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ABSTRACT Type III secretion systems (T3SS) are widely distributed in Gram-negative
microorganisms and critical for host-pathogen and host-symbiont interactions with
plants and animals. Central features of the T3SS are a highly conserved set of secre-
tion and translocation genes and contact dependence wherein host-pathogen inter-
actions trigger effector protein delivery and serve as an inducing signal for T3SS
gene expression. In addition to these conserved features, there are pathogen-
specific properties that include a unique repertoire of effector genes and mecha-
nisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as
a model system to understand transcriptional and posttranscriptional mechanisms
involved in the control of T3SS gene expression. The central regulatory feature is a
partner-switching system that controls the DNA-binding activity of ExsA, the primary
regulator of T3SS gene expression. Superimposed upon the partner-switching mech-
anism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems,
global regulators, and RNA-binding proteins that have positive and negative effects
on ExsA transcription and/or synthesis. In the present review, we discuss advances in
our understanding of how these regulatory systems orchestrate the activation of
T3SS gene expression in the context of acute infections and repression of the T3SS
as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
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Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of
causing a variety of infections in humans. Known risk factors include burn wounds,

corneal scratches, catheter and ventilator usage, and cystic fibrosis (1). The virulence
properties of P. aeruginosa are multifactorial and comprise adherence factors, biofilm
formation, antibiotic resistance, and secreted toxins (1). One critical virulence determi-
nant is the type III secretion system (T3SS). The T3SS is embedded in the inner
membrane and used to assemble an injectisome. The injectisome is an �25-protein
complex that spans the cell envelope and functions as a molecular syringe to translo-
cate effector proteins into eukaryotic target cells (2). The classic effectors are ExoS, ExoT,
ExoU, and ExoY (2). ExoS-secreting strains cause delayed apoptotic-like cell death, while
ExoU-secreting strains cause rapid and robust host cell lysis (3, 4). Additional effectors
are now appreciated and include the flagellar filament protein (FliC) (5–8), nuclear
diphosphate kinase (9), and PemA/PemB (10). The translocation pore itself is sufficient
to induce K� efflux, dephosphorylate and deacetylate histone H3, and cause host cell
death (11–16). The combined activities of the translocated effectors protect P. aerugi-
nosa from phagocytic and inflammatory responses, are cytotoxic, and promote sys-
temic dissemination. Strains defective for T3SS gene expression/function are severely
attenuated for virulence in burn wound, pneumonia, neutropenic, and corneal infection
models (13, 17–22).

Expression of the T3SS is tightly controlled and induced in response to a number of
environmental signals, including low concentrations (micromolar) of extracellular Ca2�,
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serum albumin/casein, and host cell contact (23–25). Primary control of T3SS gene
expression is through direct activation of transcription by ExsA, an AraC family tran-
scription factor. Positioned upstream of ExsA is a complex regulatory network involving
cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global
regulators, and RNA-binding proteins. In this review, we highlight the emerging theme
that many of the upstream regulatory events, either directly or indirectly, control exsA
transcription and/or translation.

ExsA AND CONTROL OF ExsA DNA-BINDING ACTIVITY
ExsA is the master regulator of T3SS gene expression. The P. aeruginosa T3SS

regulon consists of �40 genes encoding regulatory functions, the secretion and
translocation machinery, effectors, and effector-specific chaperones (23). Most of the
genes are organized into five operons and clustered in the genome at a common
location. The effector genes and their associated chaperones are scattered throughout
the chromosome. All of the known T3SS genes are activated by the master regulator
ExsA, a member of the AraC/XylS family of transcription factors (17, 26–30). The ExsA
consensus binding site is AaAAAnwnMygrCynnnmYTGayAk, centered �45 bp up-
stream of the transcription start site for each of the 10 ExsA-dependent promoters (28,
31). For a more thorough review of ExsA DNA-binding properties and the mechanism
of transcription activation, see the paper by Diaz et al. (32).

Control of ExsA activity by a partner-switching mechanism. In the absence of
inducing signals (low Ca2�, serum, and host cell contact), the injectisome is expressed
at a low basal level and exists in a quiescent state (33, 34). Both of those features are
critical because the injectisome is the sensor of inducing signals and responds by
converting to a secretion-competent state through a poorly defined mechanism (33).
Secretion competency indirectly activates T3SS gene expression through a partner-
switching mechanism. The components of the partner-switching mechanism are the
activator ExsA, the antiactivator ExsD, the antiantiactivator ExsC, and the secreted/
translocated ExsE protein (Fig. 1). In the absence of inducing signals, the secreted
substrate ExsE remains cytoplasmic in a 1:2 complex with ExsC (35), and ExsA is
sequestered by ExsD in a 1:1 complex (36). Inducing signals lead to the secretion/
translocation of ExsE through the injectisome (34, 37, 38). The decrease in cytosolic
levels of ExsE triggers partner switching wherein ExsC preferentially binds ExsD in a 2:2

