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The repeated evolution of similar phenotypes in independent populations

(i.e. parallel or convergent evolution) provides an opportunity to identify

genetic and ecological factors that influence the process of adaptation. Three-

spine stickleback fish (Gasterosteus aculeatus) are an excellent model for such

studies, as they have repeatedly adapted to divergent habitats across the

Northern hemisphere. Here, we use genomic, ecological and morphological

data from 16 independent pairs of stickleback populations adapted to diver-

gent lake and stream habitats. We combine a population genomic approach

to identify regions of the genome that are likely under selection in these

divergent habitats with an association mapping approach to identify regions

of the genome that underlie variation in ecological factors and morphologi-

cal traits. Over 37% of genomic windows are repeatedly differentiated across

lake–stream pairs. Similarly, many genomic windows are associated with

variation in abiotic factors, diet items and morphological phenotypes.

Both the highly differentiated windows and candidate trait windows are

non-randomly distributed across the genome and show some overlap. How-

ever, the overlap is not significant on a genome-wide scale. Together, our

data suggest that adaptation to divergent food resources and predation

regimes are drivers of differentiation in lake–stream stickleback, but that

additional ecological factors are also important.

This article is part of the theme issue ‘Convergent evolution in the genomics

era: new insights and directions’.
1. Introduction
When organisms recurrently adapt to new environments, what are the genetic

and ecological factors that influence the repeatability of their evolutionary tra-

jectories? The answers to this question should reveal the form and constancy of

natural selection, as well as the constraining roles of genetic variation and gene

flow. Independent, replicate pairs of populations adapting to similar ecological

conditions provide a useful opportunity to address this question. Recent genetic

studies of replicated phenotypic evolution have provided tantalizing clues that

evolutionary trajectories may be more repeatable than previously thought

[1–3]. In particular, many studies have identified regions of the genome that

are repeatedly differentiated between independent population pairs adapting

to divergent habitats (e.g. [4–7]). Although repeatable phenotypic divergence

is generally taken as strong evidence of the role of natural selection [8–9], it

is not always clear that patterns of repeated genomic divergence solely result
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from natural selection [10]. Furthermore, population genomic

studies are usually agnostic to specific phenotypes, and most

studies have not associated specific ecological factors or mor-

phological traits with the regions of the genome that evolve

consistently across replicates.

The threespine stickleback (Gasterosteus aculeatus) is a

good system in which to quantify the repeatability of geno-

mic differentiation and to identify the ecological conditions

and phenotypic traits that are associated with regions of

repeated genomic differentiation. These small fish have fre-

quently colonized diverse freshwater habitats in the

Northern Hemisphere since the retreat of the glaciers 12 000

years ago [11]. Strikingly, sticklebacks living in similar habi-

tats often evolve similar phenotypes, suggesting that

phenotypic shifts are adaptive. The availability of a number

of genetic resources including an assembled and annotated

genome [4] facilitates the identification of the genetic basis

of putatively adaptive phenotypes [12]. Thus, this system

provides an opportunity to ask whether the same genomic

regions underlie evolutionary change in similar habitats

and to further ask whether these seemingly adaptive regions

are associated with particular biotic and abiotic environ-

mental factors, or with specific organismal phenotypes.

One widespread example of repeated phenotypic

divergence is found among pairs of stickleback populations

inhabiting lakes versus streams. Lake ecotypes are adapted to

feeding on zooplankton, while stream ecotypes are adapted

to feeding on macro-invertebrates [13–14]. Lake–stream pairs

can show considerable genetic and morphological divergence

[15–18], and at least some phenotypic differences between

the ecotypes are heritable [19–23]. These ‘lake–stream’ ecotype

pairs have been extensively studied in Canada and Europe and

show repeated phenotypic evolution [24]; i.e. lake fish from

Europe and Canada resemble each other more in multiple

key traits than their more closely related stream fish [25–26].

