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Facial recognition from DNA using face-to-DNA
classifiers
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Facial recognition from DNA refers to the identification or verification of unidentified biolo-
gical material against facial images with known identity. One approach to establish the
identity of unidentified biological material is to predict the face from DNA, and subsequently
to match against facial images. However, DNA phenotyping of the human face remains
challenging. Here, another proof of concept to biometric authentication is established by
using multiple face-to-DNA classifiers, each classifying given faces by a DNA-encoded aspect
(sex, genomic background, individual genetic loci), or by a DNA-inferred aspect (BMI, age).
Face-to-DNA classifiers on distinct DNA aspects are fused into one matching score for any
given face against DNA. In a globally diverse, and subsequently in a homogeneous cohort, we
demonstrate preliminary, but substantial true (83%, 80%) over false (17%, 20%) matching
in verification mode. Consequences of future efforts include forensic applications, necessi-
tating careful consideration of ethical and legal implications for privacy in genomic databases.
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NA profiling, i.e. the identification of persons via DNA

matching of an unidentified biological material (probe

DNA) with biological material from persons of known
identity, is considered the golden standard in forensic investiga-
tions!—3. Following Fig. 1, the identification fails if the DNA
profile of the person of interest is unknown to the investigators,
and if the database of candidate DNA profiles does not include
the DNA sample that exactly matches the probe DNA. To help
investigators out of an impasse, DNA phenotyping!, i.e. DNA-
based prediction of phenotypes (hair color, eye color), and
ancestry can be used to reduce the pool of candidates onto which
to perform further investigations. Ultimately, the most desirable
outcome from DNA phenotyping would be the prediction of
facial shape from DNA for people to recognize. However, the
human face is a complex and multipartite trait composed of
distinct features (e.g., eyes, nose, chin, and mouth), whose
development involves molecular and environmental interactions
that are incompletely understood?. Furthermore, recent attempts
to predict the face from DNA revealed that these renditions are
driven by sex and ancestry only>°. Therefore, the recovery of
facial shape from DNA remains challenging.

In this work, we present a complementary avenue for support
in current DNA investigations and propose to match a probe
DNA profile against a database of known facial profiles. In con-
trast to DNA phenotyping, the idea is not to predict facial
characteristics from DNA, but instead to predict DNA aspects
from 3D facial shape using face-to-DNA classifiers; hence, all
information is estimated from existing 3D facial images in a
database. We apply this paradigm to two cohorts illustrating
different recognition challenges. The first cohort is a hetero-
geneous mix of persons representing world-wide genetic diversity
to recognize an individual’s genomic background in a genetically
cosmopolitan sample. The second cohort is a homogenous
European-derived sample that is used to investigate the con-
tributions of individual genetic loci influencing facial variation,
aiming at recognizing an individual within a population. Our
preliminary results illustrate facial recognition power from DNA
with strong contributions by genomic background, and more
interestingly, by individual genetic loci discovered to be asso-
ciated with facial variation in a genome-wide association scan
(GWAS). We discuss how this work provides us with tools to
establish human facial identity from DNA while avoiding some
pitfalls of directly making DNA-to-face predictions. Furthermore,
we underscore the need for further validation and proper safe-
guards, and bring to concern the privacy and data anonymity
challenges for online genomic databases in personal genomics,
personalized medicine, and genomic research.

Results

Data samples and partitioning. Our first study cohort (GLO-
BAL) consisted of n=3,295 unrelated and genetically hetero-
geneous individuals recruited from a variety of sites worldwide
(Supplementary Fig. 1). The main aim of this cohort was to
identify the genomic background of a person in the context of
genetic variation observed in diverse populations. Therefore, the
genomic principal components (PCs) were the primary molecular
features of interest (Fig. 2), which were modeled in the context of
sex, age, and body mass index (BMI). Our second study cohort
(EURO) was composed of n= 3,542 unrelated participants of
European ancestry (Supplementary Fig. 2). The principal use of
the EURO cohort was for testing recognition performance in a
single relatively homogeneous population. Individual single
nucleotide polymorphisms (SNPs) in genetic loci associated with
facial variation were the main molecular features of interest and

were modeled in the context of the first four genomic PCs of the
EURO cohort, sex, age, and BMI.

Both cohorts, separately, were randomly partitioned into
training, validation, and test sets. First, we created non-
overlapping training and remaining sets. The training set, was
used to identify associated molecular features and to subsequently
train facial classifiers. The remaining set was further partitioned
randomly into three non-overlapping folds: two folds combined
constituted the validation set, one remaining fold constituted the
test set. The validation set was used to learn how to fuse separate
face-to-DNA classifiers into one matching score, and the test set
was used to evaluate final recognition performances. This was
done three times, such that each fold was used as test set once,
while the other two folds as validation set. The partitioning used
is a common strategy in machine learning to fit (train), select
(validate) and evaluate (test) models and is diagrammed along
with the methods work-flow in Supplementary Fig. 3.

Facial phenotyping. Using a recently published facial pheno-
typing approach’, facial shape was divided into 63 global-to-local
facial segments, for each cohort independently (Fig. 3). Between
the two cohorts, we observed both similarities and differences in
facial segments, which is not unexpected given that the different
levels of population identity and diversity established different
facial variations driving the segmentation.

By first applying a Generalized Procrustes Analysis (GPA)
separately to the 3D points comprising each facial segment,
followed by principal component analysis (PCA), facial shape
features were obtained. As such, a shape-space for each facial
segment is built independent from the other segments and their
relative positions and orientations in lower-level (larger)
segments. The number of PCs needed to adequately summarize
shape variation for a given segment (Supplementary Fig. 4) was
determined using parallel analysis® (PA). As expected, we find
that lower-level facial segments require more PCs, and that the
PCs retained explain most of the total shape variance (GLOBAL
cohort: median = 96%, min = 93%, max = 97%; EURO cohort:
median = 94%, min=89%, max=97%). Finally, the multi-
dimensional scores for the PCs constituted the facial shape
features of each participant for each facial segment.

Associated molecular features. Using the training set of each
cohort only, we performed a series of association studies to test
for significant relationships between the molecular features and
the shape information contained in each of the 63 facial segments.
All significantly associated molecular features and their facial
effects are illustrated online’. As expected, we find strong statis-
tical evidence in both cohorts for the effects of sex, age, and BMI
on many facial segments and summarized in Supplementary
Table 1. For all three aspects, the strongest statistical evidence was
found in the full face, indicating largely integrated facial effects.
Sex affected the masculinity/femininity of many facial segments,
BMI affected large regions with underlying adipose tissues, and
age affected facial structure due to degrading of skin elasticity.
In the GLOBAL cohort, we found that 382 of the 987 genomic
PCs tested reached the false discovery rate (FDRd) corrected
threshold (5.29 x 10~4). The statistical evidence of the 382 PCs
are summarized in Supplementary Data 1. Supplementary Fig. 5
depicts the —logl0 of the statistical evidence over all 63 facial
segments combined for all 987 genomic PCs tested in a
Manhattan plot-like fashion. The top 30 genetic PCs show strong
statistical evidence. However, additional genomic PCs halfway
and even in the tail end of the —logl0 plot also showed strong
statistical evidence. Furthermore, from Fig. 2, Supplementary
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Fig. 1 Flowchart representing the proposed paradigm in the context of existing DNA investigative tools. a Given an unidentified DNA sample, the first
attempt is to match it to the DNA of a person of interest. b If the matching fails, then the same unidentified DNA sample is matched against DNA profiles
of persons with known identity enrolled in the genetic database. ¢ Our method could be of help if identification fails again. Each face-to-DNA classifier
matches a face, in a gallery of faces (phenotype database), in terms of molecular features including sex, genomic background (GB), individual genetic loci
(SNP), age, and body mass index (BMI) to a single probe DNA. Multiple, one per aspect, matching scores are fused together to provide an overall score,
based upon which, it becomes possible to verify or reject a DNA profile against a face with known identity. d By using DNA phenotyping, predicted
phenotypes could as well be matched against given phenotypes, but more likely lead to the last resort solution, namely showing it to the public and hoping
that someone recognizes the individual. However, the current state of DNA phenotyping has not achieved this ability yet