FIG 1 The T3SS partner-switching mechanism that controls the DNA-binding activity of ExsA. Negative
regulators are in red, and positive regulators are in white.
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complex, resulting in the release of ExsA (Fig. 1) (35, 36, 39–41). Liberated ExsA then
binds to target promoters and recruits RNA polymerase to activate the T3SS regulon
(28, 42, 43). Partner switching is likely driven by affinity differences in the protein-
protein interactions (ExsE-ExsC � ExsD-ExsE � ExsA-ExsD, in decreasing order of
affinity). While certainly true for the ExsE-ExsC (18 nM) and ExsD-ExsC (1 nM) interac-
tions (35), the affinity of the ExsA-ExsD complex is unknown but predicted to be weaker
than that for ExsD-ExsC. Partner-switching mechanisms similar to the P. aeruginosa
system also regulate T3SS gene expression in Photorhabdus luminescens (44, 45),
Aeromonas hydrophila (46–48), Vibrio parahaemolyticus (49–52), and Vibrio alginolyticus
(53).

In addition to partner-switching-mediated control of ExsA activity, PtrA may also
directly bind to and inhibit ExsA activity. PtrA is a copper-sensing protein upregulated
in the presence of copper (54). Although one group found that PtrA interacts with ExsA
to inhibit T3SS gene expression (54), a second group found that PtrA is a periplasmic
protein important for copper tolerance and that PtrA does not interact with ExsA or
play a role in the control of T3SS gene expression (55). To the best of our knowledge,
no studies have observed direct repression of the T3SS by copper.

TRANSCIPTIONAL CONTROL OF ExsA

Transcription of exsA is driven from two distinct promoters. For many years, the PexsC

promoter, which produces the exsCEBA polycistronic mRNA, was the only known
mechanism of generating exsA transcript (Fig. 2) (27). A recent genome-wide screen for
transcription start sites identified a novel transcript originating 100 nucleotides up-
stream of the exsA start codon (56) (Fig. 2). The same start site was identified by 5= rapid
amplification of cDNA ends (RACE) within two nucleotides (30). The newly discovered
promoter, designated PexsA, generates a monocistronic exsA transcript. The PexsC pro-
moter is �400 times more active than PexsA and thus makes a larger contribution to
exsA transcript levels under inducing conditions. ExsA itself does not bind to or regulate
PexsA promoter activity (30). Nevertheless, the PexsA promoter is subject to significant
regulatory control, stimulated by Vfr, Fis, and VqsM and silenced by the histone-like
proteins MvaT and MvaU (30, 57–59).

Control of PexsA promoter activity. Vfr is a global regulator of P. aeruginosa
virulence homologous to Escherichia coli cAMP receptor protein (CRP) (60). The cAMP-
Vfr signaling system activates exotoxin A production (60, 61), type IV pilus biosynthesis
(62), the las quorum sensing (QS) system (63), and T3SS gene expression (64) and
inhibits flagellar gene expression (65). Coordinated regulation of the T3SS with type IV
pili is noteworthy because the associated adherence function is necessary for intimate
adherence to host cells and translocation of the T3SS effectors. Although the primary
effect of calcium chelation is through activation of secretion, the activity of the

FIG 2 Map of the T3SS regulatory locus and locations of the PexsC and PexsA promoter regions. The binding sites for Vfr (30), Fis (58), and
VqsM (57) are boxed. Brackets indicate the MvaT and MvaU binding regions based on ChIP-chip data (78). The PexsA transcription start site
is indicated with a large C, and the �10 region is in red.
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cAMP-Vfr signaling system is enhanced by EGTA (presumably through calcium chela-
tion) (64). Because cAMP production is also stimulated by high osmolarity (64), cAMP-
Vfr signaling contributes to T3SS gene control in response to hyperosmotic stress (34,
66). Vfr directly binds to and stimulates PexsA promoter activity (30). The Vfr binding site
is centered �42 bp upstream of the PexsA promoter transcription start site (Fig. 2).
Curiously, disruption of the PexsA Vfr binding site on the chromosome results in a more
severe phenotype than does deletion of vfr itself (30). Whether the mutation disrupts
other DNA-binding proteins that control PexsA promoter activity, RNA-binding proteins
that interact with the longer exsCEBA mRNA to regulate ExsA translation (see below), or
exsCEBA mRNA stability is unclear.