Previous work on this system has shown that parallel evolution

(here termed ‘repeatability’) is imperfect, but that deviations

from parallelism can be partially explained. Specifically,

the degree of phenotypic parallelism is positively correlated

with the degree of environmental parallelism [24]. This

correlation suggests that evolutionary repeatability is indeed

adaptive to some extent in this system, but that deviations

from repeatable lake–stream divergence can also be attributed

to adaptation to differences in ecology among lakes or among

streams. This incomplete parallelism means that habitat

categories (lake versus stream), environmental variables and

fish morphological traits are decoupled enough to allow mean-

ingful genome-wide association studies.

In this study, we combine genomic, ecological and

morphological data from 16 population pairs of lake–stream

stickleback sampled from independent watersheds on

Vancouver Island, Canada, to ask three sets of questions:

(1) For a given genomic region, what proportion of the 16

lake–stream pairs show similarly high genetic differentiation,

and what proportion of the genome overall exhibits shared

genetic differentiation?; (2) Which genomic locations are

associated with variation in environmental factors (biotic and

abiotic) and variation in morphological traits across lake

and stream populations?; (3) Do the genomic regions under-

lying these traits co-localize to genomic locations that are

repeatedly differentiated? If so, is there enrichment of particu-

lar categories of traits within the repeatedly differentiated

regions?
2. Material and methods
(a) Quantification of repeated genomic differentiation
Illumina sequence data for pairs of lake and stream stickleback

from 16 independent watersheds on Vancouver Island, Canada

(32 total populations) was previously generated using the

double-digest restriction-site-associated DNA-sequencing

(double-digest RAD) method [27], with 24 individuals sequenced

from each population. Single nucleotide polymorphisms (SNPs)

were identified using a standard, reference-based bioinformatics

pipeline (see [24] for full details of these data); alignment of reads

was done to the Jones et al. [4] genome assembly. For each indi-

vidual, a site was only included if the read coverage was between

8 and 100. SNPs mapping to the mitochondrial DNA or unas-

sembled regions of the genome were excluded from further

analysis. Weir–Cockerham Fixation index (FST) [28] was used

to estimate genetic differentiation between each pair of lake–

stream populations, then averaged over 50 kilobase pair (kbp)

windows (electronic supplementary material, figure S1). These

windows were constrained to have the same size and genomic

locations for all lake–stream comparisons. Window-averaged

FST values were calculated by dividing the sum of the numer-

ators of all SNP-wise FST estimates within a given window by

the sum of their denominators. For downstream analysis, we

required that each window contained at least three variable sites.

Genomic windows were classified as ‘outliers’ or ‘non-out-

liers’ based on their mean FST. We classified outlier windows

as those with mean FST values falling within the top 5% of the

genome-wide FST distribution within a given lake–stream com-

parison. Outlier classification was performed using custom R

scripts. Read coverage did not differ significantly between win-

dows classified as outliers and those classified as non-outliers

for any of the 16 population pairs (data not shown).

To identify the genomic regions (windows) that had

repeatedly differentiated between independently derived lake–

stream pairs, the outlier windows in each single lake–stream

comparison were compared across all 16 population pairs.

Repeatability was estimated window-by-window as the pro-

portion of population pairs that had a given outlier, using the

following equation:

repeatability ¼ k � ðk � 1Þ=2

n � ðn� 1Þ=2

where k is the number of population pairs with an outlier for a

given window and n is the number of population pairs with

data for that window.

To test whether the level of repeatability was greater than

that expected by chance, we ran a permutation with 10 000 iter-

ations. For each iteration, the outlier status of a given window

was randomly shuffled among the 16 population pairs and the

magnitude of repeatability was re-estimated. Missing data were

held in place during resampling so that the total number of

windows with data for a given population pair remained the

same for all iterations. These 10 000 iterations yielded a null

distribution of repeatability for each window, and empirical esti-

mates were compared against these nulls to determine statistical

significance. The resulting p-values were corrected for multiple

testing using the p.adjust function with the BH (alias fdr)

method in R [29].