Data 1 and the fact that we identified 382 genomic PCs indicates
that we detected effects of genetic variation both between and
within the 11 populations documented in the HapMap project!?
(both well-documented recent admixtures and still cryptic
patterns of substructure) that is contributing to facial shape.
Therefore, we prefer to refer to this collection of associated PCs as
genomic background instead of genomic ancestry because (1)
genomic ancestry is typically obtained using a supervised
approach and therefore biased and restricted to the subjective
labels used to learn ancestry groups, and (2) we are most likely
capturing within population stratification differences as well that
are not ancestral. Furthermore, it avoids the need to specifically
(and subjectively) label ancestral gene pools with the names of
either historic or modern populations.

In the EURO cohort, only the first and the fourth genomic PCs
showed statistically significant facial effects (p = 1.14 x 10~4! and
p=2.11x 1078, respectively). In a genome-wide association scan,
we found a total of 2232 SNPs among 32 separate genetic loci that

reached the FDRd threshold of 7.7x 1078 (Supplementary
Figure 5). For each locus, we defined the peak SNP reported in
Table 1, Supplementary Table 2 and illustrated in detail online®.
Most genetic loci affected the nose, such as rs2980419 affecting
complete nose structure; in contrast, rs4916071 affects the nose
tip only. Many other genetic loci affected the chin area. Most
parts of the face were affected by at least one locus, in only three
occasions (rs7966105, rs13290470, rs200100774) the full facial
segment was involved.

Face-to-DNA classifier, matching, and fusing. A face-to-DNA
classifier labels given faces into possible categories of a molecular
feature. Continuous variables were converted into two-class
variables. Class balances in both cohorts are given in Supple-
mentary Table 1 and Supplementary Data 1. For each sig-
nificantly associated molecular feature, a classifier was learned
using the training set of each cohort. For a given face outside the
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Fig. 2 Global genomic diversity shown by a parallel coordinate plot. Each genomic principal component (PC) from the Hapmap dataset is a single parallel
line, plotted against the median (solid lines) and upper/lower quartiles (dotted lines) coordinate values (vertical axis) for each of the 11 HapMap
populations'® using different colors. Genomic PCs that tested significantly against facial variations are indicated with grey lines. The top genomic PCs,
display strong between population differences, with population medians clearly either positive or negative. In contrast, in higher genomic PCs all population
medians are close to zero, with population subgroups on either side (dotted lines). Interestingly, different populations structurally drive the between and
within population differences along different genomic PCs. YRI: Yorubans from Ibadan; MKK: Masai from Kenya; LWK: Luhya from Kenya; CEU: Utah
residents of Northern and Western European ancestry; TSI: Italians from Tuscany; CHB: Han Chinese from Beijing; JPT: Japanese from Tokyo; CHD: Han
Chinese living in Denver; GIH: Gujarati Indians from Houston; MEX: Mexicans from the Southwest; ASW: African Americans from the Southwest

training set, the classifier generated probabilities of belonging to
each of the two classes. Given the corresponding class label of a
particular molecular feature from the probe DNA profile, the
probability of the matching class was used as a matching score for
that molecular feature. This expressed how well a given face
matched a specific aspect of the probe DNA-profile. For example,
if the probe DNA-profile shows male biological sex, a male face
will generate a high matching score. In total, 382 and 50 classifiers
were trained in the GLOBAL and EURO cohort, respectively.
For a face in a dataset, the outcome of all classifiers was a
vector of matching scores, one for each molecular feature
estimated. Subsequently, this vector of matching scores was
combined, using a classification-based score fuser!!, into one

score, that reflects, how well the face matches overall to the probe
DNA-profile. The more molecular features matching from the
face to the probe DNA profile, the higher the overall score and,
thus, more likely is it that the facial image matches the probe
DNA profile. The fusing of scores for sex and age as a simple
(n=2) example is illustrated in Supplementary Fig. 6. From
the validation set, vectors of matching scores (one for each
molecular feature, thus n-dimensional vectors) of all individuals
against each other, where each individual in turn is the probe,
were obtained. Therefore, everyone’s facial image, when mapped
against its own DNA-profile, generated a genuine matching
vector. In contrast, imposter instances were generated when a
facial image was matched against another person’s DNA-profile.
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Fig. 3 Hierarchical facial segmentations. Facial segments are colored in blue. (left) For the GLOBAL cohort, globally, the area including nose, eyes, cheeks,
and upper lip was first separated from the rest of the face, and further partitioned into eyes and cheeks (quadrant 4, starting at segment 7), nose and
lower-lateral facial area (quadrant 3, starting at segment 6). The remainder of the face was further partitioned into upper face (quadrant 2, starting from
segment 5) and lower face (quadrant 1, starting at segment 4). (right) For the EURO cohort the nose, cheeks, lips were separated from the rest, and further
decomposed into midface (quadrant 2, starting from segment 5), and cheeks and lower face (quadrant 1, starting from segment 4). The remainder of the
face was composed of lower and upper face, which were further decomposed into upper face (quadrant 4, starting from segment 7), and lower face

(quadrant 3, starting from segment 6)

The result is an n-dimensional space with genuine and imposter
labeled instances from the validation dataset. Subsequently, the
fuser learned from this labeled data how to discriminate genuine
instances from imposter ones. When applied to a new matching
score vector (e.g., from the test dataset), the fuser generated a
posterior probability of being genuine, thus providing an overall
matching score between a given facial image and a probe DNA
profile.

Facial identification and verification. We tested our ability to
classify faces in the context of multiple molecular features using a
biometric identification and verification setup on the test dataset
of both cohorts. Furthermore, we compared our approach of face-
to-DNA classifiers against a DNA-phenotyping approach® based
on DNA-to-face regressions followed by face-to-face matching
(Supplementary Note 1, Supplementary Figs. 8-12, Supplemen-
tary Tables 3-6). In the biometric identification setup (Fig. 4,
Supplementary Fig. 7), the performance was evaluated using
cumulative match characteristic (CMC) curves for combined and
individual molecular features, respectively. High identification
rates and rapid relative increases in the CMC indicate better
performance. In the biometric verification setup, the performance
was evaluated using receiver operating characteristic curve (ROC)
analyses (Fig. 4, Supplementary Fig. 7) for combined and indi-
vidual molecular features, respectively. Numeric results are given
in Tables 2 and 3 for the GLOBAL and EURO cohort,
respectively.