Fis is a nucleoid-associated protein that binds to and bends DNA (67, 68). T3SS gene
expression and T3SS-dependent cytotoxicity are reduced in a fis transposon insertion
mutant (58). Although a Fis binding site is located between the Vfr binding site and the
�10 region of the PexsA promoter (Fig. 2), PexsA promoter activity is unaffected in the
fis::Tn mutant. Instead, the decrease in T3SS gene expression correlates with reduced
PexsC promoter activity. While the precise mechanism of control by Fis is unclear, there
are a number of interesting connections between Fis and previously described regu-
lators of the T3SS. Translation of Fis is inhibited by the small noncoding (sRNA) RgsA
through direct base pairing with the fis mRNA (69). RpoS is essential for rgsA transcrip-
tion, consistent with previous data showing that RpoS inhibits T3SS gene expression
(70). Base pairing between RgsA and the fis mRNA is dependent upon the RNA
chaperone Hfq and is consistent with recent data suggesting that Hfq inhibits T3SS
gene expression (71). Finally, activation of the GacAS two-component system inhibits
T3SS gene expression (72–74). While the primary effect of GacAS signaling is reduced
cAMP-Vfr signaling and ExsA translation (75) (see below), rgsA transcription is indirectly
stimulated by the GacAS two-component system (69).

VqsM is an AraC family transcriptional regulator which activates the las quorum
sensing system and T3SS gene expression (57, 76). The reported VqsM binding site is
located downstream of the transcription start site for the PexsA promoter (30, 56, 57).
Given the location of the binding site, it seems unlikely that VqsM activates the PexsA

promoter, raising the possibility of a second VqsM-dependent promoter that contrib-
utes to exsA transcription. The relative contribution of VqsM to T3SS gene expression
appears to be strain specific, as vqsM is not found in all P. aeruginosa strains (77).

MvaT and MvaU are members of the histone-like nucleoid structuring (H-NS) family
of global transcription repressors. H-NS proteins oligomerize on the DNA and silence
gene expression by competing with transcription factors and/or trapping/occluding
RNA polymerase (RNAP). A chromatin immunoprecipitation with microarray technology
(ChIP-chip) study identified MvaT and MvaU binding sites in the PexsA promoter region
(Fig. 2) (78). Whereas strains lacking mvaT or mvaU demonstrate elevated PexsA pro-
moter activity and T3SS gene expression, overexpression of either MvaT or MvaU
inhibits T3SS gene expression (59). Although an mvaTU double mutant is lethal, the
depletion of mvaU by CRISPR interference in an mvaT mutant results in significant
stimulation of PexsA promoter activity, leading to the conclusion that MvaT and MvaU
have redundant roles in silencing T3SS gene expression. The proposed model is that
MvaT and MvaU bind the PexsA promoter region and inhibit transcription until an
activator overrides silencing (59). The best candidate is Vfr, as it appears to be required
for PexsA transcription regardless of whether mvaT and mvaU are present or absent (59).
It remains possible, however, that Fis, VqsM, or an unknown factor also competes with
MvaT/MvaU to override the silencing activity.

The ChIP-chip data did not show MvaT or MvaU binding to promoter regions of any
other known regulator of exsA transcription, including vfr (59, 78). MvaT and MvaU also
inhibit transcription of the small RNAs RsmY and RsmZ involved in sequestration of
RsmA (59, 78, 79). Although the net effect might liberate RsmA, which has a positive
effect on ExsA translation (discussed below) (74, 75, 78), regulation of rsmYZ transcrip-
tion by MvaT/MvaU does not appear to have a significant effect on T3SS gene
expression.
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Control of PexsC promoter activity. The PexsC promoter is primarily activated by
ExsA (27), resulting in a positive feedback loop with most exsA-containing transcript
generated under inducing conditions originating from the PexsC promoter (Fig. 2),
which is �400-fold more active than the PexsA promoter (30). Full activation of PexsC

promoter activity is dependent upon PsrA, a TetR family member (80). PsrA is activated
by long-chain fatty acids (LCFAs) such as oleate (81) and antimicrobial peptides (82).
PsrA binds PexsC with relatively low affinity compared to its own promoter (80). LCFAs
activate psrA transcription by directly binding to PsrA and preventing self-repression
(81). When LCFAs are at low levels, there is excess PsrA to activate PexsC; however, when
LCFA levels are high enough to bind all of the PsrA in the cell, PsrA-dependent
transcription is inhibited (Fig. 3).

TRANSLATIONAL CONTROL OF ExsA

Following transcription, the exsA mRNA is subject to additional levels of regulatory
control at the posttranscriptional level. Translation of exsA is positively regulated by the
RNA-binding proteins RsmA and DeaD and negatively regulated by at least one small
noncoding RNA (sRNA 0161), presumably with the assistance of Hfq (71, 72, 75, 83).

