enrichment p = 8.14 × 10−6, GARFIELD enrichment OR
[95% CI] 3.07 (1.50, 6.28), p = 0.002) (ESM Methods). In ad-
dition, detection of ‘local’ signals (at least one variant within the
200 kb region flanking the previously reported index variant
[100 kb either side] reaching nominal significance [p < 0.05]
after correcting for the effective number of independent tests)
identified 11 type 2 diabetes loci, two of them overlapping
signals also detected with the direct approach (ESM Table 2).
Genetic co-localisation analyses suggested that African and
non-African populations share the same causal variants at all

21 loci showing direct or local detection in our data (posterior
probability H4 > 0.8, ESM Table 10).

We constructed GRSs by combining subsets of 102 previ-
ously established loci (including those first reported in African-
ancestry individuals) and tested for association with type 2 di-
abetes (ESM Table 2). A GRS constructed from these variants
showed significant association with type 2 diabetes in the Zulu
(OR 1.05 per risk allele, p = 1.3 × 10−5, Fig. 2a) and AADM
samples (OR 1.02 per risk allele, p = 0.020, Fig. 2b), an asso-
ciation driven primarily by the 13 directly detected variants
(Zulu, OR 1.17, p = 1.7 × 10−9; AADM, OR 1.05, p = 0.029).
GRSs based on the variants detected by only the local approach
or the variants not detected by either approach were not signif-
icantly associated with type 2 diabetes in African samples (p =
0.19 and 0.084, respectively in the Zulu; p = 0.11 and 0.32,
respectively in AADM) (Fig. 2). These results show there is a
shared genetic contribution to type 2 diabetes at established loci
directly detected in Africans.

Discussion

In a meta-analysis of type 2 diabetes from two African popu-
lations, we replicated the widely reported association at
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Fig. 2 (a) Associations between
the GRSs constructed from the
subsets of established type 2
diabetes variants and type 2
diabetes in the Zulu samples. (b)
Associations between the GRSs
constructed from the subsets of
established type 2 diabetes
variants and type 2 diabetes in the
AADM samples. Please see ESM
Table 2 for details of categories

Fig. 1 Manhattan plot of the type 2 diabetes meta-analysis results. The
horizontal grey line corresponds to p=2.5×10−8 and loci reaching that
significance threshold (variants within 500 kb distance of those with
p<2.5×10−8) are shown in red. Gene labels correspond to the nearest/most
biologically plausible gene
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TCF7L2 (rs7903146) and identified a novel association signal
at AGMO (rs73284431) that is distinct from previously report-
ed signals in the region.

Using direct and local detection, we showed the transfer-
ability of 21 established type 2 diabetes signals discovered in
non-African ancestry populations to Africans and that causal
variants at those loci were shared across ancestries. For exam-
ple, the lead SNP at TCF7L2, rs7903146, shared between
African and European ancestries, has been refined as the caus-
al variant by examining LD blocks of West African, Danish,
Icelandic and American-African populations [43, 44].
Although the mechanisms through which TCF7L2 variation
increases type 2 diabetes risk are largely unknown, recent
evidence implicates altered incretin signalling [45].

We also found evidence for ancestry-specific signals, such
as the second intergenic association signal at TCF7L2 that is
distinct between European and African populations (indexed
by rs17746147). In addition, although not reaching genome-
wide significance, we detected an association at the INS-IGF2
locus (rs12277475) that appears to be distinct from the previ-
ously reported signals in African-Americans and East Asians
in the region. We found no evidence of association between
the lead variant and VNTR variation in our study, suggesting
that the association at INS-IGF2 in our data is not acting
through the VNTR.

In summary, our findings highlight the importance of di-
verse ancestries for uncovering novel biology. Larger African
meta-analyses are warranted to gain further insight on the
genetic architecture of type 2 diabetes.
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