For both cohorts, the observations were consistent across the
three test folds. The results for sex, age, and BMI were similar,
and reflected a good sensitivity of faces as a function of these
aspects. However, each of these features separately lack the
specificity needed to identify individuals. Strong increases in
specificity were achieved only in the combination of different

estimated molecular features. The performances of all estimated
molecular features from 3D facial shape combined were
substantial in both cohorts, but were slightly better in the
GLOBAL cohort. For the GLOBAL cohort, the performance of
the 382 genomic PCs is quite impressive and illustrates that
diversity in genomic background is a primary driver of facial
variation, and thus well estimated from 3D facial shape. The
cumulative contributions of the genomic PCs generated a strong
increase in performance when added to sex. The further addition
of BMI and age, separately, showed lower yet further increase in
performance. For the EURO cohort, the performance of the two
associated genomic PCs fused was the least informative, but still
better than chance alone. We expected some genomic background
diversity in this cohort, but not to the same extent as the
GLOBAL cohort. More interestingly, the performance of the 32
peak SNPs is notable and clearly shows an increase in
performance (equal error rate (EER) down by 5 %) when
included with sex in the model. We tested additional genomic
PCs (beyond the first four) in the EURO cohort, and observed a
reduced performance, but with consistent improvements when
adding the individual SNPs (Supplementary Note 2, Supplemen-
tary Table 7).

In comparison to DNA-to-face regressions, our results show an
improvement in identification and verification performances.
More importantly, in contrast to our results, individual genetic
loci did not contribute following the DNA phenotyping strategy.
This is also conform the observations made in recent attempts to
predict the face from DNA>®,

Discussion

The identification of a person based on an unidentified DNA
sample can be performed via DNA profiling: the unidentified
DNA sample is matched against the DNA of a person of interest
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Table 1 Properties of 32 genetic loci identified in a GWAS on the EURO training data set

Locus SNP a A p-value MAF #SNPs Class. Mod.
1p32.2 rs2404983 G A 3.06E-08 0.076 6 D
1p32.1 rs4916071 A G 2.06E-16 0.482 172 D, R
1p12 rs200100774 A G 1.39E-10 0.165 126 D
1p12 rs61808932 C T 5.92E-22 0.245 166 D, R
1931.3 rs949977 G C 2.36E-09 0.314 58 D
1931.3 rs2821107 T A 2.52E-22 0.209 287 D, R
2q31.1 rs970797 T G 4.58E-1 0.432 2 D, R
2g36.1 rs1370926 G C 1.61E-11 0.228 14 D
3g21.3 rs2955084 T A 3.68E-10 0.078 2 D
39213 rs2977562 G A 1.80E-15 0.243 316 D
4q31.3 rs10020603 T @ 4.45E-18 0.195 9 D
49313 rs17299889 A G 4.67E-09 0.356 4 D
4q34.1 rs1059045 T @ 7.23E-13 0.466 24 D, R
6p21.1 rs227832 C T 8.44E-14 0.257 214 D, R
6p21.1 rs9395084 C T 5.58E-09 0.407 18 D
6p21.1 rs73735344 A G 2.69E-12 0.153 n2 D
6923.2 rs402020 T C 5.20E-12 0.308 22 D, R
7p21.1 rs1178103 G T 8.24E-09 0.198 2 D
79213 rs10238953 G A 1.48E-31 0.138 229 D, R
7q921.3 rs2272224 C T 117E-M 0.280 30 D, R
8p23.1 rs2980419 A T 5.11E-08 0.478 1 D, R
9p22.2 rs13290470 G A 2.53E-08 0.359 1 D, R
1p11.2 rs150863859 G C 4.50E-08 0.113 2 D
11922.3 rs7930466 G A 5.80E-08 0.080 2 D
1g23.2 rs7925936 @ T 8.38E-09 0.169 2 D
12921.31 rs7966105 A G 8.18E-09 0.271 85 D
13g12.1 rs2985662 @ A 5.40E-08 0.360 1 D
14q12 rs143974562 T C 3.10E-08 0.133 1 D
17924.3 rs72866756 A G 3.21E-14 0.366 163 D, R
17924.3 rs11871949 C T 4.63E-13 0.445 35 D, R
20pT11.22 rs2424392 C T 5.85E-09 0.234 24 D
20pT11.22 rs6035946 A T 1.53E-08 0.314 2 D
#SNPs number of SNPs reaching the FDRd p-value threshold (7.7 x 10E-8) within the same locus; Class. Mod. Classification model(s) deployed, can be dominant (D), recessive (R), or both (D, R)
expressing the model of inheritance of each individual SNP used in the face-to-DNA classifiers

SNP single nucleotide polymorphism, peak SNP of the locus, a minor allele, A major allele, MAF minor allele frequency

and if a match is observed then a probability of identity can be
established, whereas a non-match indicates non-identity!2.
However, the identification fails if the DNA profile of the person
of interest is not available. As an alternative, predicting phenotype
from genotype data and then match this predicted phenotype to
other phenotypes (DNA phenotyping!), can also be used to
perform recognition!3. However, DNA phenotyping for complex
traits is difficult due to the effects of multiple loci, unmeasured or
unknown non-genetic effects, and genetic and epigenetic inter-
actions, many of which are largely unknown. Additionally, the
phenotypic complexity of facial morphology has typically been
oversimplified during genetic mapping efforts’. Therefore, any
attempt to recover the complete facial structure from DNA
remains challenging. Here, we perform facial recognition from
DNA by directly matching given faces to a probe DNA-profile.
This approach represents an additional and complementary
venue that can be used as further support in DNA-based inves-
tigations. Computationally, in contrast to the challenging task of
genome-based phenotype prediction, our paradigm is embedded
in facial image classification, which is an active area of research in
machine learning (i.e. 3D face based prediction of sex!4, agel,
ancestry'6, and sexual orientation!”).