Translational control by RsmA. The Rsm system controls a critical lifestyle switch
by inversely controlling phenotypes that favor acute infection or chronic colonization
(84). The primary effector of the system is RsmA. Determinants positively controlled by
RsmA include the cAMP-Vfr signaling system, type IV pili, and T3SS gene expression.
Conversely, RsmA inhibits biofilm production, quorum sensing, the type VI secretion
system (T6SS), and hydrogen cyanide (HCN) production (79, 85–88). An rsmA mutant
has reduced colonization in an acute infection model, partially explained by a loss of
T3SS gene expression and type IV pili, and enhanced persistence in a chronic infection
model (89). This mirrors the general observation that P. aeruginosa isolates from chronic
cystic fibrosis infections are defective for T3SS gene expression (90, 91). Although the
significance of this observation is unclear, it suggests that T3SS gene expression is
negatively selected against in the context of chronic colonization.

RsmA is an ortholog of E. coli CsrA, where it was identified as a carbon source
regulator (85, 92). The CsrA family of proteins bind target mRNAs and negatively or
positively modulate translation efficiency and/or stability (93). RsmA binds target
mRNAs through the recognition of GGA motifs presented in the loop portion of
stem-loop structures (94). For repressed targets, the RsmA binding site typically over-
laps the ribosome binding site (RBS). RsmA stimulates T3SS gene expression through at
least two mechanisms (Fig. 3). The first promotes cAMP-Vfr signaling and impacts T3SS
gene expression through PexsA promoter activity. The transcription of both vfr and cyaB
is significantly reduced in the absence of rsmA, although the mechanism of control
remains unknown (72). CyaB is the primary adenylate cyclase involved in the generation
of cytoplasmic cAMP (64). The second stimulatory function of RsmA enhances ExsA
translation �2- to 3-fold (75). Although a 2- to 3-fold change in translation efficiency
may appear trivial, small changes in any member of the partner-switching mechanism
(ExsA, ExsD, ExsC, or ExsE) are likely sufficient to trigger significant changes in T3SS
gene expression (95). It is not known whether RsmA functions directly or indirectly to
stimulate Vfr and ExsA translation. Another potential explanation for a loss of T3SS gene
expression in an rsmA mutant is elevated levels of c-di-GMP, which appears to antag-
onize cAMP-Vfr signaling (described below) (96, 97). The combined effects of RsmA on
exsA transcription and translation are substantial, as rsmA and exsA mutants are equally
defective for T3SS gene expression (75).

RsmA activity is controlled by several “decoy” sRNAs, including RsmV, RsmW, RsmY,
and RsmZ, with RsmY and RsmZ playing the most prominent roles. Each sRNA has
multiple RsmA binding sites (86, 94, 98–102). High levels of the sRNAs result in the
sequestration of RsmA from target mRNAs and reduced T3SS gene expression. Cellular
levels of RsmY and RsmZ are controlled by the GacAS two-component regulatory
system (Fig. 3). GacS is an unusual histidine kinase with H1/D1/H2 (autophosphorylat-
ing histidine, receiver aspartate, and second histidine, respectively) domains (103).
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GacA is a response regulator (RR) whose sole function is activation of rsmY and rsmZ
transcription following phosphorylation by GacS (74). Phosphotransfer from GacS to
GacA is regulated by several additional histidine kinases. The RetS hybrid histidine
kinase positively regulates the T3SS by dimerizing with the GacS H1 domain and
blocking GacS autophosphorylation and by dephosphorylating GacS, preventing phos-
photransfer to GacA (104–106). PA1611, another hybrid histidine kinase, counteracts
RetS-mediated interference by forming heterodimers with RetS (107). The LadS histi-
dine kinase activates GacS by transphosphorylating the GacS H2 domain (103). LadS is
activated by extracellular calcium leading to the induction of rsmYZ transcription and
sequestration of RsmA. Reduced RsmA availability results in an inhibition of T3SS gene
expression and expression of genes associated with chronic colonization (108).