(b) Association mapping with Bayenv
The same SNP data outlined above were used to identify

genomic loci associated with variation in abiotic factors (n ¼ 5),

diet items (n ¼ 45) or morphological phenotypes (n ¼ 34)

across the 32 freshwater populations from 16 watersheds (see

electronic supplementary material, table S1 for a full list of

traits). Data for individual traits in each of these three categories
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were all previously reported, with full details on the method of

measurement provided in Stuart et al. [24].

Bayen v2.0 [30] was used to detect statistical associations

between individual SNPs and each trait. SNPs with high linkage

disequilibrium (r2 above 0.2) were identified using SNPrelate [31]

and removed from the dataset, which left 11 440 unlinked SNPs.

Only these unlinked SNPs were used to estimate the covariance

matrix in Bayen v2.0 with 10 000 iterations [30]. This covariance

matrix was then used in the association mapping models to

account for population structure/relatedness. Population-level

allele frequencies were estimated for all SNPs (68 677) and for-

matted as a POPfile using a custom PERL script. Average values

for each morphological, diet and abiotic trait were estimated for

each population and normalized by subtracting the among-

population mean from each estimate and dividing by Coop et al.
the among-population standard deviation, as suggested by Coop

et al. [30]; this was the ENVfile. These average allele frequency

(POPfile) and trait estimates (ENVfiles), along with the covariance

matrix, were the input files for Bayenv. Bayenv v2.0 was run inde-

pendently five times, following the methods of Blair et al. [32]. Each

independent run used a unique random seed and had 10 000 iter-

ations. Bayes factors and Spearman’s r correlation coefficients were

estimated for all SNPs and traits; both statistics were averaged

across the five independent Bayenv runs before downstream analy-

sis. The log Bayes factors for each trait were individually plotted

against the corresponding Spearman’s r values (i.e. in volcano

plots); this allowed us to visually ensure that loci with large

Bayes factors did not tend to have small correlation coefficients,

as this would be an indicator of false positives.

The SNPs from the Bayenv analysis were classified as signifi-

cant candidates for explaining variance in a trait if they met

the following criteria: both the log Bayes factor value and

Spearman’s r fell in or above the 99.9th quantile of their respect-

ive distributions (see electronic supplementary material, table S1

for the Bayes factor and Spearman’s r correlation coefficient sig-

nificance thresholds for each trait). If a given 50 kbp window

contained one or more of these candidate trait SNPs, it was

defined as a ‘candidate trait window’.
(c) Permutation tests to quantify co-localization and
enrichment of candidate trait windows and
repeatedly differentiated genomic windows

For all permutation tests described below, we ran 10 000

iterations to generate the null distribution, against which empiri-

cal estimates were compared to determine statistical significance.

First, we tested whether the number of candidate trait win-

dows on each chromosome was greater than expected by

chance. In each iteration, the candidate status of a window (i.e.

candidate containing or not) was randomly shuffled among the

21 chromosomes and the total number of candidate trait win-

dows per chromosome was re-estimated. Three permutation

tests were run, one for each category of the trait (abiotic, diet

or morphology). The same method was used to test for enrich-

ment of repeatedly differentiated windows, with repeatability

status of a window randomly shuffled.

Second, we tested whether more traits within each category type

(i.e. morphological, abiotic or diet) mapped to a given window than

expected by chance. For each iteration, the presence or absence of a

candidate for each trait within a category was randomly shuffled

among the genomic windows and the total number of mapped

traits per window was re-estimated. In this permutation, the result-

ing p-values were corrected for multiple testing using the p.adjust
function and BH (alias fdr) method in R [29].

Third, we tested whether there were more windows that were

repeatedly differentiated and classified as candidate trait windows

than expected by chance. To accomplish this test, we randomized
the candidate trait windows and separately randomized the

windows that were repeatedly differentiated. Here, any window

shared by at least two pairs of populations was coded as repeat-

edly differentiated, although the results were the same if only

the significantly repeatedly differentiated windows (i.e. in at

least three pairs; see Results) were coded in this way. For each iter-

ation, we re-quantified the total number of windows that were

repeatedly differentiated and contained a candidate trait locus.