Established biometric authentication systems are built upon
primary identifiers, i.e. biological features (voice patterns, hand/
finger/face/ear geometry, iris, retina, fingerprints, gait, hand-
writing, DNA) that precisely determine the identity of an indi-
vidual. Any feature that gives insufficient information to
individuate people, yet improves the identification rates if

employed along with primary identifiers, is referred to as a soft
biometric feature!8 (sex, ancestry, age, height, weight, and eye/
skin/hair color). In this context, our study proposes a paradigm
that matches between two primary but different identifiers, DNA
and facial shape, through a set of soft biometrics. SNP genotypes
are essentially added to the list of soft biometrics and genomic
background, is used as an elaborated proxy for ancestry. Note
that, additional DNA-inferable features (skin pigmentation, hair
and eye color!) can also be incorporated when using facial image
texture in addition to shape. Our results clearly indicate that the
accumulation of multiple simple molecularly derived features
increases recognition specificity. This is an aspect of biometrics
that traces back to the inception of the field and was already
understood in the early system of Alphonse Bertillon!8,

The ability to identify a DNA profile against a dataset of
phenotypes with known identities was first explored by Lippert
et al.% In their work multiple phenotypes (facial shape/color, sex,
age, height, weight, BMI, skin/eye color, ancestry, voice) were
estimated from DNA profiles and subsequently matched against
corresponding phenotypes with known identities. In both our
work and that of Lippert et al,, the aim is to create a common
embedding for both genotype and phenotype information, and
therefore bridging the gap. Once created, distances in the
embeddings are defined to perform identification. In contrast to
our work, the embedding in the work of Lippert et al. is mainly at
the level of multiple phenotypes predicted from genotypes and
not at the level of multiple genotypes predicted from a single
facial phenotype. However, of particular interest was the
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Fig. 4 Biometric results. Identification and verification results a for the GLOBAL and b for the EURO cohort, respectively, by accumulating molecular
features (Sex, genomic background (GB), body mass index (BMI), Age and single nucleotide polymorphisms (SNPS)). It is observed that the accumulation
of molecular features clearly improves recognition power. Using the average of the three runs, for the GLOBAL cohort, in the identification setup, 36, 187,
and 239 out of 275 test faces are identified within the top 1%, top 10%, and top 20% candidates, respectively. Likewise, in the EURO cohort; 22, 167, and
238 out of 296 test faces were identified perfectly within the top 1%, the top 10%, and top 20% candidates, respectively. In the verification setup, 228 out
of 275 genuine matches (true positives) and 62,389 out of 75,167 imposters (true negatives) were correctly identified in the GLOBAL cohort; while, 237
out of 296 genuine matches and 69,542 out of 86,927 imposters were correctly recognized in the EURO cohort. Different runs on three non-overlapping
test datasets are plotted as solid, dotted and dash-dotted lines, respectively

Table 2 Average identification and verification results for the GLOBAL cohort

GLOBAL Cohort EER - AUC c R1 c R10 c R20 4
SEX 35.7 0.7 723 0.9 1.46 0.00 19.66 0.04 39.81 0.34
GB 311 0.9 773 0.4 4.61 2.63 36.41 1.96 56.55 1.61
BMI 371 0.8 67.6 0.9 134 0.21 18.08 0.52 35.80 0.86
AGE 394 0.7 66.8 2.1 1.46 0.00 19.66 0.04 38.23 1.02
SEX+GB 22 0.7 86.2 0.2 7.53 118 52.67 3.93 76.58 0.45
SEX + GB + BMI 20.8 0.8 87.5 0.4 8.86 2.01 58.62 1.20 79.98 0.98
SEX + GB + BMI 4 AGE 17.5 0.9 90.2 0.8 12.01 1.25 67.84 1.48 87.38 2.20
X =[SEX, AGE, BMI, GB] 19.8 15 88.2 0.9 11.65 1.80 65.66 2.09 84.10 m

The results for a DNA-to-Face prediction strategy from a set of predictors X are given in the last row. All values are given in percentage. Random performance is given as EER = 0.5, AUC = 0.5, R1 =1%,
R10 =10%, R20 = 20%. % refers to the percentage of individuals in the gallery (n= 275, test dataset)

EER verification equal error rate, AUC verification area under the curve, RT rank 1% identification rate, R10 rank 10% identification rate, R20 rank 20% identification rate, ¢ standard deviation, GB genomic
background, BMI body mass index

comparison against DNA-based facial phenotyping followed by
face-to-face matching. Our results indicate a better performance
following face-to-DNA classifiers only with the added contribu-
tion of individual genetic loci in the EURO cohort.

When putting our results in perspective, the performances are
lower than the state-of-art methods for matching the same kind
of primary identifier (face-to-face, fingerprint-to-fingerprint, ear-
to-ear). When comparing faces directly, biometric performances
reported are typically higher than those reported herel®.

However, in more challenging scenarios, such as facial recogni-
tion across different facial expressions, base-line facial recognition
systems perform worse?0, The verification results from both
cohorts are comparable to human recognition performance on
challenging scenarios in video (e.g., recognizing individuals in
sequences where faces are not displayed in standardized frontal
images) and dissimilar image qualities in still-face pairs (e.g., two
images displaying the same person with different clothing/hair-
style under different ambient constraints) described in the work
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Table 3 Average identification and verification results for the EURO cohort

GB, SNPS]

EURO Cohort EER 4 AUC 4 R1 c R10 c R20 4
SEX 347 1.2 735 13 135 0.00 19.64 0.04 39.96 0.08
SNPS 40.2 21 63.6 1 2.48 0.98 21.90 1.08 38.49 0.59
GB 42.7 1.8 60.7 0.5 135 0.00 17.05 2.53 30.93 1.42
BMI 385 1.9 66.1 11 1.24 0.19 18.17 0.41 34.88 1.24
AGE 389 1.8 67.1 1 135 0.00 19.53 0.18 37.92 0.74
SEX + SNPS 29.9 1.8 79 1.6 3.72 1.21 34.09 1.87 56.21 2.55
SEX 4 SNPS + GB 28.6 1.9 80.8 1.6 5.19 0.70 38.60 3.02 58.92 3.21
SEX 4+ SNPS + GB + BMI 252 1.8 84 1.5 530 0.51 45.26 3.51 69.87 3.78
SEX 4+ SNPS + GB + BMI + 20.6 21 88 14 8.92 0.97 56.66 3.45 81.27 1.67
AGE

SEX + GB + BMI + AGE 221 17 86.3 13 5.31 0.01 50.23 3.72 75.51 1.55
X =[SEX, AGE, BMI, GB] 256 0.8 81.8 0.6 5.64 1.41 44.36 234 68.62 2.54
X =[SEX, AGE, BMI, 254 0.8 82.5 0.5 6.32 0.52 48.20 0.80 70.88 0.29

R20 =20%. % refers to the percentage of individuals in the gallery (n= 295, test dataset)

background, BMI body mas index

The results for a DNA-to-Face prediction strategy from a set of predictors X are given in the last two rows. All values are given in percentage. For the EURO cohort, the performances of the DNA-to-Face
prediction and Face-to-DNA classification setups are shown with and without the contribution of the SNPs from Table 1. Random performance is given as EER = 0.5, AUC = 0.5, R1=1%, R10 =10%,

EER verification equal error rate, AUC verification area under the curve, RTrank 1% identification rate, R10 rank 10% identification rate, R20 rank 20% identification rate, ¢ standard deviation, GB genomic

of Phillips et al.2!. Furthermore, when compared to the perfor-
mance of a group of examiners with rigorous training in forensic
face recognition®? under real-case scenarios, our system achieves
comparable area under the curve values. Finally, a recent tool for
iris recognition from a mobile device?3 also reported lower
recognition performances than those reported here. In conclu-
sion, there is room for improvement, but our results are already
tangible in the context of other biometric authentication
scenarios.