FIG 3 Regulatory pathways that control T3SS gene expression. Gene products that stimulate T3SS gene expression are shown in white, while those that
inhibit are red. Diguanylate cyclases (DGC) that synthesize c-di-GMP are orange, and phosphodiesterases (PDE) that degrade c-di-GMP are blue. P
indicates a histidine kinase or response regulator. Blue lines signify transcriptional regulation, green lines signify posttranscriptional regulation, orange
lines signify control of protein activity, purple lines signify enzymatic activity, pink lines signify phosphotransfer activity, and black dashed lines are links
with indirect or unknown mechanisms.
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Several additional factors that control T3SS gene expression are linked to the Rsm
system. Polynucleotide phosphorylase (PNPase) inhibits T3SS gene expression by di-
rectly stabilizing RsmY and RsmZ, leading to enhanced RsmA sequestration (109). TspR,
a protein of unknown function, is encoded immediately downstream of retS and
indirectly activated by RetS (110). T3SS gene expression and ExsA translation are
reduced in a tspR mutant and restored in a tspR mutant lacking rsmY and rsmZ (110).
TspR appears to stimulate T3SS gene expression by suppressing rsmY and rsmZ
transcription, potentially via effects on RetS. CysB is a LysR family transcription factor
that contributes to T3SS gene expression by controlling retS transcription (111). Al-
though E. coli CysB activates sulfate assimilation, retS transcription is unaffected by
sulfate or cysteine addition (111).

Translational control by the RNA helicase DeaD. DEAD proteins are ubiquitous
ATP-dependent RNA helicases with a conserved Asp-Glu-Ala-Asp (DEAD) motif. Roles of
DEAD box proteins include ribosome biogenesis, translation initiation, RNA decay, and
growth promotion at low temperature (112). P. aeruginosa deaD was identified by
screening transposon libraries for defects in T3SS activity (113, 114). The lack of T3SS
gene expression in a deaD mutant results from reduced exsA translation (2- to 3-fold)
without impacting mRNA stability (114). Although the P. aeruginosa genome contains
7 DEAD box helicases, only deaD is essential for T3SS gene expression (114). The native
exsA RBS is required for DeaD-mediated activation, and Mfold predictions suggest that
the mRNA adopts a confirmation that partially occludes the RBS (114). Purified DeaD is
sufficient to stimulate exsA translation in vitro leading to a model wherein DeaD
functions by altering the mRNA structure and enhancing ribosomal access. The RsmA
and DeaD requirements for exsA translation have not been fully defined, but both
appear to be essential, as rsmA or deaD provided in trans is unable to complement the
deaD or rsmA mutants, respectively (114).

Translational control by sRNA 0161 and Hfq. Whereas RsmY and RsmZ are sRNAs
that modulate protein activity (i.e., RsmA and RsmF), other sRNAs regulate gene
expression by imperfectly base pairing with the target mRNAs (115). These sRNAs
(typically 50 to 300 nucleotides [nt]) often base pair with the mRNA at or near the RBS
and block translation by preventing ribosome binding. In Gram-negative bacteria, the
RNA chaperone Hfq is usually required for sRNA function and/or stability. A high-
throughput global sRNA target identification by ligation and sequencing (Hi-GRIL-seq)
screen identified sRNAs and their cognate target mRNAs in P. aeruginosa (71). sRNA
Sr0161 was found to inhibit exsA translation, and overexpression of Sr0161 reduced
T3SS gene expression (71). Other sRNAs target Fis and RpoS, both of which contribute
to T3SS gene expression (69, 116).

Translational control by Crc. The Crc protein controls the availability of enzymes
and transporters involved in the utilization of secondary carbon sources. A crc mutant
has reduced T3SS expression, swimming, swarming, twitching, and initial biofilm
formation. A microarray study identified 428 differentially controlled genes in a crc
mutant, including several with described roles in T3SS gene control (117). The primary
explanation for reduced T3SS gene expression is that Crc appears to stimulate ExsA
translation (117). Although Crc and Hfq can function together to repress the translation
of target genes (118–123), hfq and crc mutants have opposite phenotypes for T3SS
gene expression (117, 122). It is unlikely, therefore, that Hfq and Crc work together to
directly control the T3SS. Like RsmA, Crc activity is controlled by an sRNA, CrcZ, which
acts by sequestering Crc from target mRNAs (124). The expression of crcZ is controlled
by the CbrAB two-component system in response to different carbon sources (124).
This has potential implications to previous studies showing that metabolic activity
controls T3SS gene expression (34).

SECOND MESSENGERS

Second messengers are intracellular signaling molecules produced in response to a
“first messenger,” usually an extracellular signaling molecule. The second messengers
cAMP and bis-(3=-5=)-cyclic dimeric GMP (c-di-GMP) serve as regulatory switches that
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alter cell growth, motility, lifestyle, and virulence (125, 126). Whereas cAMP directly
binds to and activates Vfr to promote T3SS gene expression (60), c-di-GMP inhibits the
T3SS.

cAMP. As discussed above, cAMP allosterically activates the DNA-binding activity of
Vfr, leading to enhanced transcription of target promoters, including PexsA (30, 64, 127).
cAMP is synthesized by two adenylate cyclases, CyaA and CyaB (64, 128). CyaA is
located in the cytoplasm and plays a minor role in cAMP synthesis. Most cAMP
is synthesized by the inner membrane-anchored CyaB (64, 129). cAMP homeostasis is
maintained by CpdA, a phosphodiesterase that degrades cAMP to 5=-AMP (128). cAMP
production is regulated by type IV pili and the Chp chemotaxis-like system (130, 131).
Mechanosensation of surfaces by type IV pili is thought to activate the Chp system,
stimulate CyaB activity, and induce expression of Vfr-dependent surface-associated
virulence phenotypes (Fig. 3) (132–134).