Fourth, this same permutation structure was used to test

whether there was more overlap between the candidate trait win-

dows of the different categories (e.g. candidates for diet and
morphology) than expected by chance. In these tests, the candidate

trait windows in each category were individually randomized and

the total number of windows containing candidates for both trait

categories was re-estimated.

3. Results
(a) Repeatedly differentiated genomic windows
Of the 2513 windows (50 kbp) across the stickleback genome,

1013 windows were highly differentiated (i.e. contained FST

outliers) in at least one lake–stream comparison. Across the

genome, 377 windows (15% of the 2513 total genomic win-

dows or 37% of the 1013 highly differentiated windows)

were outliers in two or more population pairs, indicating

that there is some evolutionary repeatability at the genomic

level (figure 1). Permutation testing revealed that 42 of

these windows (approx. 2% of all windows, 4% of highly

differentiated windows) were significantly repeatedly differ-

entiated ( p , 0.05) even after correction for false discovery

rate. These significant windows were all outliers in multiple

watersheds (a minimum of three lake–stream population

pairs, a maximum of 10 out of 15 pairs with; figure 1). It is

also worth noting that an additional 126 windows were out-

liers in three to five population pairs but did not meet the

significance threshold after false discovery correction in the

permutation testing (see figures 1 and 2 and electronic sup-

plementary material, table S2 for the genomic locations of

these windows). There was no difference between the 42 win-

dows that were significantly repeatedly differentiated

windows and the remaining highly differentiated windows

in either recombination rate (difference in recombination

rate ¼ 1.50, T475 ¼ 0.73, p ¼ 0.467) or gene density (difference

in gene density ¼ 0.019, T1448 ¼ 0.05, p ¼ 0.69).

The outlier window shared by 10 populations was located

on chromosome I. There was significant enrichment ( p , 0.05

in a permutation test; see electronic supplementary material,

table S3 for individual chromosomal p-values) of repeatedly dif-

ferentiated windows on chromosomes VIII, XI and XXI. The

location of this highly repeatable window on chromosome XXI

is biologically reasonable given previous work has indicated

the clustering of quantitative trait loci (QTL) on this chromo-

some [12]. However, very few ecologically relevant traits had

been previously mapped to chromosomes VIII or XI. These

sites might contain genes affecting traits that differ between

lake and stream sticklebacks but that have not been genetically

mapped, such as parasite resistance or behaviour.

(b) Candidate trait windows for abiotic factors, diet
items and morphological phenotypes

Using a population-level association mapping approach (i.e.

Bayenv), we detected windows containing at least one SNP

associated with environmental variables or fish traits.
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Specifically, Bayenv calculates the correlation between

population allele frequency and mean trait value across the

32 populations (16 lake and 16 stream), while controlling

for their genetic structure. We applied this analysis to three

categories of data (abiotic factors, diet items, morphological

phenotypes). Electronic supplementary material, figure S2

summarizes the locations of all windows.

All five abiotic factors tested had candidate windows that

significantly explained population-level variation (correlation

coefficients 0.32–0.60). Salinity and dissolved oxygen had the

fewest candidate windows (four each), while the other factors

had 17–20 significant candidate windows. All 34 morpho-

logical phenotypes considered had multiple candidate

windows significantly associated with population-level vari-

ation (correlation coefficients 0.28–0.67). Pectoral fin area

had the fewest candidates (six) while other traits had 30 or

more significant candidate windows. Of the 45 diet items

tested, 43 had one or more candidate window(s) and some

factors had up to 20–30 significant candidate windows (cor-

relation coefficients 0.27–0.69). See electronic supplementary

material, table S2 for locations and summaries of mapped

windows for each trait.

(c) Clustering of candidate trait windows across
chromosomes

There was significant enrichment ( p , 0.05 in a permutation

test; see electronic supplementary material, table S3 for
individual chromosomal p-values) of candidate windows

associated with all trait categories: abiotic factors were

enriched on chromosome VII, diet items were enriched on

chromosomes VII and XXI, and morphological traits were

enriched on chromosomes IV, VII and XX.