We report slightly better performances for the GLOBAL cohort
in comparison to the EURO cohort. In both cohorts, it is expected
that individuals who are less typical to others in the cohorts will
be identified more easily, a concept inherent to recognition
tasks?4, However, directly comparing the results is futile since
they represent different recognition challenges. A higher genomic
diversity in the gallery, as in the GLOBAL cohort, against which
identity is sought, leads to an easier recognition task, but does not
necessarily imply a better ability to recognize an individual. In
other words, genomic diversity implicitly increases the number of
subgroups in a group of people living together and leads to an
increased recognition power, but at the level of subgroups, not at
the level of the individual. The recognition is more challenging if,
for example, a European person compares herself/himself to a
group of European faces rather than to a diverse group of people.
In fact, by design, recognition in the GLOBAL cohort is limited to
an individual’s population background. Therefore, only the iden-
tity of a group of individuals as sharing a similar background is
obtained. In contrast, the EURO cohort is more locally scaled in
genomic ancestry, and tested our ability to identify an individual
within a single population. Therefore, the focus was on investi-
gating the degree to which genetic loci affecting facial shape within
Europeans can individuate faces. Of strong interest is that we
performed a GWAS and used 32 specific genetic loci identified.
However, the results are still preliminary and far from perfect.
Although many individuals are identified within a top 10% of a
sorted gallery, performances on the single best match (rank 1),
remain limited. Also, the EERs under verification indicate clear
room for improvement. Future efforts include collecting larger
cohorts in a GWAS as well as finding rare variants using family-
based linkage analysis and other methods based on tracking co-
segregation.

It is unequivocally both irresponsible and scientifically unjus-
tified to make any attempt to recover ungiven facial shape from

DNA in a real-life forensic scenario unless the system has
undergone rigorous scientific validation and peer review. Based
on previous work® and the results reported here, facial predictions
from DNA remain purely sex, ancestry-driven and individual
genetic loci failed to improve the results convincingly. Similar
results were reported by Lippert et al.%, and similarly do not
provide an accurate facial prediction at the level of an indivi-
dual®®. Another complication of DNA-based facial phenotyping
is that its forensic success depends on the ability of the image to
elicit recollections from persons who know the subject or reports
of encounters from persons who meet the subject. Furthermore, if
a single predicted facial image is produced, observers may give
too much credit to the single facial image presented, which might
dangerously focus an investigation on either a person who looks
too average to be true or, worse yet, creates a specific face who
looks just like some subset of people or perhaps even like a single
person in the sample that was used to build the prediction model.
The latter is an algorithmic bias that can occur when some
populations are underrepresented during model building.

The proposed methodology works on databases of facial ima-
ges only, not augmented with other meta data (sex, or even
genetic data). Therefore, random image databases, as pulled from
the internet e.g., are becoming of use. The molecular features used
here are deducted from the facial shapes only, in contrast to the
work of Lippert et al.®. Moreover, recent devices (the Microsoft ™
Kinect, Microsoft™ Surface, the latest iPhone™), are providing
the means to capture 3D facial data. Interest of the lay-public in
3D imaging/printing is pushing these new devices to be used in
user authentication and distributed via social networks. Fur-
thermore, a substantial body of research in computer vision is
focused on 3D facial reconstruction from 2D images2°. Therefore,
many reference images are available in governmental databases
(e.g., driver’s licenses, passports) that can be tested against a
probe DNA. The result would be a sorted database of facial
images by the similarity of their predicted molecular features.
Therefore, hundreds of (somewhat equally matching) actual facial
images can be presented. Doing so should more clearly expose
variability (thus system error) in the matches achieved, and, thus
inform the user regarding the performance of the algorithm on a
case by case basis.

Considering our results in Fig. 4, the best match always reaches
low recognition rates and better performances are tangible only at
rank 20. With these preliminary outcomes, we observe that the
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best match is hardly achievable. Therefore, we strongly advise
against using the single “best” match as an exact image of the
person of interest, as this will be most likely inaccurate. Such an
interpretation would only be meaningful in an exceptionally
accurate system and quite possibly only if the person of interest is
in the facial database being queried, which is unknown. In con-
trast, presenting multiple images will communicate variability in
accuracy which might help avoid prematurely targeting a single
individual and “keeping an open mind” regarding the specific
details of the facial appearance of the person of interest. To avoid
potential algorithmic biases, one must properly represent all
minority groups in the databases being queried. Such biases are
also known for face-to-face recognition algorithms and require
appropriate investigations2’>28, Another point that may raise
concern here, refers to the human capacity to discriminate indi-
viduals based solely on minute differences among a vast group of
faces. When untrained individuals with no professional experi-
ence with face recognition and machines, are asked to respond
how likely two faces from a pair of images/videos were of the
same personZl, it was observed that a computer can handle
millions of face pairs, while an individual can rate maximum 250
face pairs. Compared to the study of Phillips et al.?!, our problem
is amplified in that identity has to be established from a list of
hundreds of somewhat similar faces that match to a probe DNA
profile. However, because the minute differences among these
faces represent the variability of the system, it is important to
describe their commonalities. Arguably, however, absent research,
likely by psychologists, it remains to be seen how the use of such a
system outside the current laboratory setting can be potentially
transferred into the real world.

Future investigations involve: First, in the GLOBAL cohort,
we are limited by the ancestry variation captured by our refer-
ence data (HapMap 3 Project!?). Therefore, it is of interest to
explore other datasets as a reference to establish genomic
background at worldwide (e.g. the 1000 Genome Project??)
along with more locally scaled variations (e.g. the POPRES3?
dataset and the Genographic Project’! for a within Europe
scaled ancestry reference). Furthermore, the identification of an
individual within a single population requires further investi-
gation on other population samples. Second, the loci and SNPs
extracted from our European based GWAS, were extracted by
association only. It is of interest to expand on these results with
functional analysis to identify causal variants in the loci detected,
as a replacement for the SNPs currently used and defined as
peak SNPs. Furthermore, future investigations are in order to
test the effects of the genetic loci identified in non-European
populations. Third, in light of growing concerns about
researchers inadvertently integrating racial bias into machine
learning32, we control for racial bias by 1) looking at a specific
homogenous population only, and 2) by using ancestry defined
by the HapMap 3 Project, in which different population samples
were balanced. Fourth, for both the cohorts studied, we used
self-reported information on age and body size (height and
weight, which were used to calculate BMI) as proxies for DNA-
inferred values. In Supplementary Note 3 and Supplementary
Fig. 13, we report observations on simulated DNA-predicted age
and BMI; however, we highlight that these DNA-based predic-
tions are still imperfect. Fifth, additional discussions include the
challenges of our proof of concept in the context of monitoring
and adjusting Artificial Intelligence (AI) systems, especially
when these are implemented in resource-poor settings of local
and state governments. Despite the growing interest and
developments in Al by experts on high-quality datasets, the use
and understanding of AI in practice remains daunting and
challenging. Finally, an important challenge in forensics involves

the ability to use our paradigm based on often limited and
contaminated DNA material.