NrtR is a transcription factor that represses itself and nadD2, a nicotinate mononu-
cleotide adenylyltransferase gene. NrtR is required for T3SS gene expression, infection
of HeLa cells, and colonization in an acute murine pneumonia model (113, 135). Loss
of T3SS gene expression in the nrtR mutant results from a reduction in cAMP levels. The
current model proposes that NadD2 directly interacts with and inhibits CyaB activity
(135).

c-di-GMP. c-di-GMP regulates polysaccharide synthesis, biofilm formation, adher-
ence, and virulence factors and controls the transition between planktonic and sessile
lifestyles (acute to chronic infection) (136–138). Expression of the T3SS is inhibited by
elevated levels of c-di-GMP (125, 139–141). c-di-GMP is synthesized from two molecules
of GTP by diguanylate cyclases (DGC) and degraded to either pGpG or two GMPs by
phosphodiesterases (PDEs). pGpG is hydrolyzed into two GMP molecules by oligoribo-
nuclease (Orn) (142, 143). Because pGpG inhibits the activity of some PDEs (e.g., RocR)
(142, 143), a loss of Orn leads to an increase in cellular c-di-GMP and inhibition of the
T3SS (144).

Overexpression of some DGCs inhibits cAMP-Vfr-dependent reporter activity, and
overexpression of some PDEs stimulates reporter activity. DGCs with potential rele-
vance to T3SS gene control include WspR, SiaD, SadC, MucR, and GcbA, and implicated
PDEs include PvrR, RocR, FcsR, PA2200, PA3825, NbdA, BifA, DipA, and RbdA (96, 113,
126, 141–143, 145–152) (Fig. 3). The relative contribution of each has been challenging
to sort out. The observation that c-di-GMP and cAMP levels are inversely related to one
another likely accounts for the effect of c-di-GMP on T3SS gene expression (125, 126).
The mechanistic basis for this reciprocal relationship is unclear but does not involve
c-di-GMP-mediated changes to cyaAB or vfr transcription or translation or alteration of
CyaA, CyaB, or CdpA activity (125). Involvement of the Chp system in cAMP production
may provide a link, as both ChpA and PilK are putative c-di-GMP binding proteins (153).

SuhB is an inositol monophosphatase essential for virulence in a murine model (113,
154). SuhB inhibits the DGC GcbA, resulting in decreased c-di-GMP levels (Fig. 3) (146).
SuhB also inhibits the expression of GacA (113). Because RsmY and RsmZ levels are
increased in a suhB mutant, ExsA translation is dependent on the presence of suhB.

The HigB-HigA toxin/antitoxin system stimulates T3SS gene expression when cells
are exposed to ciprofloxacin (Fig. 3) (148, 155). Deletion of the HigA antitoxin results in
higher levels of free HigB, reduced c-di-GMP, and increased T3SS gene expression (155).
Free HigB results in increased levels of three PDEs (FcsR, PA2200, and PA3825). The
deletion of all three PDEs results in elevated c-di-GMP and inhibition of the T3SS
phenotype (148). This is contrary to the findings from another study, however, which
showed that ciprofloxacin treatment inhibits the T3SS (156).

Activation of MucA/AlgU signaling inhibits T3SS gene expression. Chronic
colonization of the cystic fibrosis airways is associated with mucoid conversion and loss
of T3SS gene expression (90, 91, 157, 158). The mucoid phenotype results from alginate
overproduction and is controlled by the MucA/AlgU regulatory cascade. MucA is an
anti-sigma factor that sequesters the AlgU sigma factor (159). Inactivating mutations in
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mucA are common in chronically adapted P. aeruginosa isolated from cystic fibrosis
lungs, and those mutations result in activation of the AlgU regulon (158). The AlgU
regulon includes genes required for alginate biosynthesis and algR, which encodes a
response regulator that controls alginate production, type IV pili, and virulence (158,
160). AlgR is part of a two-component system with AlgZ serving as the histidine kinase
(161). cAMP-Vfr-dependent signaling and the Rsm system are both altered in mucA
mutants (75, 162–164). AlgR and AlgU directly activate rsmA expression (165, 166), and
AlgR increases RsmY and RsmZ expression through an undefined mechanism (75). The
net effect of stimulating rsmA, rsmY, and rsmZ transcription is enhanced sequestration
of RsmA (75). The lack of T3SS gene expression in a mucA mutant, therefore, results
from reduced RsmA availability, which decreases Vfr-dependent PexsA transcription and
RsmA-stimulated translation of ExsA, as described above (Fig. 3). The T3SS defect in
strains lacking mucA can be largely suppressed by increasing cAMP-Vfr signaling and
the levels of free RsmA (75). AlgR also directly activates mucR, a DGC, but the relative
contribution of this to T3SS gene control has not been examined (152). MucB, also
required for T3SS gene expression, is a periplasmic protein that binds to and protects
MucA from proteolytic cleavage by AlgW (113, 167, 168). Although mucoid conversion
is associated with the onset of irreversible colonization of the cystic fibrosis airways, the
finding that the losses of cAMP-Vfr signaling and T3SS gene expression are coincident
events suggests that the selective advantage conferred to mucA mutants in the cystic
fibrosis airways may extend beyond mucoidy.