(d) Clustering of traits within candidate windows
Across the genome, there was no significant co-mapping

(clustering of candidate regions) of the five different abiotic

factors to a given window ( p . 0.05 for all windows). By con-

trast, 45 windows (1.8% of all windows) exhibited significant

co-mapping of two or more of the 34 morphological pheno-

types ( p , 0.05 in a permutation test after correction for

false discovery rate). Genomic windows containing candidate

loci for multiple morphological traits were located primarily

on chromosomes IV, VII, XII and XX. For diet, there were

14 windows (0.6%) that had significant co-mapping of candi-

date loci for the 45 different diet components ( p , 0.05

in a permutation test after correction for false discovery

rate); these genomic regions were located primarily on

chromosomes IV, VII and XV.

Overall, there were 586 windows (23%) that contained

candidate loci for at least one category of trait (figure 3a).

Three hundred and forty-three of these windows were associ-

ated with at least one morphological phenotype, 347 were

associated with at least one diet item and 62 were associated

with at least one abiotic factor (figure 3b). There was
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considerable overlap of these candidate windows across the

three trait categories (figure 3b). Correspondingly, the

degree of genome-wide overlap between candidate trait

windows for different trait types (i.e. diet and morphology,

morphology and abiotic, diet and abiotic) was significantly

more than expected by chance for all three trait combina-

tions ( p , 0.0001 for all three permutation tests). Seventeen

windows contained candidate loci for all three categories

of traits (figure 3b); these windows were found on

chromosomes I, IV, VII, VIII, IX and XII.

When we only considered the overlap between candidate

windows for diet components and the 18 morphological

phenotypes that have a known role in feeding, we found

that 85 of the possible 223 regions (38%) were shared ( p ,

0.0001). These windows appear to be key in determining

feeding capabilities and the corresponding prevalence of

prey items in the diet; they were primarily located on

chromosomes IV, VII, XIII and XX, with 8–14 candidate

windows on each of these chromosomes.

(e) Co-localization of repeatedly differentiated windows
and candidate trait windows

Eighty-four genomic windows (3.3%) were repeatedly

differentiated (shared by two or more pairs) and contained

a candidate locus for at least one trait (figure 2 and

figure 3a). Six of these windows contained candidate loci

for adaptation to abiotic factors, 49 windows contained can-

didate loci for morphological phenotypes and 49 windows

contained candidate loci for diet items (figure 2 and

figure 3c). There was an overlap of 18 of these windows

among the different trait categories; two windows on

chromosome VIII contained candidate loci for all three trait

categories (figure 2 and figure 3c). However, the degree of

genome-wide overlap between windows with repeated

differentiation and windows containing any type of candi-

date loci was not greater than expected by chance ( p . 0.05

in permutation tests for each of the three trait categories).

The 40 windows displaying significantly repeatable differen-

tiation (three or more pairs sharing an outlier window)

contained candidates for between 1 and 13 individual traits

(abiotic, diet or morphological). Interestingly, the four win-

dows differentiated in the most population pairs (on

chromosomes IV, VIII and XI) that also contained candidate

loci were associated with diet components, swimming, feed-

ing and armour traits (see highlighted windows in figure 2).
4. Discussion
In this study, we aimed to detect genomic regions with a

signature of repeated differentiation across multiple inde-

pendent pairs of lake–stream stickleback. We then asked

whether those regions contained SNPs associated with

environmental conditions and morphological divergence.

Before discussing our results, we clarify that here we are

not looking at parallel evolution in the strict sense, that is,

whether the same mutation or allele is used repeatedly (see

[33] for a discussion of different usages of the term parallel).

Rather, we are interested in genomic regions of repeated

differentiation. Repeated differentiation, like repeated fixation

of the same mutation, strongly suggests the action of natural

selection. However, it is important to note that other
evolutionary forces or genomic features could also influence

these patterns [10]. In our study, the repeatedly differentiated

windows did not have significantly different recombination

rates or gene densities from other differentiated windows,

suggesting that our results are not an artefact of genome

structure. Thus, finding that a region of the genome has a sig-

nature of selection (e.g. high FST) in multiple independently

derived populations implies that there may be some interest-

ing genes or genetic features located within the region.