Some forensic and criminal justice challenges raised elsewhere
with regard to DNA phenotyping3? apply similarly to matching
given faces to DNA. Our results have no value to prosecutors as
inculpatory evidence (i.e., all of its value in forensics/intelligence
is during the investigatory stage). Furthermore, these methods
also raise undeniable risks of further racial disparities in criminal
justice that warrant caution against premature application of the
techniques until proper safeguards are in place (we expand on
these challenges in Supplementary Note 4). Additionally, several
interests (journal publishers, federal funding agencies), are pro-
moting the broader sharing of genomic data among researchers
across institutes and for uses other than for which they were
initially collected. To this end, human participants’ data sharing
protocols de-identify the participant data. However, conditioned
on future efforts, our work provides a means by which de-
identified genomic data can be reconnected to the participants,
when they are in facial image datasets that can be accessed, using
the information about genotype contained in the human face.
Therefore, the work reported here further underscores the
importance of continued deliberation and additional ethical, legal,
and social implications (ELSI) research in this area, as elaborated
on in Supplementary Note 5.

In conclusion, we propose a facial recognition system from
DNA that avoids the need to predict an ungiven face from DNA.
Unsupervised genomic PCs showed substantial recognition power
on the level of population background. More interestingly, is a
significant contribution from individual genetic loci identified in
a facial GWAS. However, our results are preliminary and on well-
defined data cohorts. Future improvements are required, before
individuals can be identified uniquely. Furthermore, this work
underscores the need for (A) rigorous scientific validation and
critique; (B) public input on the societal merits of the tool and
indicate strong trust and support for its use; (C) assessments by
relevant technical and ELSI experts regarding the individual and
collective implications, and (D) implementation of adequate legal
and regulatory safeguards.

Methods

Data cohorts. For the GLOBAL cohort, we selected n = 3,366 individuals with
genotype data and 3D facial images for analysis. These were collected with informed
consent as part of several studies based at The Pennsylvania State University and
sampled in the following locations: State College, PA (IRB #44929 & #4320); New
York, NY (#45727); Urbana-Champaign, IL (#¥13103); Cape Verde; Dublin, Ireland;
Rome, Italy; Warsaw, Poland, and Porto, Portugal (#32341); and Twinsburg, OH
(#2503). The individuals were genotyped on the 23andMe v3 and v4 arrays
(23andMe, Mountainview, CA) and Illumina HumanHp200vl BeadChip (Illumina
Inc., San Diego, CA) platforms. We selected a core set of 118,420 LD-pruned auto-
somal SNPs (window size = 50 kbp, SNPs = 5, VIF = 2), which represent the inter-
section across all platforms, to characterize the genetic structure of the sample using
principal components analysis (PCA). A genomic PCA space was first defined by a set
of 11 reference populations from the publicly available HapMap 3 dataset (YRL:
Yorubans from Ibadan; MKK: Masai from Kenya; LWK: Luhya from Kenya; CEU:
Utah residents of Northern and Western European ancestry; TSI: Italians from
Tuscany; CHB: Han Chinese from Beijing; JPT: Japanese from Tokyo; CHD: Han
Chinese living in Denver; GIH: Gujarati Indians from Houston; MEX: Mexicans from
the Southwest; ASW: African Americans from the Southwest). The multivariate
genetic background space was constructed by carrying out PCA on the genotypes of
n =988 unrelated HapMap individuals for the same n = 118,420 SNPs mentioned
above. Into this space, we projected the n = 3,366 individuals from our dataset, as
illustrated in Supplementary Fig. 1. This ensures that the shape of the PCA space is
only defined by individuals from the HapMap dataset, which can be reproduced
independently. This dataset further included self-reported information on age and
body characteristics (height and weight). Sex was determined using X-chromosome
homozygosity/heterozygosity. The youngest participant is a 17-year-old boy and the
oldest a man of 88-years-old; the average age is 28 years. The mean body mass index
is 24.65kgm~2 A total of n = 3,295 individuals were retained after reducing the
cohort for missing self-reported information or because of 3D image mapping arti-
facts. The majority are females (71%).
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A single EURO cohort was obtained by merging two datasets of participants
sharing common European ancestry: The Pittsburgh (PITT) sample and the Penn
State (PSU) sample’. The PITT sample comprised of 2,449 unrelated participants
of European ancestry and median age of 23 years. The PSU sample comprised of
2,059 unrelated participants of European ancestry and median age of 22 years. In
this work, specifically, we retained a total of n = 1,793 and n = 1,749 participants of
the PITT and PSU sample, respectively, after removing individuals younger than 18
years of age, or missing information on sex, age, height, weight, or with 3D image
mapping artifacts. Age and body characteristics (height and weight) were self-
reported. Sex was determined using X-chromosome homozygosity/heterozygosity.
The majority are females (64%), and the oldest participant is an 82-year-old
woman; the average age is 28 years. The mean body mass index is 24.90 kgm~2. A
total of n = 3,542 individuals were available after merging both samples.

For the PITT sample, participants, were genotyped on the Illumina (San Diego,
CA) OminExpress 4+ Exome v1.2 array plus 4,322 investigator-chosen SNPs
included to capture variation in specific regions of interest based on previous
studies of the genetics of facial variation. For the PSU sample, participants sampled
from 2006-2012 (IRB #32341) were genotyped on the Illumina Human Hp200cl
BeadChip (Illumina Inc., San Diego, CA). Participants sampled from 2013-2016
(IRB #44929, #13103, #2503, and #4320) were genotyped on the 23andMe v3 and
v4 arrays (23andMe, Mountainview, CA). Standard data cleaning and quality
assurance procedures were performed34. All samples were evaluated for
concordance of genetic and reported sex, evidence of chromosomal aberrations,
biological relatedness across study participants, ancestry, genotype call rate, and
batch effects. SNPs were evaluated for call rate, discordant genotype calls between
duplicate samples, Mendelian errors in HapMap control parent-offspring trios,
deviation from Hardy-Weinberg genotype proportions, and sex differences in allele
frequency and heterozygosity.

Genotype data in the PITT and PSU samples, separately, were imputed using
the 1000 Genomes Project Phase 3 reference panel?’. SHAPEIT2 was used for pre-
phasing haplotypes and IMPUTE2 was used to impute nearly 35 M variants. SNP-
level (INFO score > 0.5) and genotype per participant-level (genotype probability >
0.9) filters were used to omit poorly-imputed variants. A further reduction of SNPs
with MAF <5% was performed, before aligning allele encodings in both datasets
with the 1000 Genomes Project and to merge them into a single cohort of
European ancestry.

Population structure was assessed using PCA of approximately 100 K autosomal
SNPs chosen for call rate (>95%), MAF (>5%), and LD (pairwise r2 < 0.1 across
variants in a sliding window of 10 Mb). Tests of genetic association between the
first 20 PCs and all SNPs confirmed that PCs did not represent local variation at
specific genetic loci. Based on Supplementary Fig. 2, four PCs were sufficient to
capture population structure within this European-derived cohort towards the
purpose of a GWAS.

The data in both cohorts was partitioned into training, validation and test sets and
used throughout the methods as schematically represented in Supplementary Fig. 3.