MISSING LINKS

Several genes/pathways that affect T3SS gene expression lack obvious connections
to known mechanisms of T3SS gene control. The realization that most upstream
regulators impact exsA transcription and/or ExsA synthesis through cAMP-Vfr, the RsmA
system, and/or c-di-GMP provides a framework to rapidly evaluate regulators of un-
known function.

PtrB, which is activated by degradation of the PtrR repressor following DNA damage,
is a repressor of T3SS gene expression (169). Overexpression of efflux pumps MexCD-
OprJ and MexEF-OprN, as well as PtrC, also inhibits T3SS gene expression (170, 171). The
spermine/spermidine uptake transporter is required for T3SS gene expression (172).
Spermine and spermidine are polyamines that can be utilized by P. aeruginosa as sole
carbon and nitrogen sources (173, 174). While spermidine can be synthesized by P.
aeruginosa, spermine is only found in eukaryotes. Mutants in the spermidine uptake
transporter, but not synthesis genes, are deficient for T3SS gene expression, indicating
that spermine and spermidine could be host signals that activate the T3SS (172). This
is consistent with the finding that the addition of exogenous spermidine or spermine
increases T3SS gene expression and cytotoxicity (172). The cAMP-Vfr and Rsm systems
are unaffected in cells lacking the spermine transporter, suggesting that T3SS activation
occurs through a novel mechanism.

The heat shock protein DnaK is required for acute virulence and T3SS gene expres-
sion (113, 154, 175). Elastase activity, exotoxin A secretion, swimming, swarming, and
twitching motility are also diminished in a dnaK mutant, leading to the possibility that
the phenotypes reflect a defect in cAMP-Vfr signaling (175). DnaK colocalizes in the
periplasm with the nitrite reductase NirS (176). NirS inhibits c-di-GMP production and
is required for T3SS gene expression (177).

THERAPEUTICS AND INHIBITORS OF T3SS GENE EXPRESSION

The essential role of the T3SS in the context of acute infection makes it an attractive
target for therapeutic development. Targetable events include T3SS gene expression,
injectisome assembly, secretory activity, effector translocation, and effector activity.
Because T3SS gene expression is coupled with secretory activity by partner switching,
drugs that inhibit assembly or secretion should also significantly reduce T3SS gene
expression.

N-Hydroxybenzimidazoles were originally identified using a structure-based ap-
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proach as inhibitors of AraC proteins (178). Several N-hydroxybenzimidazoles with 50%
inhibitory concentrations (IC50s) in the low-micromolar range inhibit the DNA-binding
activity of ExsA in vitro and T3SS-dependent toxicity toward macrophages (179). The
N-hydroxybenzimidazoles interact with the carboxy-terminal DNA-binding domain of
ExsA to inhibit DNA-binding activity (180). N-Hydroxybenzimidazoles also inhibit the
DNA-binding activity of ExsA orthologs from Yersinia pestis, Aeromonas hydrophila,
Photorhabdus luminescens, and Vibrio parahaemolyticus (180). Although active against
ExsA in vitro, N-hydroxybenzimidazoles do not inhibit ExsA-dependent promoter
activity in vivo when using either P. aeruginosa or E. coli reporter strains. The
significant reduction in T3SS-dependent toxicity observed in coculture experiments
with Chinese hamster ovary cells, therefore, is enigmatic. It is interesting to note that
N-hydroxybenzimidazoles display broad-spectrum activity against distantly related
AraC proteins (178, 181) and that the P. aeruginosa genome has �50 AraC family
members. The protective activity of N-hydroxybenzimidazoles may result from effects
on multiple AraC proteins or off-target effects.