A limitation of the reduced representation sequencing

methods (double-digest RAD) employed by this study is

that we are unable to distinguish between patterns of differ-

entiation generated from direct versus linked selection [34].

Thus, we do not attempt any analyses of the specific genetic

content of the genomic windows identified here.
(a) Magnitude of repeatable genomic differentiation
Across biological systems, the degree to which differentiation

is repeatable appears to be highly variable and differs

depending on the biological level (gene versus phenotype

versus genomic region) being considered (reviewed by

[33]). Previous work in threespine stickleback has shown

highly repeatable patterns of differentiation at particular can-

didate loci, for example, at the Ectodysplasin (Eda) gene, which

has been directly shown to underlie the reduction of lateral

plating in numerous freshwater populations relative to their

marine ancestors [35]. A pattern of high repeatability has

also been shown for the sodium/potassium ATPase

(ATP1a1) gene, which mediates salinity tolerance [4,36].

Recent work characterizing genome-wide patterns of

repeatability in sticklebacks has generally found that a

small to moderate fraction of highly differentiated loci/

regions evolve in a repeatable fashion [4,37–39]. Among

three independent benthic–limnetic ecotype pairs of stickle-

back from Canada, 33% of outlier markers (SNPs) were

shared by two or more of the pairs [36]; this is similar to

the 37% seen for our North American lake–stream pairs.

This is also similar to the 23.2% of outliers differentiating in

parallel in the European anchovy (Engraulis encrasicolus) [7].

By contrast, for European lake–stream stickleback, only 3%

of outlier windows were shared for two to four of the five

surveyed population pairs [37]. This is similar to what is

seen among crab and wave ecotypes of the rough periwinkle

(Littorina saxatilis) where 3–13% of outliers are shared

between at least two of the three surveyed islands [5]. In gen-

eral, variable levels of repeatability for patterns of phenotypic

and/or genotypic differentiation are thought to be due to a

combination of environmental heterogeneity, insufficient

genetic variation, variable gene flow and genetic drift [33].

Both gene flow and environmental heterogeneity influence

the observed levels of phenotypic repeatability among the

16 lake–stream pairs studied here [24]. However, despite

these factors, we still find a non-negligible (albeit low) level

of repeatable genomic divergence for these ecotypes.

It is possible that the repeatability we observe for some

genomic regions (upwards of five population pairs with

shared outliers) is a signature of adaptation from standing

genetic variation, as is often the case when marine stickle-

backs colonize freshwater habitats [35,39–41]. Recent

simulation work has shown that when populations adapt to

identical environments and standing variation is present,

the same alleles are most often used rather than new
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mutations [42]. Interestingly, Thompson et al. [42] also show

the tendency toward repeated (parallel) evolution diminishes

rapidly when selection is not entirely parallel. Indeed, Stuart

et al. [24] have previously shown that variation in the degree

of parallelism for environmental factors predicted the degree

of phenotypic parallelism in the populations studied here. It

could be that standing genetic variation also interacts with

selective heterogeneity to produce the observed patterns.
(b) Clustering of candidate trait windows
Many of the candidate trait windows identified in this study

correspond to genomic regions previously identified as QTL

for morphological, behavioural and reproductive traits

(reviewed by [12]). In particular, the four chromosomes (IV,

VII, XX and XXI) showing enrichment for at least one of

the three trait categories (abiotic factors, diet items, morpho-

logical phenotypes) mapped in our study are among the five

chromosomes previously shown to have more QTL than

expected given the physical size or number of genes on the

chromosome [12]. Furthermore, we found that chromosomes

IV and XX were enriched for candidate trait windows associ-

ated with both feeding morphology and diet items, consistent

with the previously observed enrichment of QTL associated

with feeding morphology on these two chromosomes [12].