Facial phenotyping. Three-dimensional images composed of surface and texture
maps were taken using the 3dMD Face (3dMD, Atlanta, GA) or Vectra H1
(Canfield Scientific, Parsippany, NJ) 3D photography systems. Participants were
asked to hold their faces with a neutral expression and close their mouth for the
picture. Intensively sampled morphometric descriptions of facial shape are
obtained from 3D facial images as homologous spatially-dense (n=7,150) quasi-
landmark (QL) configurations’. Note that, by homologous, we mean that each
quasi-landmark occupies the same position on the face relative to all other quasi-
landmarks for all individuals. Hence, this approach provides detail on the more
overt as well as the subtler facial aspects and is independent of a potential ‘facial
perception’ bias (e.g., concentration of landmarks on perceptually salient features
of the face). A Generalized Procrustes Analysis (GPA) was applied to correct for
changes in position, orientation and scale of both the original and reflected con-
figuration combined. After Procrustes superimposition, a single shape can be
decomposed into its asymmetric and bilaterally symmetric component. The aver-
age of an original and its reflected configuration form the symmetric component
while the difference between the two configurations constitutes the asymmetric
component. Although of interest, in this work we currently ignore variations in
facial asymmetry and use the symmetric component only.

The division into segments of a biological organism according to its function,
embryological origin and anatomy, is a well-known concept in evolutionary and
developmental biology under the heading of modularity and integration>. We
applied the same principle to the facial complex, which is composed of multiple
subunits (for example, eyes, mouth, nose, chin, cheeks) integrated to function as a
whole. In our study, 3D spatial covariation between each pair of QLs across each
dataset was used to guide a facial division into regions; therefore, a
morphologically-driven segmentation was implemented’. Starting from the
superimposed and symmetrized QL configurations, the RV coefficient between
each pair of QLs was computed to construct a squared similarity matrix as input to
a hierarchical spectral clustering. The output were facial segments, where each
segment had a cluster label and the QLs within a segment were assigned the same
cluster label. This was done in a hierarchical manner, such that first the full face
was split in two segments, and subsequently each of these was again split in two
segments. This process was repeated five times generating a total of 63 facial

segments hierarchically linked to one another. We refer to the number of repeats as
levels. Each level has 2!evel modules. For example, level 0 corresponds to one cluster
which is the complete face. Level 1 has 2 clusters, level 2 has 4 clusters, and so on.

In order to capture shape features of the facial complex, PCA was performed
constructing a shape-space for each facial segment. At each level, for each segment,
all QLs having the same cluster label are subjected to a new GPA. Therefore, a
shape-space for each facial segment is constructed independently of the other
segments and its relative positioning within the full face. After GPA, each facial
segment was spanned by an orthogonal basis using PCA combined with parallel
analysis® to determine the number of significant PCs. Therefore, each segment
generated multi-dimensional (one for each PC retained) shape features for all
participants. Open-source software for the complete facial phenotyping pipeline is
available, see Code Availability.

Statistical study detecting molecular factors of 3D shape. We implemented a
series of association studies to investigate the effects of molecular features and to select
them accordingly. Since each facial segment was represented by multiple dimensions
of variation (PCs), the association studies were conducted with a multivariate
Canonical Correlation Analysis (CCA). In brief, CCA extracts the linear combination
of PCs from a facial segment that has maximal correlation with the molecular feature
under investigation. Significance testing was based on Rao’s F-test approximation
(right-tail, one-sided). We used the function canoncorr from Matlab™ 2016b. Sex,
age, BMI and 987 genomic PCs in the GLOBAL cohort and sex, age, BMI, four
genomic PCs and n = 5,383,799 individual SNPs in the EURO cohort were investi-
gated against each of the 63 facial segments. Genomic PCs were investigated as binary
variables (cfr. variable conversion). SNPs were investigated following a GWAS
paradigm on the EURO cohort, under the additive genetic model (AA =0, Aa=1,
aa =2), after correcting for confounding variables including sex, age, BMI, four
(continuously coded) genomic PCs, and the dataset (PITT or PSU) identifier.

Given the burden of multiple comparisons in both cohorts, separately, we
computed a false discovery rate (at a level of 0.05) adjusted significance threshold
(FDRA) of Benjamini & Yekutieli®, that is accurate for any test dependency structure.
A molecular feature was selected for subsequent analysis and classification if at least
one out of the 63 facial segments reached the FDRd threshold.

In the EURO cohort, we observed 2,232 FDRd significant SNPs across 32 loci
using a 500 kb window and linkage disequilibrium (LD) > 0.5. For each locus, a
peak SNP was defined as the SNP generating the highest association (lowest p-
value) in any of the 63 facial segments. Genes 500 kb up- and downstream of the
peak SNPs were identified using the Table Browser of the UCSC Genome Browser
(http://genome.ucsc.edu/cgi-bin/hgTables).

Face-to-DNA classifier, matching and fusing. We transformed continuous vari-
ables into binary variables according to a threshold T. Sex is a categorical variable (41
indicates a female, —1 male), while BMI, age, and genomic PCs are continuous
variables. The choice of T reflected the type of information a binary value captured
about the corresponding continuous molecular feature. For age, T was set to 30 for
both cohorts. For BMI, the threshold was set to the median value 23.62 kg m~2 and
23.78 kgm~2 for the GLOBAL and EURO cohort, respectively. As genomic back-
ground was built using PCs on the HapMap data, T was set to zero.

GWAS identified peak SNPs were three-class variables given as AA =0, Aa=1,
aa =2, with A the major allele and a the minor allele (as determined based on our
EURO cohort data), meaning homozygous major allele, heterozygous, and
homozygous minor allele, respectively and reflecting the additive model of
inheritance. Missing genotypes were ignored during the GWAS, but were assigned
to the homozygous major allele class prior to subsequent analysis. The three-class
variable was then converted into two binary variables following ordinal categories:
the first codes 0 for AA, and 1 to Aa and aa, practically mimicking the dominant
model of inheritance; the second assigns 0 to AA and Aa, 1 to aa, expressing the
recessive model of inheritance. Both new two-class variables were tested for
association again, and were used subsequently if at least one facial segment reached
the arbitrary threshold for selecting and concatenating facial shape features of p <
5x 107 in the EURO cohort.

First note that multi-class variables do not necessarily have to be converted to
two-class variables, but it is common practice to do so since most classifier
implementations, including the support vector machines (SVM) used in this work,
are designed for two opposing classes only. Other classifiers, like a linear
discriminant classifier can handle multiple classes simultaneously, but were not
investigated as such in this work. Alternatively, regression techniques can be used
as well, but again were not investigated in this work. Also note, that the conversion
of continuous information to a two-class variable is crude, and that more
information could be gained by defining multiple classes across the continuous
domain. For genomic background, the results did not improve substantially by
adding multiple categories along each genomic PC. In this work, we downscale the
emphasis on age and BMI compared to the other molecular features used, and did
not further optimize the categorization of these aspects as such. However, we
expect further improvements to be gained when a finer resolution of age and BMI
comparison is in place.