As discussed above, spermidine transport is necessary for T3SS gene expression
(172). Evidence for the efficacy of targeting spermidine was shown using a rhodamine
101-spermine conjugate that inhibits spermidine uptake, T3SS gene expression, cyto-
toxicity toward HeLa cells, and virulence in mice (182). This was followed by generating
a spermidine IgG1 monoclonal antibody. The antibody also prevents spermidine-
dependent activation of the T3SS, protects A549 cells for toxicity, lowers spermidine
levels in mouse serum, and protects mice from P. aeruginosa lung infection (183).

Although the macrolide azithromycin does not kill planktonic P. aeruginosa at
typically achieved clinical concentrations, sublethal doses inhibit quorum sensing and
biofilm formation and increase T3SS gene expression (184–188). The biofilm and T3SS
phenotypes likely result from inhibition of rsmY and rsmZ expression by azithromycin,
leading to an increase in RsmA availability (189). Elevated T3SS gene expression is
consistent with the findings that azithromycin treatment results in greater cytotoxicity
when P. aeruginosa is cocultured with J774.A1 cells and increased mortality in mice
following pretreatment with macrolides (190, 191). Azithromycin has positive thera-
peutic benefits for patients with chronic P. aeruginosa pulmonary disease, possibly by
reducing biofilm formation (192–194). The efficacy of azithromycin in chronic infection
may also reflect the tendency of chronic P. aeruginosa isolates to be defective in T3SS
function (90, 91).

Several plant phenolic compounds (salicylic acid, its precursors, and their analogues)
inhibit or activate T3SS gene expression (195). The compound TS027 inhibits exsA
transcription likely through effects on ExsA translation via the Rsm system (195).
Compound TS103 activates the T3SS, probably by inhibiting rsmYZ transcription and
increasing RsmA availability. Coumarin is a phenolic compound that inhibits T3SS gene
expression during planktonic growth by an unknown mechanism (196).

Other inhibitors of the T3SS include the anticancer drug cisplatin (197), salicyclidene
acylhydrazide INP0341 (198), (�)-hopeaphenol (199), a selection of synthetic cyclic
peptomers (200), and the small-molecule inhibitor fluorothiazinon (197, 201). Many of
these compounds protect eukaryotic cells from T3SS-induced cytotoxicity (198, 199,
201).

CONCLUSIONS

The T3SS represents a mechanism to protect P. aeruginosa from predators ranging
from amoebae to human neutrophils. Activation by the partner-switching cascade
appears to be simplistically brilliant. Host cell contact is a highly relevant signal and
triggers immediate induction of T3SS gene expression. It is puzzling, therefore, that so
many additional resources are dedicated to controlling the T3SS. One potential expla-
nation is that the signaling systems positioned above the partner-switching mechanism
fine-tune T3SS gene expression. Why fine-tuning would be required is not obvious, as
the requirement to express the T3SS gene expression seems straightforward: activate
when a threat is present and inhibit when the threat has passed. Another explanation

Minireview Journal of Bacteriology

July 2019 Volume 201 Issue 13 e00209-19 jb.asm.org 10

https://jb.asm.org


may relate to the bistability of T3SS gene expression. Single-cell experiments with
fluorescent reporters have revealed that only a subset of P. aeruginosa cells within a
population induce T3SS gene expression in response to either low calcium or cultured
mammalian cells (34, 95, 202, 203). This phenomenon, referred to as bistability, results
from stochastic fluctuations in the production and/or activity of a transcription factor
(204). Bistable expression of the T3SS likely results from the combined effects of ExsA
autoregulating its own transcription, ExsA-dependent control of the ExsD anti-activator,
and the partner-switching mechanism. Bistable expression of the T3SS may promote
social cheating. Social cheating occurs when certain members of a population produce
a beneficial trait, such as T3SS-mediated killing of immune cells, and other members
(cheaters) take advantage without incurring the costs associated with producing the
benefit (205). A recent study found that �80% of P. aeruginosa cells express the T3SS
in an acute murine infection model (206). In competition experiments, wild-type (wt) P.
aeruginosa has a competitive advantage over a strain overexpressing the T3SS and a
disadvantage against T3SS-negative strains (206). The fitness cost associated with T3SS
gene expression may be energetic and/or related to expression of immunogenic
molecules, such as the needle complex tip protein PcrV (207). When T3SS-defective
strains are provided in significant excess over wt organisms, the disadvantage to wt
organisms is negated (206). These findings may explain why T3SS-negative bacteria can
be isolated from acute infections (208, 209). Cheater populations usually become
unstable when the proportion of producers to cheaters becomes excessive. Fine-tuning
T3SS gene expression in response to a wide range of environmental signals may
establish an optimal bistable population and afford the greatest fitness advantage for
cells that both express and repress T3SS gene expression.
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