Although we did not find evidence of enrichment of candi-

date trait windows on chromosome XVI, the QTL

enrichment on this chromosome appears to be largely

driven by loci influencing body shape [12], which was not

studied here. It is important to note that the work here also

presents many new candidate regions that will merit future

fine-scale investigation, particularly for abiotic factors and

diet items, which have received relatively little attention in

previous mapping studies.
It is possible that the non-random distribution of candidate

trait windows is a signature of either pleiotropy or tight

physical linkage. In many systems, the tight clustering of

multiple loci affecting different traits (sometimes called

‘supergenes’) involved in adaptive divergence has been

observed [43]. Clustering of adaptive alleles is thought to be

especially important when adaptation is occurring in the pres-

ence of gene flow [44], or when it would be maladaptive to

have co-adapted phenotypes broken up by recombination

[45–47]. Consistent with these theoretical predictions, there

is strong evidence to suggest the differentiation of the lake–

stream ecotypes studied here is occurring in the presence of

ongoing gene flow [24].

(c) Association between windows of repeated genomic
differentiation and candidate traits

For the candidate trait windows that were repeatedly

differentiated, there was a positive, but marginally non-

significant, correlation between the magnitude of repeated

differentiation (number of population pairs sharing an outlier

window) and the number of environmental or phenotypic

traits that mapped to that window (r ¼ 0.15, F1,82 ¼ 2.88,

p ¼ 0.09). This suggests that loci are to some degree pleiotro-

pic (i.e. influencing the variance of more than one trait) and

may be more frequently used during adaptation to a

common agent (or agents) of selection. However, such a pat-

tern could also be generated if different agents of selection are

acting in different population pairs on independent traits

(and loci) that map to the same windows. Future fine-scale

mapping and selection studies will be required to disentangle

these alternative mechanisms.

Despite this association, we did not find evidence for

significant genome-wide enrichment of candidate trait win-

dows within regions of repeated genetic differentiation.

However, we did find that all of the phenotypic traits

previously identified to be highly parallel in pairs of lake–

stream stickleback [24] mapped to regions of repeated genetic

differentiation. This suggests that we are describing a real

genetic signature of repeated phenotypic evolution. Yet, an

important consideration of this study is that our use of popu-

lation-level association analyses (Bayenv), rather than a

within-population association study, reduced our ability to

detect candidate loci. This is because the sensitivity of a

population-level analysis increases when a greater number

of populations exhibit the same associations between allele

frequencies and phenotypes. As a result, candidate loci

underlying trait variation in a single population would

often be overlooked. Correspondingly, the candidate regions

reported here are very likely only a subset of those important

for the abiotic factors and traits considered in this study.

The observed mapping of multiple diet, feeding and

armour traits to regions of the genome evolving in a repeata-

ble fashion supports the idea that both feeding capacity and

predation avoidance are among the drivers of differentiation

in this system. We see a higher fraction of candidate regions

related to biotic factors (predation avoidance and foraging)

mapping to repeatedly differentiated genomic regions

(14%) than candidate regions for abiotic factors (9%). This

pattern may suggest biotic factors play a relatively greater

role than abiotic factors in shaping patterns of repeated

differentiation in this system. However, this pattern may

also be due in part to greater variance in abiotic factors
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between the watersheds than between the lake and stream

habitats within a watershed [24].

Despite the constraints of our methods discussed above,

the repeated genomic differentiation found in this study

cannot be explained solely by the variety of ecological factors

and morphological traits that we considered here. This is not

surprising as we know that selection in threespine stickleback

is generally multifarious, involving a multitude of biotic

factors such as competition [48], predation [49], parasites

[50–52] and pathogens [53], as well as a variety of abiotic fac-

tors such as salinity [54], turbidity [55] and temperature [56].

Our results identify regions of the genome that are likely

important for adaptation to these other environmental factors

and provide a reminder that multifarious agents of selection

should be considered in studies of repeated evolution.

Furthermore, our results highlight the importance of integrat-

ing association mapping studies to identify links between

genotypes and phenotypes with population genomic studies

to identify links between genotypes and fitness. Combined,

these two types of analyses can provide a more holistic
view of the ecological and genetic factors that drive repeated

phenotypic evolution.
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