A face-to-DNA classifier labels faces into categories of a molecular feature, such
as sex (two-class variable; male versus female), genomic PCs (continuous
variables), and individual SNPs (three-class genotype variables) or categories of
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DNA-inferable features such as age and BMI (continuous variables). Briefly, a face-
to-DNA classifier labels new instances, knowing the class labels of training
observations with measurements on different variables, called predictors or
features. In this work, the input to a classifier were concatenated shape features
from selected facial segments and the output a genotypic labelling as well as the
probabilities of belonging to each of the opposing genotypic classes (p; and p, with
p1 = 1-p,). For each identified genotypic factor, facial segments were selected
according to a threshold of p<1x 1073 and p<5x 10~ in the GLOBAL and
EURO cohort, respectively. These thresholds were defined as slightly less stringent,
but still selective, to the FDRd thresholds that were computed for each cohort
separately. A face-to-DNA classifier was then built using the function fitcsvim from
Matlab™ 2016b which trains a SVM for two-class classification. Briefly, a SVM
finds the hyperplane that best separates the observations into classes. We trained
the classifier with a Gaussian kernel using internally defined parameters in fitcsvm
and observation weights as a function of class balance, to deal with possible data
imbalances. The Matlab™ function predict was used for new instances and
generated the most likely class label as well as posterior class probabilities.

For the GLOBAL cohort we investigated a range of arbitrary thresholds to select
facial segments and observed only minor fluctuations in the results. We also
investigated a range of alternative classifiers to SVM that are implemented and
readably available in Matlab™ as well as different strategies in Matlab™ to set the
hyper-parameters in SVM classifiers. No real improvements were observed. All
alternative results are presented in Supplementary Data 2.

Given a probe DNA-profile with specific class labels for each molecular feature,
posterior class probabilities of faces classified were selected accordingly. In other
words, a vector of matching scores, one for each molecular feature, was obtained
for each face being classified against the probe DNA-profile. The vector of scores
per participant were fused into a single overall matching score in order to perform
the recognition analyses. Score fusion represents a key step in every multi-
biometric system since the final decision is made upon the fused matching score. In
multi-biometric systems, the score fusing is a technique that combines the
matching scores from different sources to compensate for the limitations in
performance of individual matchers”. As each molecular feature has a specific level
of discrimination power, they will give a different contribution to the recognition
problem. Instead of deterministically defining weights, or calculating the fused
score with the sum-, max-, min-, product-rules, we learned their contribution using
a classifier-based score fusion technique!!l. Scores from multiple facial matchers
were treated as feature vectors, the corresponding labels as true labels; a classifier
was constructed to discriminate genuine (correct face matched against DNA-
profile) and impostor (incorrect face matched against DNA-profile) score vectors.
Among a variety of classifiers implemented in Matlab™ 2016b, we used a Naive
Bayes model since it gave the best results (Supplementary Data 1). Shortly, all
Naive Bayes classifiers assume that the value of a particular feature is independent
of the value of any other feature, given the class variable. The fitcnb Matlab™
function was used to build the Naive Bayes classifier and the command predict to
generate genuine/imposter probabilities. The higher the genuine probability used as
overall matching score, the more likely a face-to-DNA match is correct, the better
the overall match of the face against probe DNA-profile.

In the biometric identification setup, a one-to-many comparison of probe DNA
with multiple facial candidates in a gallery was performed. The identity was
established by looking at the best matching candidates after sorting the gallery from
highest to lowest overall matching scores. The performance was evaluated using
CMC curves, which plot the cumulative identification rate as a function of rank,
which is simply the position of the true candidate in the sorted gallery list.
Identification performance is typically summarized with rank x% identification
rate, reflecting the percentage of recognition results that are within the top x% of
the sorted gallery. High identification rates and rapid relative increases in the CMC
indicate better performance.

In the biometric verification setup, a one-to-one comparison with a single facial
candidate is performed. The identity is verified if the overall matching score is
deemed high enough. The performance was evaluated using ROC analyses. For a
range of thresholds on the overall matching score, the true positive fraction (TPF)
is plotted against the false positive fraction (FPF). Performance measures that are
typically reported are the area under the curve (AUC) and the equal error rate
(EER), which is the point on the ROC where the fractions of false accept and reject
are equal. Lower EER and higher AUC scores indicate better performance. Note
that this setup is the preferred evaluator for recognition that allows for a
comparison of results across multiple studies3s.

Data and open-source software to run face-to-DNA classifier, matching and fusing,
and the biometric analyses on both cohorts is available, see Data and Code Availability.

Ethics statement. We have complied with all relevant ethical regulations for work
with human participants and informed consent was obtained. Institutional review
board (IRB) approval was obtained at each recruitment site and all participants
gave their written informed consent prior to participation; for children, written
consent was obtained from a parent or legal guardian. For the Pittsburgh sample
the following local ethics approvals were obtained: University of Pittsburgh IRB
#PRO09060553 and #RB0405013; UT Health Committee for the Protection of
Human Subjects #HSC-DB-09-0508; Seattle Children’s IRB #12107; University of
Towa Human Subjects Office/IRB #200912764 and #200710721. For the Penn State

sample, the following local ethics approvals were obtained: State College, PA (IRB
#44929 & #4320 New York, NY (IRB #45727); Urbana-Champaign, IL (IRB
#13103); Dublin, Ireland; Rome, Italy; Warsaw, Poland; and Porto, Portugal (IRB
#32341); and Twinsburg, OH (IRB #2503). To perform the analysis on the data
local ethics approval at the KU Leuven was also obtained: Ethische Commisie
Onderzoek UZ/KU Leuven (EC #S60568).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The datasets generated during and/or analyzed during the current study are available in
figshare with the identifier [10.6084/m9.figshare.7649024]. This includes a single zip file
with all the phenotype/genotype data needed to replicate the results in this work, without
the need to access the raw images or genomic information. This further includes two pdf
files with additional illustrations for the genetic associations to facial shape.

HapMap genomic data is available at https://www.genome.gov/10001688/international-
hapmap-project/

All of the genotypic markers for the Pittsburgh Dataset are available to the research
community through the dbGaP controlled access repository [http://www.ncbi.nlm.nih.
gov/gap] at accession number: phs000949.v1.p1. The raw source data for the phenotypes
—the 3D facial surface models in.obj format—are available through the FaceBase
Consortium [www.facebase.org]. Access to these 3D facial surface models requires proper
institutional ethics approval and approval from the FaceBase data access committee.
Additional details can be requested from SM.W [smwst46@pitt.edu].

The participants comprising the Penn State University dataset were not collected with
broad data sharing consent. Given the highly identifiable nature of both facial and
genomic information and unresolved issues regarding risk to participants, we opted for a
more conservative approach to participant recruitment. Broad data sharing of these
collections would thus be in legal and ethical violation of the informed consent obtained
from the participants. This restriction is not because of any personal or commercial
interests. Additional details and a more confined sharing can be requested from M.D.S
[mds17@psu.edu].

Code availability

The spatially-dense facial mapping software, is available free of use for academic
purposes. This software referred to as MeshMonk3® is hosted at https://github.com/
TheWebMonks/meshmonk. All custom Matlab™ implementations and scripts, used in
this work for the hierarchical spectral clustering based facial phenotyping, the
construction of shape PCs, the statistical analysis, the classification as well as the
regression methodology, the score fusing and biometric evaluations demonstrated on the
de-identified datasets and 3D shape features used in this work are available in figshare
with the identifier [10.6084/m9.figshare.7649024]. These implementations have been
tested using Matlab™ versions 2016b, 2017a&b, 2018a and are available under the
Apache 2.0 License
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